2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Design and Analysis of an Asymmetrically Fed Insulated Coaxial Slot Antenna with Enhanced Tip-Heating Performance

Lin-Kun Wu, Member, IEEE and David Wen-Fong Su

Page 1369.

Abstract:

In this paper, a novel use of an asymmetrically fed insulated coaxial slot antenna (ICSA) type of applicator for interstitial microwave hyperthermia that simultaneously exhibits good impedance matching and enhanced tip-heating performances is presented. Theoretical analysis reveals that by making the distal arm much shorter than the other arm of the antenna, charge densities distributed over the distal arm of the antenna increase significantly. This, in turn, can result in the radial electric-field component becoming the dominant contributor to the specific absorption rate (SAR) over the distal arm side of the heating region and, therefore, the achievement of enhanced tip-heating performance. With the length of the longer arm chosen to be slightly longer than a quarter-wavelength, good impedance matching and enhanced tip-heating performances are achieved when the length of the shorter distal arm is reduced to no more than 25% of that of the longer arm. Good agreements observed between theoretical and measured SAR patterns for two ICSA's designed for operation at 915 and 433 MHz, respectively, confirm the validity of the design method.

References

  1. B. E. Lyons, R. H. Britt and J. W. Strohbehn, "Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array", IEEE Trans. Biomed. Eng., vol. BME-31, pp.  53-62, Jan  1984 .
  2. A. M. Tumeh and M. F. Iskander, "Performance comparison of available interstitial antennas for microwave hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  1126-1133, July  1989.
  3. D. Despretz, J.-C. Camart, C. Michel, J.-J. Fabre, B. Prevost, J.-P. Sozanski and M. Chive, "Microwave prostatic hyperthermia: Interest of urethral and rectal applicators combination-Theoretical study and animal experimental results", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1762-1767, Oct.  1996.
  4. D. W.-F. Su and L. K. Wu, "Input impedance characteristics of coaxial slot antennas for interstitial microwave hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  302-307, Mar.  1999.
  5. R. W. P. King, B. S. Trembly and J. W. Strohbehn, "The electromagnetic field of an insulated antenna in a conducting or dielectric medium", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  574-583, July  1983.
  6. W. Hurter, F. Reinbold and W. J. Lorenz, "A dipole antenna for interstitial microwave hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1048-1054, Jun.  1991.
  7. Y. Zhang, N. V. Dubal, R. Takemoto-Hambleton and W. T. Joines, "The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative dielectric medium", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1438-1443, Oct.  1988.
  8. G. B. Gentili, M. Leoncini, B. S. Trembly and S. E. Schweizer, "FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators", IEEE Trans. Biomed. Eng., vol. 42, pp.  973-980, Oct.  1995.
  9. L. K. Wu, D. W.-F. Su and B.-C. Tseng, "A fast algorithm for computing field radiated by an insulated dipole antenna in dissipative medium", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2290-2293, Dec.  1996.
  10. J.-C Camart, J.-J. Fabre, B. Prevost, J. Pribetich and M. Chive, "Coaxial antenna array for 915 MHz interstitial hyperthermia: Design and modelization-power deposition and heating pattern-phased array", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2243-2250, Dec.  1992.
  11. F. Turner, "Interstitial equal-phased arrays for EM hyperthermia", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  572-578, May  1986.
  12. A. M. Tumeh and M. F. Iskander, "Performance comparison of available interstitial antennas for microwave hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  1126-1133, July  1989.
  13. J.-C. Camart, D. Despretz, M. Chive and J. Pribetich, "Modeling of various kinds of applicators used for microwave hyperthermia based on the FDTD method", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1811-1818, Oct.  1996 .
  14. J. C. Lin and Y. Wang, "Interstitial microwave antennas for thermal therapy", Int. J. Hyperthermia, vol. 3, no. 1, pp.  37-47, 1987.
  15. J. C. Lin and Y. Wang, "An implantable microwave antenna for interstitial hyperthermia", Proc. IEEE, vol. 75, pp.  1132 -1133, Aug.  1987.
  16. G. Cerri, R. De Leo and V. M. Primiani, "`Thermic end-fire' interstitial applicator for microwave hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1135-1142, June  1993.