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Abstract—Some new ideas for reconstructing permittivity
profiles in planar and cylindrical objects illuminated by TEM-,
TE- or TM-polarized waves are presented in this paper. For a
planar medium, an improved renormalization technique along
with a revised version of the nonlinear Riccati differential equa-
tion describing the direct problem are introduced. A nonlinear
Riccati-similar differential equation for the cylindrical case has
also been derived here for the first time, which helps recon-
structing radially varying permittivity profiles in a way parallel
to that of the planar case. The above-mentioned renormalization
technique has been used for the cylindrical case as well to solve
the inverse problem making use of a Hankel transform. The
method represents fundamental bases for a three-dimensional
generalization, which is essential for microwave imaging used,
e.g., in biomedical applications and for the diagnostic of diseases
in trees and vegetation. A known permittivity profile has been
taken to generate synthetic reflection-coefficient data by solving
the nonlinear equations describing the direct problems using
MATLAB. These data have been used in conjunction with the
proposed technique to reconstruct the permittivity profile. About
50–100 data points over the wavelength range from a minimum
value (ranging from one-tenth to one-fifth of a typical length in
the structure) to infinity have been used for the reconstruction.
Reconstructed profiles have been compared to the original ones for
a number of cases. Deviations of less than 2% have been achieved.

Index Terms—Electromagnetic scattering, inverse problems,
microwave imaging, permittivity, remote sensing.

I. INTRODUCTION

RECONSTRUCTION of permittivity profiles in planar and
cylindrical structures constitutes a major part of the elec-

tromagnetic inverse scattering and has been of great interest for
many years because of many practical applications. It represents
the one-dimensional version of the general three-dimensional
(3-D) microwave imaging problems needed, for example, for
biomedical tomography, which includes reconstruction of mus-
cles, tissues, and different organs of a human being within a
microwave imaging process [1]–[5]. Potential areas of radially
varying permittivity profiles also include, for example, environ-
mental studies of water content, aging, and possible diseases of
trees in forests [6]–[8] and geological investigations of the earth
structure as being seen from an exploration well in oil fields
[9]. The overall reconstruction process, in general, involves the
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measurement of scattering data such as the reflection coefficient
of an illuminating wave with known characteristics. Information
about the unknown permittivity profile of the illuminated object
in terms of these measured values is obtained by using some in-
verse techniques. Different approaches to find out an unknown
permittivity profile have been reported. However, most of these
methods depend mainly on a source reconstruction philosophy
in either the spectral or spatial domain, which leads to a strong
nonlinearity inherently connected with nonuniqueness and un-
certainty of the achieved solution (see, e.g., [3], [9]–[12]). Only
if the so-called “Born approximation” is used, a linear problem
with a unique solution can be obtained [13], [14]. This approxi-
mation limits the validity of such reconstructions to objects with
very low permittivity, which, in practice, are rarely encountered.
Recently, the microwave networking technique in conjunction
with renormalization methods was used to solve these inverse
problems and it was shown that these techniques could be used
under both weak and strong scattering conditions [15]–[17]. The
main advantage of this method is its “quasi”-linearity, which can
lead to a unique solution.

This paper consists of two parts. In the first part, a planar
half-space or slab-shaped medium is considered for the detailed
analysis. The nonlinear Riccati differential equations for the di-
rect scattering of TEM-, TE-, and TM-polarized illuminations
have been formulated in a unified form. This can be used for free
space as well as for transmission line and waveguide scattering.
The nonlinear renormalization technique presented in [16] and
[18] has then been revised to separate the nonlinearity of the
corresponding inverse problem into an auxiliary linear differ-
ential equation describing a virtual reflection coefficient along
with a nonlinear algebraic transformation. The auxiliary equa-
tion can then be inverted to get the permittivity profile in terms
of an inverse Fourier transform in conjunction with a newly pro-
posed numerical algorithm, which is more appropriate for dis-
crete values of reflection coefficient data. The above-mentioned
nonlinear transformation, which transforms the actual measur-
able reflection coefficient into a virtual one, can be adjusted in
order to achieve the required reconstruction accuracy.

In the second part of this paper, we have considered radi-
ally varying permittivity profiles in cylindrical structures. A new
method has been proposed to reconstruct the profiles in these
kind of structures, which goes parallel to the above-mentioned
technique for planar mediums. A nonlinear Riccati-similar dif-
ferential equation has been first formulated for an appropriately
defined reflection coefficient. The already mentioned renormal-
ization technique has been used as well in order to separate
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Fig. 1. Half-space medium.

the nonlinearity into an algebraic transformation and an auxil-
iary linear differential equation. The auxiliary equation has then
been inverted to get the unknown permittivity profile in terms of
a Hankel transform of the virtual reflection coefficient.

II. PLANAR AND SLAB-SHAPED GEOMETRIES

A. Riccati Type Equations for TE-, TM-, and TEM-Polarized
Waves

Consider the half-space inhomogeneous medium shown in
Fig. 1. The relative permittivity is a function of in the
region varying from at . This lossless one-di-
mensional medium can equally represent the filling of a trans-
mission line or waveguide. The exact Riccati differential equa-
tion for the reflection coefficient in this type of structures is
given by [19]

(1)

where is the local reflection coefficient, is the
normalized local intrinsic impedance, and is the local
wavenumber describing propagation in the-direction. The
relationship between and depends, however,
on the wave polarization [20] as discussed below.

1) TEM-Polarized Wave:For this case, a monochromatic
plane wave of wavenumber is normally incident from the
left-hand side (LHS) at the interface . The normalized
impedance and the-propagation constant are related to the
relative permittivity according to

&

Substituting these values in (1) results in

(2)

which is the Riccati type differential equation for a TEM-polar-
ized wave.

2) TE-Polarized Wave:Here, we consider a plane wave of
wavenumber incident from the LHS at an angle on the
interface boundary , as shown in Fig. 2. The electric field

Fig. 2. Reflection at the interface boundary.

of the incident wave is assumed to be parallel to the interface
. We then have

-propagation constant is the same in air

and dielectric.

The propagation constant and the normalized impedance in the
-direction are given by

and

Substituting these values into (1) results in

(3)

which is the Riccati type differential equation for a TE-polarized
wave.

3) TM-Polarized Wave:Following the same procedure as
above, but with the magnetic field of the incident wave being
parallel to the interface , the Riccati equation for the TM
polarized wave reads

(4)

It is to be noted here that (2)–(4) are the same as given in [16],
although using a different approach.

B. Nonlinear Renormalization of Riccati Equations and the
Corresponding Inverse Solution

Let us consider a TEM-polarized wave for a detailed analysis.
The same approach can be used, however, for TE and TM cases
as well (Both cases reduce to TEM for ). The exact Riccati
equation for a TEM wave (2) will be rewritten as

(5)
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Fig. 3. Schematic diagram for the direct and inverse problems.

We introduce now a virtual reflection coefficientas the so-
lution of a linearized version of (5), which will be called the
auxiliary equation

(6)

Subtracting (5) from (6) results in

(7)

Equation (7) would be satisfied exactly irrespective of
only if

(8)

which is not generally true. However, noting that

(9)

then (8) will be approximately satisfied only when all terms
starting by the second one in the right-hand side (RHS) of (9)
are negligible. It is then clear that (7) can never be made ex-
actly satisfied. However, it can be approximated in the following
two ways: 1) : in this case, only the LHS of (7)
will be exactly zero, while the RHS has to be negligible and 2)

: in this case, only the RHS of (7) becomes
exactly zero, while the LHS has to be negligible.

Generally, all contributions addressed to this problem (e.g.,
[16], [18]) have taken the first approximation to obtainfrom

, which is, in fact, biased toward one direction. The other pos-
sibility would be to relate and as in 2), but this is again
biased in the other direction. The above approximation can be
arbitrarily improved if we look for some optimal function that
relates to . An obvious choice would be to compromise be-
tween 1) and 2) or, in other words, to take, for example, the
average of both, i.e.,

(10)

In fact, we have found that the above choice is very close
to optimum and gives us much better results than that of [16]
and [18] for all cases of practical importance. Another alterna-
tive can be achieved by inserting (9) in (10) and neglecting the
powers of higher than the third

(11)

Equation (11) is a good approximation of (10) and can be used
to relate and as well. This is advantageous, especially for

the case when the reflection coefficient is given as an analytical
function of the wavenumber.

The advantage of the above suggested technique is that we
separate the nonlinearity of the exact Riccati equation into a
nonlinear algebraic transformation, which relates the actual
measurable reflection coefficient to a virtual, not directly
measurable, one, i.e.,, rendering the differential equation
relating to the looked for permittivity profile linear. This can
be visualized as shown in Fig. 3. It is worthy noting that the
proposed technique is based on compensating the difference
between the original nonlinear Riccati equation (5) and the
auxiliary linear one (6) via a nonlinear transformation [e.g.,
(10)]. There are, in fact, no severe constraints on the choice
of the virtual reflection coefficient and the related auxiliary
linear differential equation. The choice made by (6) as being
a linearization of (5) by neglecting the quadrature term is just
one possibility. Other choices are possible as long as a proper
transformation between the measurable and virtual reflection
coefficients can be found.

Equation (6) is a linear equation inand, hence, can be in-
verted for the permittivity profile [17]

(12)

where is the Fourier transform of , which is the
virtual reflection coefficient corresponding to given by

(13)

and

(14)

The bilinear transformation in (13) accounts for a jump at
from unity to . can be found graphically in terms of
the circle representing the reflection coefficient in the complex
plane [21]. The value of can be found in terms of the so
measured , as given in [17].

C. Numerical Algorithm for Reconstructing the Permittivity
Profile

Equation (12) gives the permittivity profile in a virtual
time domain. However, to reconstruct the permittivity profile
completely, we need to convert it into the space domain. Thus,
our main task is to accurately find the value of “,” which corre-
sponds to the particular value of “.” Below we present a simple
numerical algorithm based on (14) for this purpose.

Let

(15)
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then (12) becomes

(16)

Starting with , let us follow the development of in
time steps . We adopt a simple trapezoidal integration routine
described as follows.

1) When , [according to (14)].
2) At

Now, if corresponds to via (14), then following the
same simple trapezoidal integration algorithm, one ar-
rives at

3) In general, at

(17)

(18)

(19)

where corresponds to .
Compared to the algorithm proposed in [17], the algorithm

presented here is much more suitable for discrete values of
the reflection coefficient. This applies especially when we do
the measurement at a number of frequencies and then use the
fast Fourier transform (FFT) algorithm to find out the inverse
Fourier transform in the virtual “” domain. The reason is that
we get discrete values of the reflection coefficient in the “”
domain at some fixed values of “” and, hence, it is convenient
to take small increments in “” rather than in “ .” Secondly,
our algorithm does not assume any approximation as compared
to [17] where was initially considered to be the same at
two different points and .

D. Reconstruction Examples

We first consider an analytical example, where the reflection
coefficient is given by the one-pole expression

(20)

For this case, , as was shown in [17] and, hence,
[from (13)]. If we use the transformation in

(11) along with (12), we arrive at

(21)

The permittivity profile can then be completely reconstructed
in the space domain using (21) and the numerical algorithm de-
scribed above. The exact permittivity profile for this case is well
known and is given by [18]

(22)

Fig. 4. Exact and reconstructed profiles for the analytical case.

Fig. 5. Exact and reconstructed profiles using different approaches.

Fig. 6. Exact and reconstructed profiles for a linear case.

Fig. 4 shows a comparison between this exact profile and recon-
structed profiles using our present approach and that of [17]. As
may be easily seen from these curves, there is a very good agree-
ment between the original and reconstructed profiles using our
proposed technique.

Next, we consider linearly varied permittivity profiles. Fig. 5
shows the exact and reconstructed profiles using our proposed
method (“present”), “approach_1” using the nonlinear trans-
formation , and “approach_2” using

, i.e., that of [16] or [18]. As may be seen from the
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Fig. 7. Exact and reconstructed profiles for quite a high value of permittivity.

Fig. 8. Exact and reconstructed profiles for a nonlinear case.

Fig. 9. Exact and reconstructed profiles for a nonlinear case with discontinuity
at the air–dielectric interface.

different curves, there is a much better agreement between the
exact and reconstructed profiles using our proposed approach
and transform as compared to the other two methods. Figs. 6
and 7 show two more linearly varied examples with a quite high
relative permittivity and a discontinuity at the air–dielectric in-
terface. As can be seen from these plots, our method works well
even when the relative permittivity is as high as 100. Figs. 8
and 9 show nonlinear cases, which contain more contrast in the

Fig. 10. Radially varying permittivity profile.

permittivity profile. Again, an excellent agreement between the
original and reconstructed profiles has been achieved.

In all numerical examples mentioned above, the exact
nonlinear Riccati equation was first solved using MATLAB for
the given permittivity profile to simulate reflection-coefficient
measurement data, which means error- and noise-free measure-
ments. These values were then used in our proposed algorithm
to reconstruct the profiles. Although 100 data points were used
for reconstruction in the above examples, as few as 50 data
points covering the spectral wavelength range from infinity
down to one-tenth of the maximum depth, over which the
permittivity changes, were enough to achieve a reconstruction
accuracy of 2%. In all plots, the distance has been normalized
with respect to the maximum depth over which the permittivity
is to be reconstructed. We also considered many other profiles
for validation of our algorithm with and without permittivity
jumps at the air–dielectric interfaces. All have shown similar
reconstruction-accuracy behavior.

III. CYLINDRICAL STRUCTURES

A. Derivation of the Riccati-Similar Differential Equation

Consider the cylindrical dielectric object with a radially de-
pendent permittivity shown in Fig. 10. A monochromatic
cylindrical wave of wavenumber is assumed to be incident
from the outer free space, ( ). This accounts, in fact,
to the case of outside illuminations as, for example, in the in-
vestigation of trees and biological bodies. It is readily proven
that illuminating cylindrical waves with different azimuthal and
axial dependences are decoupled. Without a considerable loss
of generality, we will consider the illumination (see, e.g.,
[20]), which represents an axially and azimuthally independent
incident wave. The analysis of other illuminations is princi-
pally similar, except for the frequency dependence of their ra-
dial propagation constants, which has to be differently treated.
The mode in a radial waveguide or a cylindrical structure
is similar to the TEM mode in transmission lines, as it neither
has - nor -field components in the direction of propagation
( -direction) [20]. As we measure the reflection coefficient at
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the outer radius of the cylindrical body, thus we will consider
the inward and outward traveling waves as being incident and
reflected ones, respectively. For a mode, we have

(23)

(24)

where “ ” and “ ” signs represent inward and outward propa-
gating waves, respectively, represents a Hankel func-
tion of an th type and th order, and

(25)

Let us now look for a taper solution of the form

(26)

(27)

where is an appropriately defined reflection coefficient and
“*” represents the complex conjugate.

Let us also define

(28)

and

(29)

where is the free-space intrinsic admittance.
After some mathematical manipulations of (26)–(29), we ar-

rive at

(30)

where

(31)

Now, for a mode, Maxwell’s equations are reduced to

(32)

From (30) and (32), we get

(33)

(34)

where

(35)

is the local normalized admittance. Eliminating , one arrives
at the following nonlinear differential equation for

(36)

In order to have a Riccati-similar fashion, we rewrite (36) in
the following form:

(37)

which is a nonlinear Riccati-similar differential equation for
the radially (and frequency) dependent reflection coefficient

due to illumination.

B. Inversion of the Radially Dependent Permittivity Profile

For most practical cases considered, “,” as defined in (29),
can be replaced by its asymptotic value for . Hence,
(37) can be rewritten as

(38)

The structural form of (38) now becomes similar to that of
(5). Consequently, we can make use of the same renormalization
technique as proposed for the planar case. Hence, the measur-
able reflection coefficient can be related to a virtual one

via a nonlinear transformation. Again, the advantage of
this procedure is that we isolate the nonlinearity of (38) into
a nonlinear algebraic transformation rendering the differential
equation describing linear. An appropriate linearized ver-
sion of (38), which can be used to define , is given by

(39)
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We will take the same optimum nonlinear transformation de-
fined by (10) to relate and , as described earlier for
the planar case. Making use of some simplifying assumptions,
(39) can be approximated to

(40)

In order to justify the practical equivalence between (39) and
(40), both have been solved numerically for a variety of permit-
tivity profiles to get . It was found that there is a very close
proximity between the values of as given by these two
equations for almost all practical cases. Integrating (40) with
boundary condition results in

(41)

where “ ” and “ ” are the outer and inner radii of the
cylindrical object under consideration, respectively, as shown
in Fig. 10. A further processing of (41) necessitates that
“ ” be independent, which is not the case [see (25)]. As a
simplification, which has to be justified later, the following two
approximations for “ ” have been considered:

• ;
• , where “ ” is a constant depending on the relative

permittivity at the two ends.
We have solved the inverse problem using both approaches,

as given in one of the examples. We have observed that a good
approximation for “ ” is the average value of the permittivity
at both ends, i.e.,

(42)

The advantage of having-independent “” is to isolate
the terms containing in (41) and, hence, to simplify
the overall inversion process as will be shown below. Now,
going parallel to the planar geometry, we first find the trun-
cated Hankel transform of , which is the natural one in
cylindrical coordinate systems

(43)

where “ ” is the highest wavenumber corresponding to “” ac-
cording to (42) at which the reflection coefficient is to be mea-
sured. It is readily proven that is related to by

(44)

where

(45)

Fig. 11. Exact and reconstructed profiles using two approaches in the
cylindrical geometry.

and

(46)
The function defined by (46) is, in fact, a variable-

resolution selective function with a maximum at . It
can be used to sample at according to

(47)

where is the inverse function of .
A higher resolution of the construction is obtained by in-

creasing . Finally, the unknown permittivity profile can
be easily reconstructed using (45)

(48)

where is the permittivity at the outer air–dielectric inter-
face and is a dummy integration variable.

It is worth noting that practical antenna arrangements for il-
lumination (transmitters) or measurement of scattering data (re-
ceivers) are not generally able to excite or measure a single ra-
dial mode (e.g., ). An arbitrary illuminating or scattered
electromagnetic field can, however, be expanded into an infinite
sum of radial modes due to their completeness property (see,
e.g., [22]). A multiple illumination/multiview scenario can then
be used to extract the necessary information on the scattering of
a certain radial mode. The above-mentioned issue is not, how-
ever, our concern in this paper, as the scattering data used for
the verification of the proposed method have been synthetically
produced by solving the direct problem for known permittivity
profiles.

C. Reconstruction Examples

Fig. 11 shows the exact and reconstructed permittivity pro-
files for the case, when the relative permittivity at the outer ra-
dius is continuous (jump free) using two different approaches. In
the first approach, the value of “” is taken as given by (42) for
the solution of the inverse problem. In the second approach, the
value of “ ” is simply taken equal to “ .” As expected, the first
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Fig. 12. Exact and reconstructed profiles with discontinuity at the
air–dielectric interface in the cylindrical geometry.

Fig. 13. Exact and reconstructed profiles for a high value of permittivity in the
cylindrical geometry.

approach gives quite good matching between actual and recon-
structed profiles as compared to the second one. Thus, the first
approach will be adopted for the considered examples. Figs. 12
and 13 show the exact and reconstructed profiles, when the rel-
ative permittivity is quite high. As can be easily seen, the agree-
ment between exact and reconstructed profiles is quite good, es-
pecially for higher values of permittivity. As in the planar case,
error- and noise-free scattering data have been synthetically pro-
duced by solving the nonlinear Riccati-similar differential equa-
tion (38) for known permittivity profiles using MATLAB. As
few as 50 data points covering the spectral wavelength range
from infinity down to one-fifth of the inner diameter of the cylin-
drical object have been used for the reconstruction. The radial
distance in the above plots has been normalized with respect to
the inner radius of the cylindrical object under consideration.
Effects of noisy results are being considered.

IV. CONCLUSION

We have presented some new ideas for reconstructing the per-
mittivity profiles in both planar and cylindrical geometries. An
improved renormalization technique has been proposed for the
solution of the inverse problems, which can be equally used for
both cases. A practically unique solution can be obtained using

our proposed method as it isolates the nonlinearity associated
with the inverse problems into a simple algebraic transforma-
tion. On the other hand, the method is not based on a Born ap-
proximation and, hence, can be used to reconstruct profiles with
higher contrasts as well. Several examples have been consid-
ered for validation of the proposed technique and, in each case,
a quite good agreement has been found between the original and
reconstructed profiles. Lossy profiles related to vegetation and
biological bodies are currently being considered for analysis.
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