2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 8, August 2000

Table of Contents for this issue

Complete paper in PDF format

Effect of Substrate Dielectric Anisotropy on the Frequency Behavior of Microstrip Circuits

Enrique Drake, Rafael R. Boix, Member, IEEE Manuel Horno, Member, IEEE and Tapan K. Sarkar Fellow, IEEE

Page 1394.

Abstract:

In this paper, we carry out a full-wave analysis of shielded two-port microstrip circuits, in which the metallizations are embedded in a multilayered substrate that may contain isotropic dielectrics and/or anisotropic dielectrics. The Galerkin's method in the spectral domain is applied for determining the current density on the metallizations of the circuits when their feeding lines are excited by means of delta-gap generators, and the matrix pencil technique is subsequently used for deembedding the scattering parameters from the computed current densities. Results are presented for the scattering parameters of some microstrip discontinuities and filters printed on both isotropic dielectric substrates and anisotropic dielectric substrates. These results show that when substrate dielectric anisotropy is ignored, errors arise when computing the scattering parameters of microstrip discontinuities and when predicting the operating frequency band of microstrip filters.

References

  1. W. Schwab and W. Menzel, "On the design of planar microwave components using multilayer structures", IEEE Trans. Microwave Theory Tech., vol.  40, pp.  67-72, Jan.  1992.
  2. E. K. L. Yeung, J. C. Beal and Y. M. M. Antar, "Multilayer microstrip structure analysis with matched load simulation", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  143-149, Jan.  1995.
  3. M. J. Tsai, F. De Flaviis, O. Fordham and N. G. Alexopoulos, "Modeling planar arbitrarily shaped microstrip elements in multilayered media", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  330-337, Mar.  1997.
  4. H. Y. Yang and N. G. Alexopoulos, "Basic blocks for high-frequency interconnects: Theory and experiment", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1258-1264, Aug.  1988.
  5. N. G. Alexopoulos, "Integrated-circuit structures on anisotropic substrates", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  847-881, Oct.  1985.
  6. D. M. Pozar, "Radiation and scattering from a microstrip patch on a uniaxial substrate", IEEE Trans. Antennas Propagat., vol. AP-35, pp.  613-621, June  1987.
  7. F. Medina, M. Horno and H. Baudrand, "Generalized spectral analysis of planar lines on layered media including uniaxial and biaxial dielectric substrates", IEEE Trans. Microwave Theory Tech., vol. 37, pp.  504-511, Mar.  1989.
  8. Y. Chen and B. Beker, "Study of microstrip step discontinuities on bianisotropic substrates using the method of lines and transverse resonance technique", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1945-1950, Oct.  1994.
  9. J. Martel, R. R. Boix and M. Horno, "Static analysis of microstrip discontinuities using the excess charge density in the spectral domain", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1623-1631, Sept.  1991.
  10. J. Martel, R. R. Boix and M. Horno, "Analysis of a microstrip crossover embedded in a multilayered anisotropic and lossy media", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  424-432, Mar.  1994.
  11. S. S. Toncich, R. E. Collin and K. B. Bhasin, "Full-wave characterization of microstrip open end discontinuities patterned on anisotropic substrates using potential theory", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  2067-2073, Dec.  1994.
  12. J. C. Goswami, A. K. Chan and C. K. Chui, "Spectral domain analysis of single and coupled microstrip open discontinuities with anisotropic substrates", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1174 -1178, July  1996.
  13. P. B. Katehi and N. G. Alexopoulos, "Frequency-dependent characteristics of microstrip discontinuities in millimeter-wave integrated circuits", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  1029 -1035, Oct.  1985.
  14. T. Itoh, "Analysis of microstrip resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-22, pp.  946-952, Nov.   1974.
  15. W. Wertgen and R. H. Jansen, "Efficient direct and iterative electrodynamic analysis of geometrically complex MIC and MMIC structures", Int. J. Numer. Modeling, vol. 2, pp.  153-186, 1989.
  16. A. Hill, J. Burke and K. Kottapalli, "Three-dimensional electromagnetic analysis of shielded microstrip circuits", Int. J. Microwave Millimeter-Wave Computer-Aided Eng., vol. 2, pp.  286-296, 1992.
  17. G. V. Eleftheriades and J. R. Mosig, "On the network characterization of planar passive circuits using the method of moments", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  438-445, Mar.  1996.
  18. R. R. Boix, N. G. Alexopoulos and M. Horno, "Efficient numerical computation of the spectral transverse dyadic Green's function in stratified anisotropic media", J. Electromag. Waves Appl., vol. 10, no. 8, pp.  1047 -1083, 1996.
  19. K. Kawano, "Hybrid-mode analysis of coupled microstrip-slot resonators", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  38-43, Jan.  1985.
  20. F. L. Mesa, R. Marques and M. Horno, "A general algorithm for computing the bidimensional spectral Green's dyad in multilayered complex bianisotropic media: The equivalent boundary method", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1640-1649, Sept.  1991.
  21. A. W. Glisson and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from sources", IEEE Trans. Antennas Propagat., vol. AP-28, pp.  593-603, Sept.   1980.
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in FORTRAN-The Art of Scientific Computing, 2nd ed.   Cambridge: U.K.: Cambridge Univ. Press, 1992.
  23. V. Losada, R. R. Boix and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  488-498, Apr.  1999.
  24. E. Drake, R. R. Boix, M. Horno and T. K. Sarkar, "Comparison among different approaches for the full-wave MOM characterization of open-ended microstrip lines", Microwave Opt. Technol. Lett., vol. 21, pp.  246-248, 1999.
  25. Y. Hua and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise", IEEE Trans. Acoust.,Speech, Signal Processing, vol. 33, pp.  814-824, May  1990.
  26. T. K. Sarkar, Z. A. Maricevic and M. Kahrizi, "An accurate de-embedding procedure for characterizing discontinuities", Int. J. Microwave Millimeter-Wave Computer-Aided Eng. , vol. 2, pp.  135-143, 1992.
  27. G. Cano, F. Medina and M. Horno, "Characteristic impedances of microstrip and finline with uniaxial or biaxial anisotropic substrates", Electron. Lett., vol. 24, no. 19, pp.  1211-1212, 1988.
  28. L. Zhu and K. Wu, "Characterization of unbounded multiport microstrip passive circuits using an explicit-network based method of moments", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2114 -2124, Dec.  1997.
  29. U. V. Gothelf and A. Ostegaard, "Full-wave analysis of a two slot microstrip filter using a new algorithm for computation of the spectral integrals", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  101 -108, Sept.  1993.