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Reconstructing Permittivity Profiles Using Integral
Transforms and Improved Renormalization
Techniques

M. J. Akhtar, Student Member, IEEEBNd Abbas S. OmaBGenior Member, IEEE

Abstract—Some new ideas for reconstructing permittivity measurement of scattering data such as the reflection coefficient
profiles in planar and cylindrical objects illuminated by TEM-,  of an illuminating wave with known characteristics. Information
TE- or TM-polarized waves are presented in this paper. For a 456t the unknown permittivity profile of the illuminated object
planar medium, an improved renormalization technique along . ¢ fh dval is obtained b . .
with a revised version of the nonlinear Riccati differential equa- Interms o ) ese mef”lsure valuesis o a'n? Yy using some in-
tion describing the direct problem are introduced. A nonlinear VErse techniques. Different approaches to find out an unknown
Riccati-similar differential equation for the cylindrical case has permittivity profile have been reported. However, most of these
also been derived here for the first time, which helps recon- methods depend mainly on a source reconstruction philosophy
structing radially varying permittivity profiles in a way parallel i gjiher the spectral or spatial domain, which leads to a strong

to that of the planar case. The above-mentioned renormalization I itv inh H ted with . d
technique has been used for the cylindrical case as well to solveONIN€Arity inherently connected with nonuniqueness ana un-

the inverse problem making use of a Hankel transform. The Certainty of the achieved solution (see, e.g., [3], [9]-[12]). Only
method represents fundamental bases for a three-dimensional if the so-called “Born approximation” is used, a linear problem
generalization, which is essential for microwave imaging used, with a unique solution can be obtained [13], [14]. This approxi-
€.g., in biomedical applications and for the diagnostic of diseases ation limits the validity of such reconstructions to objects with
in trees and vegetation. A known permittivity profile has been o L .

taken to generate synthetic reflection-coefficient data by solving very low pefm'“‘}"ty' which, in pragtlce, are r.arely.encoqnter(.ed.
the nonlinear equations describing the direct problems using Recently, the microwave networking technique in conjunction
MATLAB. These data have been used in conjunction with the with renormalization methods was used to solve these inverse
proposed technique to reconstruct the permittivity profile. About  problems and it was shown that these techniques could be used
50-100 data points over the wavelength range from a minimum ., qer hoth weak and strong scattering conditions [15]-[17]. The

value (ranging from one-tenth to one-fifth of a typical length in . . o - . .
the structure) to infinity have been used for the reconstruction. main advantage of this method is its “quasi’-linearity, which can

Reconstructed profiles have been compared to the original ones for lead to a unique solution.
a number of cases. Deviations of less than 2% have been achieved. This paper consists of two parts. In the first part, a planar

Index Terms—Electromagnetic scattering, inverse problems, half-sp.ace or Slab-'shaped. me(?"“,m is Colnsidered. for the detai!ed
microwave imaging, permittivity, remote sensing. analysis. The nonlinear Riccati differential equations for the di-
rect scattering of TEM-, TE-, and TM-polarized illuminations
have been formulated in a unified form. This can be used for free
|. INTRODUCTION space as well as for transmission line and waveguide scattering.
ECONSTRUCTION of permittivity profiles in planar and The nonlinear renormalization technique presented in [16] and
cylindrical structures constitutes a major part of the ele§l8] has then been revised to separate the nonlinearity of the
tromagnetic inverse scattering and has been of great interestdefresponding inverse problem into an auxiliary linear differ-
many years because of many practical applications. It represegngal equation describing a virtual reflection coefficient along
the one-dimensional version of the general three-dimensiométh a nonlinear algebraic transformation. The auxiliary equa-
(3-D) microwave imaging problems needed, for example, féion can then be inverted to get the permittivity profile in terms
biomedical tomography, which includes reconstruction of musf an inverse Fourier transform in conjunction with a newly pro-
cles, tissues, and different organs of a human being withinpased numerical algorithm, which is more appropriate for dis-
microwave imaging process [1]-[5]. Potential areas of radialfyrete values of reflection coefficient data. The above-mentioned
varying permittivity profiles also include, for example, environnonlinear transformation, which transforms the actual measur-
mental studies of water content, aging, and possible diseaseslde reflection coefficient into a virtual one, can be adjusted in
trees in forests [6]-[8] and geological investigations of the eargtider to achieve the required reconstruction accuracy.
structure as being seen from an exploration well in oil fields In the second part of this paper, we have considered radi-
[9]. The overall reconstruction process, in general, involves tiadly varying permittivity profiles in cylindrical structures. A new
method has been proposed to reconstruct the profiles in these
kind of structures, which goes parallel to the above-mentioned
technique for planar mediums. A nonlinear Riccati-similar dif-
Manuscript received August 3, 1999. . ferential equation has been first formulated for an appropriately
The authors are with the Chair of Microwave and Communication Engi; .. . . . .
neering, FET-IPE, University of Magdeburg, 39016 Magdeburg, Germany. d€fined reflection coefficient. The already mentioned renormal-
Publisher Item Identifier S 0018-9480(00)06539-X. ization technique has been used as well in order to separate
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Fig. 1. Half-space medium.

Fig. 2. Reflection at the interface boundary.

the nonlinearity into an algebraic transformation and an auxil- the incident . dtob llel to the interf
iary linear differential equation. The auxiliary equation has the(?I_ 3 |r\}\(;| tehn nwr?v\? IS assumed to be paraflel to the interiace
been inverted to get the unknown permittivity profile in terms of = U e then have

a Hankel transform of the virtual reflection coefficient. 8. = ko sin § (z-propagation constant is the same in air

and dielectric)

II. PLANAR AND SLAB-SHAPED GEOMETRIES . . . .
The propagation constant and the normalized impedance in the

A. Riccati Type Equations for TE-, TM-, and TEM-Polarized ;-direction are given by
Waves

— 1. -2
Consider the half-space inhomogeneous medium shown in Ax) = koyfer(x) —sin” @

Fig. 1. The relative permittivity,.(x) is a function ofz in the gnd
regionz > 0 varying fromes,.(0) atz = 0. This lossless one-di-

mensional medium can equally represent the filling of a trans- Z(r) = ko = ! .
mission line or waveguide. The exact Riccati differential equa- Alx) er(x) — sinZ 6
tion for the reflection coefficient in this type of structures is
given by [19] Substituting these values into (1) results in
_ dr ) (1-1?) de(z)
T 1 d(ln Z — = 2jkov/er(x —sin® 6T + -
le_ =245l — 5 (1-17) % (1) d= JHo () 4[e(z) —sin® 0] dx
X X

®3)
where I'(z) is the local reflection coefficientZ(x) is the \yhich s the Riccati type differential equation for a TE-polarized
normalized local intrinsic impedance, aft{z) is the local 5ve.

wavenumber describing propagation in thedirection. The  3) T\M-polarized Wave:Following the same procedure as
relationship betwee# (z), () ande,(z) depends, however, apove, but with the magnetic field of the incident wave being

on the wave polarization [20] as discussed below. _parallel to the interface = 0, the Riccati equation for the TM
1) TEM-Polarized Wave:For this case, a monochromaticyg|arized wave reads

plane wave of wavenumbéi;, is normally incident from the

left-hand side (LHS) at the interface = 0. The normalized d_F = 2jkor/er(x) — sin? or

impedance and the-propagation constant are related to th&*

-2
relative permittivity according to (1-1?) [er(w) — 2 sin” §] dEr(ﬂU). 4)
de,(z) [e(x) — sin® 6] dz
Z(z) = ZZ(x) = ! & B(x) = kov/e (). Itis to be no_ted here that (2)—(4) are the same as given in [16],
0 (1) although using a different approach.
Substituting these values in (1) results in B. Nonlinear Renormalization of Riccati Equations and the
, Corresponding Inverse Solution
ar _ 25ko/er(x)I" + (1_—F) dev (%) 2) Let us consider a TEM-polarized wave for a detailed analysis.
dx dep(x)  dr The same approach can be used, however, for TE and TM cases

which is the Riccati type differential equation for a TEM-poIarEleS we_II (B]f)th cases reduce to TE"'\Q for= 0).‘ The exact Riccati
ized wave. equation for a TEM wave (2) will be rewritten as

2) TE-Polarized WaveHere, we consider a plane wave of 1 dr_ 9iko/o(g) L 1 der(x)
wavenumberk, incident from the LHS at an angke on the (1 —12?) dz ikover(x) (1-17?) + de,.(z) dx
interface boundary = 0, as shown in Fig. 2. The electric field (5)
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Fig. 3. Schematic diagram for the direct and inverse problems.

We introduce now a virtual reflection coefficielitas the so- the case when the reflection coefficient is given as an analytical
lution of a linearized version of (5), which will be called thefunction of the wavenumber.

auxiliary equation The advantage of the above suggested technique is that we
.\ separate the nonlinearity of the exact Riccati equation into a
d_F — 2j/€0\/mf+ 1 de"(x), (6) nonlinear algebraic transformation, which relates the actual
dx der(z) dr measurable reflection coefficiedt to a virtual, not directly
Subtracting (5) from (6) results in measurable, one, i.el’, rendering the differential equation
. relatingl” to the looked for permittivity profile linear. This can
ar 1 dr'| ko /(@) [A __r } @) be visualized as shown in Fig. 3. It is worthy noting that the
de  (1-I2) dx| TR0V Ex (1-TI'?) proposed technigue is based on compensating the difference

between the original nonlinear Riccati equation (5) and the
auxiliary linear one (6) via a nonlinear transformation [e.g.,
(10)]. There are, in fact, no severe constraints on the choice
. r of the virtual reflection coefficient and the related auxiliary
['=tanh ™ I'= a—17) (8) linear differential equation. The choice made by (6) as being
a linearization of (5) by neglecting the quadrature term is just
which is not generally true. However, noting that one possibility. Other choices are possible as long as a proper
2 transformation between the measurable and virtual reflection
(- 2 h
A tanh M () =1-Z1% ... (9) coefficients can be found. A
3 Equation (6) is a linear equation Inand, hence, can be in-
then (8) will be approximately satisfied only when all termserted for the permittivity profile [17]
starting by the second one in the right-hand side (RHS) of (9) t
are negligible. It is then clear that (7) can never be made ex- eq(t) = £.(0) exp [—4 / 7o () dt’} (12)
actly satisfied. However, it can be approximated in the following o
two ways: 1)[' = tanh ™! I': in this case, only the LHS of (7) Where#,(t) is the Fourier transform of o(ko), which is the
will be exactly zero, while the RHS has to be negligible and 2jrtual reflection coefficient corresponding I (ko) given by
[’ = I'/(1 — I'?): in this case, only the RHS of (7) becomes I'(ko) — Roy
exactly zero, while the LHS has to be negligible. Lo (ko) = m 13)
Generally, all contributions addressed to this problem (e.qg.
[16], [18]) have taken the first approximation to obtdirfrom .
1“_, \(v_hich is, in fact, biased toward one_direction. T_helother pos- PR / Jer @) da'. (14)
sibility would be to relatd” andI" as in 2), but this is again 0

biased in the other direction. The above approximation can pge pilinear transformation in (13) accounts for a jump a 0
arbitrarily improved if we Iook_ for some optimal functiqn thate. o unity toe,.(0). Ro. can be found graphically in terms of
relatesl” to 1. An obvious choice would be to compromise beég,e gircle representing the reflection coefficient in the complex
tween 1) and 2) or, in other words, to take, for example, thgane [21]. The value of,.(0) can be found in terms of the so
average of both, i.e., measurediy;, as given in [17].

Equation (7) would be satisfied exactly irrespective ofr)
only if

A1 _ r
r= 5 tanh ™' ' + a-m| (10) C. Numerical Algorithm for Reconstructing the Permittivity
Profile
In fgct, we haV(_a found that the above choice is very close Equation (12) gives the permittivity profile.(¢)in a virtual
to optimum and gives us much better results than that of [16|1n : e )
e domain. However, to reconstruct the permittivity profile

. . ]
"’_‘”d [18] for all cases of _pracﬂpal |mp_ortance. Another a.ltem%ompletely, we need to convert it into the space domain. Thus,
tive can be achieved by inserting (9) in (10) and neglecting the . . ) .
) . our main task is to accurately find the value ef"which corre-
powers ofl" higher than the third . o .
sponds to the particular value df™ Below we present a simple
P r 1F3 (11) numerical algorithm based on (14) for this purpose.

(1-12) 3 Let

Equation (11) is a good approximation of (10) and can be used A 4 t S g 15
to relatel’ andT" as well. This is advantageous, especially for 9(t) = - 0 7o (t) (15)
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then (12) becomes
£,.(t) = ,.(0) exp [g(¢)]. (16) 08 |
Starting withg(0) = 0, let us follow the development @f(¢)in £3
time stepsAt. We adopt a simple trapezoidal integration routine é 06 |
described as follows. 3}
1) Whenz = 0, ¢t = 0 [according to (14)]. Soal
2) Att =t = At o
X
g(tl) = — 2At[f0(0) +7A0(At):| = 02+
g, (t1) =£,.(0) exp [g (t1) ].
Now, if ¢; corresponds te; via (14), then following the 0 0 ] 5 3 . 5
same simple trapezoidal integration algorithm, one ar- Distance(x)
rives at
_ At Fig. 4. Exact and reconstructed profiles for the analytical case.
V0 + Ve ) - 6
‘exact ——
- - ‘present’ -
3) Ingeneral, at = ¢, = nAt 5| :apprgach_1j
> approach_2
9(tn) =g (tn1) — 2At{f0 [(n— 1)At] + fo[nAt]} 17) 24+
g
e (tn) =,.(0) exp [g (tn)] (18) 83
At 2
Tp =Tp—1+ (19) EZ L
[Ver ) 4+ Ve () 2

_

wheret,, corresponds ta,,.

Compared to the algorithm proposed in [17], the algorithm
presented here is much more suitable for discrete values of © 02 04 06 0.8 ]
the reflection coefficient. This applies especially when we do Distance
the measurement at a number of frequencies and then use the
fast Fourier transform (FFT) algorithm to find out the inversBig. 5. Exact and reconstructed profiles using different approaches.
Fourier transform in the virtualt” domain. The reason is that 60 -
we get discrete values of the reflection coefficient in tie “ ‘exact ——
domain at some fixed values of“and, hence, it is convenient reconstructed’

to take small increments int™ rather than in %.” Secondly, ///
40

our algorithm does not assume any approximation as compared;

(%))
(=

tivity

to [17] wheree,.(x) was initially considered to be the same at E
two different pointsr; andxs. & 30
)]
=
D. Reconstruction Examples g 20 t
We first consider an analytical example, where the reflection -
coefficient is given by the one-pole expression 107
1
- 0 : : : : '
I'(ko) = (20) 0 0.2 0.4 0.6 0.8 1

(14 j2ko)
For this caseRo; = 0, as was shown in [17] and, hence,
Lo(ko) = I'(ko) [from (13)]. If we use the transformation inrig. 6. Exact and reconstructed profiles for a linear case.
(11) along with (12), we arrive at

Distance

4 1 Fig. 4 shows a comparison between this exact profile and recon-

er(t) = exp {_1 (4r-c™)+ 12 structed profiles using our present approach and that of [17]. As
i ) may be easily seen from these curves, there is a very good agree-
: [6 (—2t* — 8t —16) + 16} } - (21)  ment between the original and reconstructed profiles using our

Th ittivity profile can then b letel tructddf 0POSed technique.
€ permitiivity protiie can then be CompIetely reconstructed o,y e consider linearly varied permittivity profiles. Fig. 5

n the space domain using (21)_a_n(_j the n_umerlca_l algont_hm Hows the exact and reconstructed profiles using our proposed
scribed above. The exact permittivity profile for this case is we ethod (“present”), “approach_1" using the nonlinear trans-

known and is given by [18] formation’ = I'/(1 — I'?), and “approach_2” using® =
en(x) = (14 3z)~ &/, (22) tanh™!' T, i.e., that of [16] or [18]. As may be seen from the
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Fig. 7. Exact and reconstructed profiles for quite a high value of permittivity. \—/
25 , .
’reCOnStrSétaecd’ 77777777777 Flg 10. Rad|a”y varying perm|tt|v|ty pI’Ofile.
2

permittivity profile. Again, an excellent agreement between the
original and reconstructed profiles has been achieved.

In all numerical examples mentioned above, the exact
nonlinear Riccati equation was first solved using MATLAB for
the given permittivity profile to simulate reflection-coefficient
measurement data, which means error- and noise-free measure-
ments. These values were then used in our proposed algorithm
to reconstruct the profiles. Although 100 data points were used

0.5 : : : : ' for reconstruction in the above examples, as few as 50 data
0 0.2 0.4 _ 0.6 0.8 1 points covering the spectral wavelength range from infinity
Distance down to one-tenth of the maximum depth, over which the
Fig. 8. Exact and reconstructed profiles for a nonlinear case. permittivity changes, were enough to achieve a reconstruction
accuracy of 2%. In all plots, the distance has been normalized
with respect to the maximum depth over which the permittivity
, ‘exact! —— is to be reconstructed. We also considered many other profiles
reconstructed’ - . . . . . e
for validation of our algorithm with and without permittivity
jumps at the air—dielectric interfaces. All have shown similar
reconstruction-accuracy behavior.

Relative Permittivity
[8)]

iy

6.5

o
o

Ill. CYLINDRICAL STRUCTURES

A. Derivation of the Riccati-Similar Differential Equation

Relative Permittivity
S~
3] 3]

Consider the cylindrical dielectric object with a radially de-
pendent permittivity,.(p) shown in Fig. 10. A monochromatic
cylindrical wave of wavenumbeél, is assumed to be incident

: )

0 0.2 0.4 0:6 0.8 1 from the outer free_z spacep (>_ a). This accounts, ir_w fact,_
to the case of outside illuminations as, for example, in the in-
vestigation of trees and biological bodies. It is readily proven
Fig.9. Exactand reconstructed profiles for a nonlinear case with discontinufiyat iIIuminating cyIindricaI waves with different azimuthal and

3.5 : :

Distance

at the air—dielectric interface. . - .
axial dependences are decoupled. Without a considerable loss

of generality, we will consider th&M illumination (see, e.g.,
different curves, there is a much better agreement between [2@]), which represents an axially and azimuthally independent
exact and reconstructed profiles using our proposed approantident wave. The analysis of other illuminations is princi-
and transform as compared to the other two methods. Figspdly similar, except for the frequency dependence of their ra-
and 7 show two more linearly varied examples with a quite highal propagation constants, which has to be differently treated.
relative permittivity and a discontinuity at the air—dielectric inThe TMqq mode in a radial waveguide or a cylindrical structure
terface. As can be seen from these plots, our method works welsimilar to the TEM mode in transmission lines, as it neither
even when the relative permittivity is as high as 100. Figs.&sE- nor H-field components in the direction of propagation
and 9 show nonlinear cases, which contain more contrast in {pedirection) [20]. As we measure the reflection coefficient at
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the outer radius of the cylindrical body, thus we will considewhere
the inward and outward traveling waves as being incident and

: - Y HY (kp)
reflected ones, respectively. Fofldly, mode, we have Y = = =jve(p) =t (35)
Yo H (kp)
- _ - _ /e, (1)
EZ = — jwuoHy (kp) Hy = ko PYH; is the local normalized admittance. Eliminatifig, one arrives
(23) at the following nonlinear differential equation fbr
Ef = — jonoHy) (kp) HF = kov/e,(0)H (kp) ar ko ()4 T — P2(1 — al'y
(24) dp T Aty |V “
where “~” and “+” signs represent inward and outward propa- _(+) [da LpY + (al' — 1) — 0 (pY) ]
gating waves, respectivelﬂ,(,’l‘) (kp) represents a Hankel func- (1+a)pY |d dp
tion of annth type andmth order, and =0. (36)
In order to have a Riccati-similar fashion, we rewrite (36) in
k= kover(p)- (29)  the following form:
Let us now look for a taper solution of the form £+F l 4y _ Jrkop
N . dp 7rpH(1) kp HPY kp) 8v/er(p)
B.=BC +TBI = B7 T (B) (26) (<J1>( | (<J2>( | W @1 ) der(p)

. Jmkop ds?( )
whereT is an appropriately defined reflection coefficient and 8v/er(p) dp
“*” represents the complex conjugate.

Let us also define

H (kp)HS (kp) [1—al?]  (37)

which is a nonlinear Riccati-similar differential equation for
the radially (and frequency) dependent reflection coefficient

. H; y -~ Hl(l)(kp) o8 ['(ko, p) due toTM illumination.
= = erp) = : . o ,
EZ Jro r Hél)(kp) B. Inversion of the Radially Dependent Permittivity Profile
For most practical cases considered,™as defined in (29),
and can be replaced by its asymptotic value fgr — oo. Hence,
v+ Hél)(kp)H£2)(kp) 29) (37) can be rewritten as
oy = — = —
Y HP (ko) HY (kp) 1 da U
(1-T2) dp ' (1-1%)
whereYj is the free-space intrinsic admittance. 44 ik
After some mathematical manipulations of (26)—(29), we ar- [ o J ) __JThop
rive at wpHy (kp)Hy” (kp) 8V er(p)
(W @) (1) @) der(p)
b B (18" 2 ) + 5 ) 2 ) ) 52
H,=YE_(1-al) (30) __Jrkop der(p) HD () B (kp). (38)
8y/er(p) dp
where o
The structural form of (38) now becomes similar to that of
r P ED)” 31) (5). Consequently, we can make use of the same renormalization

e technique as proposed for the planar case. Hence, the measur-
_ able reflection coefficient'(p) can be related to a virtual one
Now, for aTMgo mode, Maxwell's equations are reduced t¢*( ) via a nonlinear transformation. Again, the advantage of

this procedure is that we isolate the nonlinearity of (38) into

JwpoHy, = Ok, a nonlinear algebraic transformation rendering the differential
gp equation describing/(p) linear. An appropriate linearized ver-
jkoYoe,(p)pE. = 5 (pHy) . (32) S|(?n of (38), which can be used to defihép), is given by
ﬂ_’_f 45 _ Jmkop
From (30) and (32), we get dp WpHél)(kp)Hé2)(/€p) 8v/e-(p)
1 2 1 2 de.(p)
jkoY (1 — al)E = 82 [E;(l T r)} (33) : (Hé '(kp)H{? (kp)+H{ (kp) Hy )(/fp)) i
0
d jrkop der(p)

jkoer(p)pEs (1+T) = 3 [p_(l—od—‘)E;} (34) NEORE HY (kp)HE (kp).- (39)
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We will take the same optimuAm nonlinear transformation de- I 'exact ——
fined by (10) to relatd'(p) and1'(p), as described earlier for I jgpp:gggﬂ_;j e
the planar case. Making use of some simplifying assumptions, PP -

(39) can be approximated to g 5l
~ 2 2 . E -
ar w1, HY (kp)— H{ (kp) __J d=lp) S 15
dp HY (kp)H{(kp) | 4erlp) dp £ :
H{ (kp) 2
T (40)
Hy " (kp) 051
In order to justify the practical equivalence between (39) and 0 ‘ . ‘ . ,
(40), both have been solved numerically for a variety of permit- 1 1.2 1.4 1.6 1.8 2
tivity profiles to getl'(p). It was found that there is a very close Radial Distance

prox'mlty between the Values. C[f(p) as given by .these tWO.Fig. 11. Exact and reconstructed profiles using two approaches in the
equations for almost all practical cases. Integrating (40) Witliindrical geometry.

boundary conditiorf(ko, po) = O results in

R (ko) =T (ko a) and :
P amkp’ de, (p 2 . " 2 .
= / () dp(,p VB (bl exp(—j2kayds K (p, ) = / IRHY (ko) exp(—j2ka)Jo(kp)k dk.
a T 0

(41) (46)
The functionK (p, p’) defined by (46) is, in fact, a variable-
where ‘@” and “py” are the outer and inner radii of theresolution selective function with a maximumggt= p(p). It
cylindrical object under consideration, respectively, as showan be used to sampl&e,.(p’)) atp’ = 4 according to
in Fig. 10. A further processing of (41) necessitates that

“k” be p independent, which is not the case [see (25)]. As a Gler (p)) = — 7 (PA(P)) 47)
simplification, which has to be justified later, the following two I K (p(p), p)p' dpf
approximations for £” have been considered: wherep(p) is the inverse function of(p).
* k= ko, A higher resolution of the construction is obtained by in-
* k = koc, where ‘" is a constant depending on the relativereasing:. Finally, the unknown permittivity profile,.(o") can
permittivity at the two ends. be easily reconstructed using (45)

We have solved the inverse problem using both approaches, ,
. . 8 4
as given in one of the examples. We have observed that a good e () = en(a) exp |2 / G (e,(z)) dx (48)
approximation for £2” is the average value of the permittivity ' ' T /g '

at both ends, i.e., . B - o
wheree,.(a) is the permittivity at the outer air—dielectric inter-

er(a) +e- (po) 49 face ande is a dummy integration variable.

9 (42) It is worth noting that practical antenna arrangements for il-

N - ) lumination (transmitters) or measurement of scattering data (re-
The advantag_e .Of ha\//m_g—lndependent K" is to |s_olat(_a ceivers) are not generally able to excite or measure a single ra-

the terms c_ontam_mg,,(p) in (41) gnd, hence, to simplify dial mode (e.g.;I'Mgp). An arbitrary illuminating or scattered

the overall inversion process as will be shown below. No ectromagnetic field can, however, be expanded into an infinite

going paralllell to thf plaggr geomr(]a_trt)]/,.wehfirst findlthe tr.ur‘gum of radial modes due to their completeness property (see,
cated Hankel transform af(ko), which is the natural one in ¢ o 1551 A multiple illumination/multiview scenario can then

cylindrical coordinate systems be used to extract the necessary information on the scattering of
3 a certain radial mode. The above-mentioned issue is not, how-
p) = / R (ko) Jo(kp)k dk (43) ever, our concern in this paper, as the scattering data used for
0 the verification of the proposed method have been synthetically
produced by solving the direct problem for known permittivity

k= ko

where %" is the highest wavenumber corresponding}%@"‘ac- '
cording to (42) at which the reflection coefficient is to be med2"ofiles.

sured. It is readily proven that p) is related tc:,.(p) by C. Reconstruction Examples

#(p) = P Gler(¢) K (p, o) dpf (44) Fig. 11 shows the exact and reconstructed permittivity pro-

a files for the case, when the relative permittivity at the outer ra-
diusis continuous (jump free) using two different approaches. In
the first approach, the value o™ is taken as given by (42) for
the solution of the inverse problem. In the second approach, the
value of “k” is simply taken equal tok.” As expected, the first

where
7 de.(p))

(45)
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w
o
1

our proposed method as it isolates the nonlinearity associated
with the inverse problems into a simple algebraic transforma-
tion. On the other hand, the method is not based on a Born ap-
proximation and, hence, can be used to reconstruct profiles with
higher contrasts as well. Several examples have been consid-
ered for validation of the proposed technique and, in each case,
a quite good agreement has been found between the original and
reconstructed profiles. Lossy profiles related to vegetation and

‘exact ——
‘reconstructed’

N
[5;]
T

\S]
o

Relative Permittivity
(8]

10 +
5 L
0 ! L ! L ]
1 1.2 1.4 1.6 1.8 2 [1]
Radial Distance
Fig. 12. Exact and reconstructed profiles with discontinuity at the

(2]

air—dielectric interface in the cylindrical geometry.

40

‘exact ——
‘reconstructed’

(3]

35 1

w
(o]

[4]

n N
o [¢)]
T

(5]

—

Relative Permittivity
(o) (6] 6 [6;]

(6]

[71

14 1.6
Radial Distance

1 1.2 1.8 2

(8]
Fig. 13. Exactand reconstructed profiles for a high value of permittivity in the
cylindrical geometry. (9]

approach gives quite good matching between actual and recopy
structed profiles as compared to the second one. Thus, the first
approach will be adopted for the considered examples. Figs. 12
and 13 show the exact and reconstructed profiles, when the riil-l]
ative permittivity is quite high. As can be easily seen, the agree-
ment between exact and reconstructed profiles is quite good, €ld2]
pecially for higher values of permittivity. As in the planar case,
error- and noise-free scattering data have been synthetically prf3]
duced by solving the nonlinear Riccati-similar differential equa-
tion (38) for known permittivity profiles using MATLAB. As [14]
few as 50 data points covering the spectral wavelength range
from infinity down to one-fifth of the inner diameter of the cylin-
drical object have been used for the reconstruction. The radigf5]
distance in the above plots has been normalized with respect to
the inner radius of the cylindrical object under consideration[16]
Effects of noisy results are being considered.

[17]

IV. CONCLUSION

We have presented some new ideas for reconstructing the pé%§3 ]
mittivity profiles in both planar and cylindrical geometries. An
improved renormalization technique has been proposed for tH&®!
solution of the inverse problems, which can be equally used fo&o]
both cases. A practically unique solution can be obtained using

biological bodies are currently being considered for analysis.
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