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Abstract—The fabrication and characterization of micro- I. INTRODUCTION
machined reduced-height air-filled rectangular waveguide L o
components suitable for integration is reported in this paper. The ECENT applications of terahertz radiation in diverse areas
lithographic technique used permits structures with heights of up such as imaging and surveillance, astronomy, plasma

to 100 m to be successfully constructed in a repeatable manner. diagnostics, spectroscopy for chemistry, biology and medicine,
Waveguide S-parameter measurements at frequencies between compined with the ever greater bandwidth requirements of

75-110 GHz using a vector network analyzer demonstrate low loss o . . .
propagation in the TE mode reaching 0.2 dB per wavelength. communications and the possibility of developing radars with

Scanning electron microscope photographs of conventional and 9réater resolution and reduced clutter indicate a need for
micromachined waveguides show that the fabrication technique low-cost terahertz technology with integrated subsystems [1].
can provide a superior surface finish than possible with commer- Until recently, the absence of convenient solid-state sources
cially available components. In order to circumvent problems gnd the lack of such low-cost technology for the fabrication

in efficiently coupling free-space propagating beams to the re- . : -
duced-heightG-band waveguides, as well as to characterize them of passive components has prevented progress in building

using quasi-optical techniques, a novel integrated micromachined complete systems Wi_th commercial potential that operate in thi?
slotted horn antenna has been designed and fabricatedt-, H-, frequency range. This paper describes the use of lithographic
and D-plane far-field antenna pattern measurements at different technology to fabricate waveguide passive components and

frequencies using. a.quasi-optical setup shoyv tha} the fabricated describes the measurement techniques necessary for their
structures are optimized for 180-GHz operation with an E-plane characterization

half-power beamwidth of 32 elevated 35 above the substrate, . .
a symmetrical H-plane pattern with a half-power beamwidth As the frequency of operation of conventional rectangular
of 23° and a maximum D-plane cross-polar level of —33 dB. waveguide approaches millimeter-wave and terahertz frequen-
Far-field pattern simulations using HFSS show good agreement cies, the physical dimensions of the components decrease and
with experimental results. “watchmaker” levels of precision are required for their manu-
facture by conventional methods. Although some progress has
been made in the development of alternative transmission lines
at these frequencies [2], these can be difficult to integrate with

) . . active devices, which effectively precludes mass production of
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Fig. 1. Fabrication of5-band waveguide with slotted horn antennas using micromachining techniques.

In this paper, we describe the fabrication procedure for Il. FABRICATION OF WAVEGUIDE COMPONENTSUSING
micromachined waveguides using a lithographic technique. LITHOGRAPHIC MICROMACHINING
The fundamental problem witls-parameter measurements
of these micromachined waveguides is the difficulty of re- The lithographic micromachining fabrication process is sum-
peatable power coupling into, and out of, the on-chip wavegrarized in Fig. 1. To construct waveguides and integrated horn
uides. Consequently, a special gradually tapered test fixt@etennas, aninitial layer of titanium (30 nm), followed by a layer
has been constructed, minimizing the mismatch at the poetsgold (with thickness greater than one skin depth at the cutoff
of the micromachined waveguide and providing direct coifrequency) is evaporated onto the substrate to form the bottom
nection capability into conventional waveguide. We presemall of the waveguide and horn [see Fig. 1(i)]. A 1p€n-thick
S-parameter attenuation measurements using this test fixtlager of photoresist is then spun on top of this gold layer and
coupled to a Hewlett-Packard HP8510€-band vector net- baked slowly [see Fig. 1(ii)]. This photoresist layer is exposed
work analyzer (VNA) operating between 75-110 GHz. land developed to define the shape of the waveguide and horn
order to efficiently couple a free-space propagating beastructures [see Fig. 1(iii)], and another layer of gold is evap-
to on-chip rectangular waveguides and to demonstrate #i@ted over the photoresist former, which is then electroplated
ability of the lithographic technique in integrating passivéor extra strength [see Fig. 1(iv)]. To create the slotted horn an-
components, suitable antennas had to be designed. Sincetéigas a thin layer of photoresist is sprayed over the whole struc-
fabrication of a horn in theE-plane is impossible in this ture and baked [see Fig. 1(v)]. This new resist layer is exposed
planar technology [7], an integrated micromachined slottedhd developed using a second mask, with alignment marks, to
H-plane horn antenna has been fabricated for usg-aand reveal accurately a slot in the top of the resist [see Fig. 1(vi)].
(140-220 GHz). The antenna pattern has been simulafBe exposed gold is etched away to produce a slot in the top
using a three-dimensional (3-D) electromagnetic-field solvef the horn antenna [see Fig. 1(vii)]. Removal of all the pho-
(Hewlett-Packard’'s and Ansoft's HFSS) and the results corigresist with solvents leaves an air-filled rectangular waveguide
pared with far-field measurements [8]. The present approaicitegrated with a slotted horn antenna [see Fig. 1(viii)]. A pho-
to the design of antennas is a novel one [7], and complegraph of a waveguide with an integrated antenna at each end
ments other significant efforts toward the design of submiproduced using this technique is shown in Fig. 2.
limeter-wave integrated antennas, offering the possibility of The micromachined waveguides fStparameter characteri-
exploiting the large bandwidths available [9] for future terzation were produced using the process described above up the
ahertz communications systems. stage shown in Fig. 1(iv). Any semiconductor wafer protruding
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Fig. 2. Photograph of micromachined waveguide with antennas.

Fig. 4. SEM photograph showing inside wall quality of: (a) micromachined

Fig. 3. SEM photograph of the end of a micromachined waveguide. and (b) conventionally available wavegide.

On-chip waveguide \
rests upside down
on shoulders

in front of the waveguides is then removed by filing away the
wafer parallel to the open ends of the waveguides. Finally, the
photoresist is removed using solvents, leaving an air-filled rect-
angular waveguide with open ends at the edge of the semicon-
ductor wafer. A scanning electron microscope (SEM) photo-
graph of one of the ends of such a waveguide is shown in Fig. 3.
This manual filing procedure is only required for waveguide Fixed
characterization purposes using a network analyzer and can be  block
obviated if a suitable antenna that permits quasi-optical charac-
terization is integrated at the end of the waveguide structure. Moving Full height waveguide
The use of a lithographic procedure results in the quality of block opening for connection
the waveguide interior walls being determined by the resist sur- toseidang Conge
face quality, which proves to be far superior to that of convep;
tionally machined guide. Fig. 4 compares the inside walls o

Full to reduced height
waveguide tapers

Micrometer
movement

. 5. W-band test fixture.

a micromachined and a commercially availadfeband wave- 135mm  Sample 1
guide. It can be observed that the micromachined waveguide >

has no obvious features greater thamrh in size. Although 2.54mmI 1.84mm

such excellent surface finish implies a very low-loss perfor- -

mance for full height micromachined waveguides, the height 4mm

limitations imposed by the type of resist currently used restrict ﬁsmﬂ Sample 2
the investigations to reduced height guide, which has an in- 254mm1 ‘1 Pym—

trinsically greater attenuation than the full-height guide. Re- ’ -

- P

cent advances in resist technology indicate that the fabrication ~4mm 9.23mm

of full-height waveguide will soon be possible at 200 GHz.

700:m-high structures fabricated with SU-8 photoresist [10]ig. 6. W -band waveguide samples.

have already been produced in one of our laboratories [11],

showing its potential in constructing taller structures with higfe.g., cylindrical cavities) might have to be produced and inte-
aspect ratios. This is of importance as more complex structuggated with waveguides in the future.
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Antenna
lll. S-PARAMETER MEASUREMENTS OFMICROMACHINED substrate

WAVEGUIDES Fig. 11. Micromachined antenna mounting for far-field measurements.

A. Test Fixture Design and Micromachined Waveguide

Samples }?Srﬁ%fffg N rCryDStat
A major consideration in the design of the test fixture was the antenna R

alignment of the micromachined waveguides with those in the mounted

test fixture itself. It is desirable that such a test fixture should en- onto cryostat

window \

able the delicate micromachined structure to be inserted in a re-

peatable manner so that the openings coincide exactly each time

a sample is inserted. The solution adopted was to construct, by

conventional machining, two sections of tapevgeband wave- Turntable with centre

guide, starting at full height (for connection to the VNA ports) of rotation at approximate

and ending in reduced height (for connection to the microma- antenna beam-waist

chined waveguide). An additional feature of this design was thag. 12. Experimental setup for far-field measurements on the integrated horn

shoulders protruded from the reduced height sides of these trarienna.

sition sections to support the delicate micromachined structure

under test (Fig. 5). position of the waveguide is known exactly. This gap is ma-
The only reference position available on a sample of micrehined to allow a comfortable fit, taking into account the thick-

machined waveguide is given by the plane of the substrate. Thisss of the gold sidewalls of the guide, so that the waveguides

substrate rests upside down on the test fixture shoulders so tir@taligned always horizontally. Once the sample is inserted, the

the waveguide lies in the gap in between, therefore, the vertitab tapered waveguides in the test fixture are moved together by
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Fig. 13. Measured (continuous line) and simulated (dashed&rglane and correspondird-plane co-polar far-field patterns for the integrated antenna at 150,
165, 180, and 197 GHz.

means of a micrometer screw until they are touching the samidg. 7. The residual leakage between the ports is much less than
resulting in a repeatable connection. —40 dB. The results show the characteristic shape expected
Two waveguides of different lengths were fabricated for chafrom a waveguide close to its cutoff frequency (81.5 GHz) as
acterization purposes (Fig. 6). Both samples have a 4-mm lengtll asTE;o mode propagation. Using standard formulas [13],
of 2.54-mm-wide waveguide at the ports, which then gradualtiieoretical calculations for air-filled gold-plated reduced-height
tapers down to a width of 1.84 mm. The second sample was coeetangular waveguides operated in th&iE,;, mode were
structed with an additional 9.23 mm.§, at 95 GHz) length of performed, showing an attenuation between 0.5-0.34 dB over
1.84-mm-wide waveguide between the two tapers. This wawe-length of 9.23 mm in the 90-110-GHz frequency range.
guide width was chosen as it has a cutoff frequency of 81.5 GISubtracting the experimental attenuation between the two
enabling aT'Eg attenuation characteristic to be demonstrateshmples to account for the extra 9.23-mm length (Fig. 8), a
in the measurement frequency range. measured attenuation between 0.2-5 dB is observed.
Discrepancies between theoretical and measured attenuation
are mainly attributed to mismatches caused by the difficulty
Attenuation measurements were performed using é#nfiling the wafer accurately to the edge of the waveguide
HP8510C VNA operating a -band (75-110 GHz). A thru-re- samples. Some additional loss may occur because the bottom
flect-line (TRL) calibration [12] procedure was performed awvall of the waveguide has a thickness of only one skin depth.
the instrument waveguide test ports. The test fixture was th&his could be improved by evaporating a thicker layer of gold
connected between the test ports and the samples inserted@tie the substrate before spinning on the photoresist, and is not
at a time. The measured insertion loss of the two samples (paugroblem at higher frequencies where the skin depth is smaller.
the aluminum waveguide tapers in the test fixture) is shown rhe measured attenuation is, however, significantly lower

B. Measured Results
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than for previously reported on-chip waveguide [6]. Fig. guide, as long as the slot is narrow enough, elements of this ex-
shows two separate insertion-loss measurements perfornetted field in close proximity to one another are in antiphase,
on the same sample, showing an insertion loss repeatabilityamid no beam is radiated. As the slot is widened, components
approximately+0.5 dB. opposing those welling up from the slot become more diffuse,
thus, the latter tends to dominate. Thus, radiation will eventu-
ally occur. Since the-field distribution has been broadened
beyond the height of the aperture, the launched beam should dis-
The underlying design philosophy of the present fabricatigriay a reduced-plane beamwidth. Though this beam is astig-
technique is to avoid the use of mechanical connections wheratic, adjustment of the horn parameters (flare angle, aperture
ever possible and to rely on lithographic methods of compwAdth, slot angle, and position of the slot apex relative to the
nent construction. However, owing to the limitations imposestart of the horn flare) should make it possible to produce a
by the height of the photoresist former, it is only possible to prgattern with similar£- and H-plane beamwidths. Preliminary
duce a reduced-height waveguide horn flared in fth@lane. far-field tests on slotted horns with different design parame-
This limitation has a significant effect on the beam shape tars were carried out usin§-band scale models and measured
the E-plane, notably poorer directive gain. The cutting of asing a microwave antenna range [14]. The principal planes of
tapered slot from the upper surface of a baKieplane sec- the co-polar amplitude measurements, without ground plane,
toral horn results in a design that does not suffer the disaalyreed well with HFSS simulation results, especially in terms
vantage of a restricted aperture height. Although the slot aif the main lobe elevation, 3-dB widths, and first sidelobe po-
lows the E-field to extend beyond the confines of the wavesition and level. The cross-polar measurements showed peak

IV. MICROMACHINED INTEGRATED ANTENNA
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TABLE |
SUMMARY OF THE 180-GHz RROTOTYPEMEASUREMENTS(S L = PEAK SIDELOBE LEVEL, X' L = PEAK CROSSPOLAR LEVEL)

Frequenc E-plane H-plane D-plane
WY G | SL | XL | 6 | SL | XL | 6 | SL_| XL

1498GHz | 53° | 4dB | - | 59° | 4aB | - - - | -8aB

1648GHz | 40° | saB | - |29 | 7aB | - - - | 7a8

1804 GHz | 32° | -6dB |-11dB| 23° |-11dB | -7dB 25° | -12dB | -12dB

197 GHz 35° | -10dB | -18dB} 18° | 9dB | -14dB | 14° [-12dB | -7dB

Simulation | 34° [-10dB - 17° | -8dB - - - -

levels of —8 dB, indicating that the design is fairly well lin- 0
early polarized, and thus would be useful in applications whe -
this is an issue. The addition of the ground plane gave litt
effect, a marginal broadening in th8-plane, and perhaps a
slight narrowing in the -plane, of the main lobe, together with -9
slightly reduced sidelobes and increased cross-polar levels.
marginal quality of these effects shows that the presence o
substrate in the final micromachined antenna should have
major detrimental effect on its performance. Ap, of 0.013
(=19 dB) corresponding to a VSWR of 1.03 (0.12 dB) wa &
measured by pointing the antenna at a sheet of absorber m
rial, and measuring the reflected wave amplitude from the hor ™24
as the frequency was swept across the available range. Sit -7
lation results showed afi;; of 0.029, (15 dB). This com-
pares favorably with that of existing antenna designs—e.g., t
corrugated horn with a VSWR of at least 1.1 or the family ¢ =~ ™33
end-firing tapered slot antennas, with VSWR'’s of 1.4-1.7—ir
dicating that the slotted horn provides a good coupling to fr¢
space. A number of simulations were run in order to optimiz
the slotted horn design for full height waveguide. Once an ad-
equate antenna design for full height waveguide was availaldii- 14. Measured 45phi cut co-polar and cross-polar (dashed line) far-field

. . . . pattern for the integrated antenna at 180 GHz.
attention was turned to developing the same for the eighth helgﬁt
guide to be used at the lower frequency ranges. HFSS simula-
tions showed that simply using the full height design at reducdtie complete test antenna and cryostat structure was rotated
height gave a beam that was unacceptably broad, and mulging a rotary table in the far-field of the source beam (Fig. 12).
lobed, in both planes. A variation on the slotted horn, where bdier both theH-plane co-polar ands-plane cross-polar mea-
the horn and slot were exponentially rather than linearly flaresirements, the source signal polarization was rotatédb90
(Fig. 10) provided the best far-field antenna patterrdiand. means of a Martin—Puplett interferometer. Co-and cross-polar
By fabricating two such integrated antennas with a connectipgtterns were measured in te, H-, and.D-planes (45 phi
length of micromachined waveguide, a suitable structure weait) at 150, 165, 180 and 197 GHz. The antenna had poor direc-
created for far-field pattern measurements using a quasi-optiteity at frequencies below 150 GHz.
measurement system. A number of these 180-GHz eighth heighThe £- and H -plane co-polar patterns for all frequencies are
structures were fabricated for testing. These were baffled in ggiven in Fig. 13, and the co- and cross-palaplane patterns
sition in front of the cryostat window of a [4] He-cooled cy-at 197 GHz in Fig. 14, while the key parameters for all the mea-
clotron-enhanced InSh hot-electron bolometer detector, usisigrements are summarized in Table |, together with those pre-
Al tape and silver epoxy to provide a radiation tight seal arourtticted by the simulations, for comparison. The good agreement
the middle section of waveguide (Fig. 11). Absorber materiaetween measured and simulated antenna patterns imply that
was then placed around the baffle and on the surroundingstie directivity of 16.45 (12.16 dB) calculated by HFSS should
order to cut out any stray reflections. Féf-plane measure- apply to the actual antenn&l-plane patterns were taken at an
ments, a bracket was designed to hold the antenna at suctelewation of 35, the angle of the main lobe, as observed in the
angle as to direct the main lobe horizontally toward the source?splane.
beam waist. A tunable (125-197 GHz) backward wave oscil- From Table |, a general trend of decreasing beamwidth with
lator (BWO) square wave modulated at 5 kHz and fitted withiacreasing frequency can be seen. This is as expected since, with
conical horn served as a source. The detector output was amgiiereasing wavelength, the electrical size of the horn aperture
fied and demodulated using a phase sensitive detector (PSB)ncreased. The useful lower operating frequency limit for the

2
g
k=1

- —90 <75 60 45 30 -15 0 15 30 45 60 75 90
Angle (degrees)
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