

A Low-Power GaAs Front-End IC with Current-Reuse Configuration Using 0.15- μ m-Gate MODFET's

Hidetoshi Ishida, *Member, IEEE*, Haruhiko Koizumi, *Member, IEEE*, Kazuo Miyatsuji, *Member, IEEE*, Hiroshi Takenaka, *Member, IEEE*, Tsuyoshi Tanaka, *Member, IEEE*, and Daisuke Ueda, *Member, IEEE*

Abstract—We have developed a novel current-reuse configuration of a front-end integrated circuit (IC), where the current can be reused in the whole circuit blocks that are a low-noise amplifier, local amplifier, and mixer. The power dissipation of the front-end IC is reduced by the factor of three as compared to conventional front-end IC's. Excellent RF performance such as conversion gain of 30 dB and noise figure of 1.6 dB at 1.5 GHz is attained under the conditions of the supply voltage and current of 3.6 V and 3 mA, respectively.

Index Terms—Current reuse, FET, front-end, GaAs, low power, phase-shift lithography.

I. INTRODUCTION

GaAs FRONT-END integrated circuits (IC's) have come to be widely used for mobile communication sets due to their excellent RF performance. The essential characteristics of those front-end IC's are low noise, high gain, and low consumption power [1]–[3], which have been attained by shortening the gate length of GaAs FET's. Although this shortening of the gate length improves RF performance, supply voltage to FET's must be reduced due to the low breakdown voltage. It is noted that the typical operation voltage of a GaAs FET with 0.15- μ m gate length is less than 2.0 V. Therefore, the FET's cannot be used for the application sets like personal handy phone sets where the voltages of 3 or 3.6 V from one Li battery cell or three NiMH battery cells are commonly used.

Based on these inherent characteristics of the deep sub-micrometer GaAs FET, we proposed a novel current-reuse configuration of a front-end IC, where a low-noise amplifier (LNA), local amplifier, and mixer can reuse the same dc current. This circuit configuration is expected to reduce the consumption power by the factor of three.

Several studies on the current-reuse configuration have been reported for the digital application field. However, few studies for analog application have been reported [1]. In particular, a three-stage current-reuse configuration of front-end IC's have not been reported thus far.

In this paper, we have demonstrated a low-power GaAs front-end IC with a three-stage current-reuse configuration using 0.15- μ m-gate MODFET's, which can be used at a low operation voltage. At first the design concept of the current-reuse configuration is described. After the device structure of the IC is explained briefly, the RF performance of each

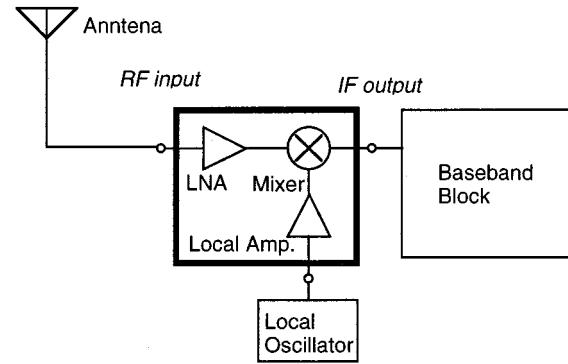


Fig. 1. Block diagram of the front-end IC in mobile communication sets.

component is explained. Finally, the total RF performance of the fabricated front-end IC with a current-reuse configuration is described. The performance of the fabricated IC showed conversion gain of 30 dB, a noise figure (NF) of 1.6 dB, and an output third-order intercept point (IP3) of 9 dBm at the frequency of 1.5 GHz with a supply voltage and current of 3.6 V and 3 mA, respectively. This power dissipation of 11 mW is the lowest value among those ever reported.

II. CIRCUIT DESIGN

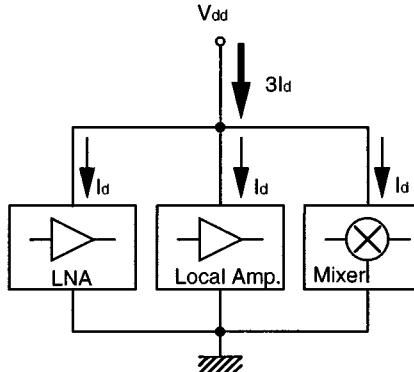
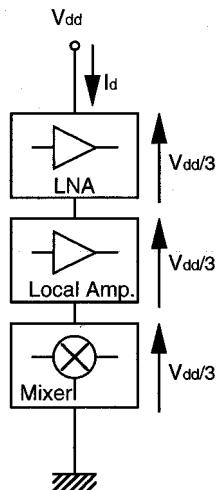

Fig. 1 shows the block diagram of the front-end IC, which consists of an LNA, local amplifier, and mixer. The LNA and local amplifier are designed by using a single-gate FET, while the mixer is designed by using a dual-gate FET. A design goal is to minimize the power dissipation of the front-end IC.

Fig. 2 shows the concept of the current-reuse configuration. In a conventional configuration, the voltage (V_{dd}) from batteries is applied to each component independently. When all components consume the same current (I_d), the power dissipation is $3 \cdot V_{dd} \cdot I_d$. On the contrary, the dc current is reused by three components in the current-reuse configuration. The power dissipation of the front-end IC with the current-reuse configuration is reduced to $V_{dd} \cdot I_d$. However, the supply voltage to each component is reduced by the factor of three. Therefore, this configuration requires low voltage operation of less than 1.2 V to FET's because the battery used in mobile communication sets is usually 3.6 V. The 0.15- μ m-gate MODFET's was chosen due to their low voltage operation. It is noted that the 0.15- μ m-gate MODFET's cannot be used in the conventional configuration because the operation voltage (V_{dd}) is as high as 3.0 or 3.6 V in which the FET's cannot be operated due to their low breakdown voltage.


Manuscript received October 8, 1997.

The authors are with the Electronics Research Laboratory, Matsushita Electronics Corporation, Osaka 570-8501, Japan.

Publisher Item Identifier S 0018-9480(00)06528-5.

Power = $3V_{dd}I_d$

(a)

Power = $V_{dd}I_d$

(b)

Fig. 2. Concept of the current-reuse configuration. (a) Conventional configuration. (b) Current-reuse configuration.

Fig. 3 shows the schematic circuit of the present IC using the current-reuse configuration. The function of each block is also described. The LNA, local amplifier, and mixer blocks are stacked. Basically the same dc current (I_d) flows through each FET via external choke coils. However, a bias circuit is required for the desirable operation current. Gate bias resistors (R_{g1} , R_{g2} , R_{g3}) are designed to be the same value of $10\text{ k}\Omega$ because the same V_{ds} to each FET is available. Specifically, the voltages at source terminals are determined so that the same dc current I_d flows through each FET. The total consumption current of the IC is determined by the source bias resistor (R_s) of the mixer block. We design R_s to be $100\text{ }\Omega$ for the operation current of 3 mA .

Large on-chip bypass capacitors and coupling capacitors are required in the circuit. The bypass capacitor is designed to be 200 pF to reduce the impedance of the bypass capacitors sufficiently.

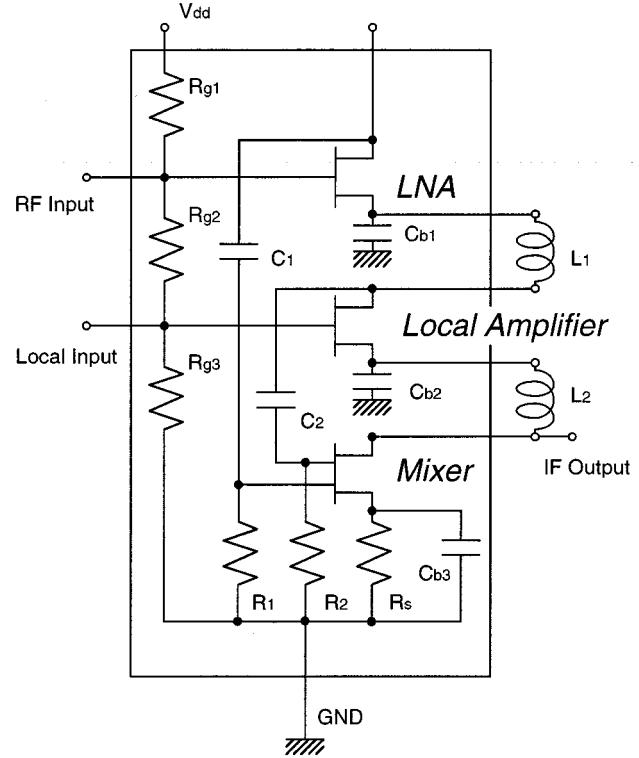


Fig. 3. Schematic circuit of the present IC with the current-reuse configuration.

The RF signal is amplified by the LNA and introduced to the dual gate mixer through coupling capacitors. RF signals are isolated to LO and mixer blocks by choke coils and a bypass capacitor. The LO signal is also introduced to the dual gate mixer as the same manner. The input RF signal with high frequency is converted to IF in the mixer block.

III. DEVICE STRUCTURE AND FABRICATION PROCESS

The schematic cross-sectional view of the present IC is shown in Fig. 4. The FET's are $0.15\text{-}\mu\text{m}$ -gate FET's, which are fabricated by using the phase-shifter-edge-line (PEL) method, which is one of the phase-shift lithography [4], [5]. This technique can fabricate deep-submicrometer FET's by utilizing interference of an i-line light of a conventional stepper. The gate and ohmic metal are Ti/Al and AuGeNi, respectively. The details of the fabrication process is described elsewhere [5].

The present IC employs SrTiO_3 (STO) capacitor technology [6] because the STO capacitor saves the area consumption owing to its high permittivity. The STO film is fabricated by using a low-temperature sputtering process in order to avoid the deterioration of impurity profile in the epitaxial structure [6]. Thus, the obtained STO capacitor has a dielectric constant of 100, which is over 15 times higher than that of a conventional SiN one. The STO film keeps a high dielectric constant from dc to over 10 GHz.

Fig. 5 depicts a chip photograph of the present IC. The top block is an LNA, the middle block is a local amplifier, and the

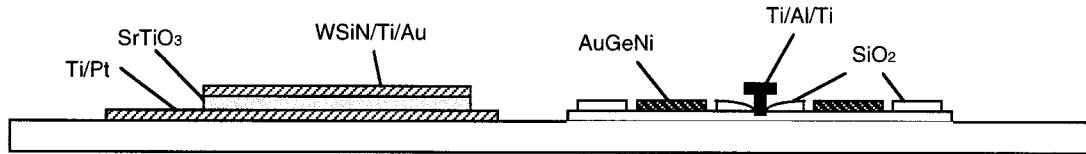


Fig. 4. Schematic cross section of the present IC with a $0.15\text{-}\mu\text{m}$ -gate MODFET and STO capacitor.

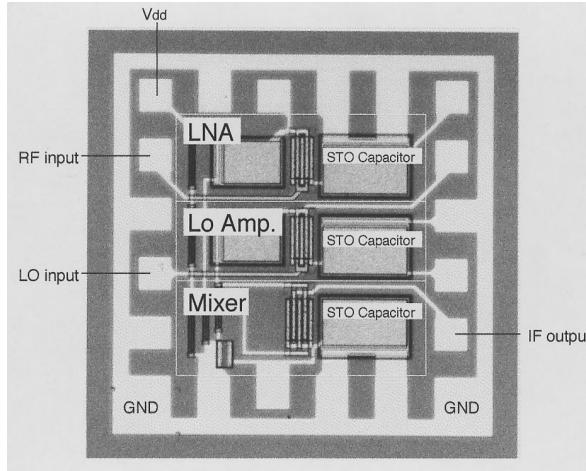


Fig. 5. Chip photograph of the fabricated IC with the current-reuse configuration.

bottom block is a mixer. The ground of the IC is arranged peripherally along the chip to reduce ground impedance. Pads for connecting to the external component are also arranged peripherally along the chip. The chip size is $1\text{ mm} \times 1\text{ mm}$. Owing to the STO capacitor technology, bypass capacitors and coupling capacitors are integrated in such a small area.

IV. RESULTS AND DISCUSSION

A. MODFET

Fig. 6 shows the measured gate-length dependence of f_{\max} (maximum oscillation frequency) as a function of the drain voltage. The f_{\max} was calculated from the s -parameter measured by an on-wafer technique. The measured condition is not for the bias point, which gives a maximum f_{\max} of the device, but for the bias point at the operation condition. The $0.15\text{-}\mu\text{m}$ gate MODFET shows higher f_{\max} compared to the $0.6\text{ }\mu\text{m}$ one. The $0.15\text{-}\mu\text{m}$ -gate MODFET has sufficiently high f_{\max} even for the drain voltage of 1 V.

The measured drain breakdown voltage of the $0.15\text{-}\mu\text{m}$ -gate MODFET was lower than 2.5 V. The drain conductance is drastically increased for the drain voltage over 2.5 V due to the punch through. This fact indicates that MODFET's with $0.15\text{-}\mu\text{m}$ gate length are suitable to the current-reuse configuration, in which the supply voltage to FET's is reduced down to 1.2 V.

B. LNA

Fig. 7 shows the measured gain and NF of the fabricated LNA as a function of the supply voltage. These are measured by using an NF meter (HP8970A). The supply voltage was varied

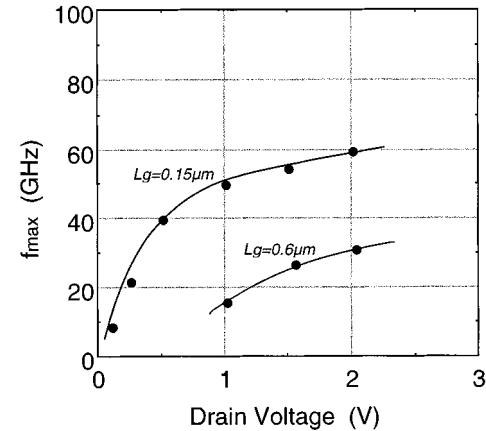


Fig. 6. f_{\max} of the $0.15\text{-}\mu\text{m}$ -gate MODFET as a function of drain voltage.

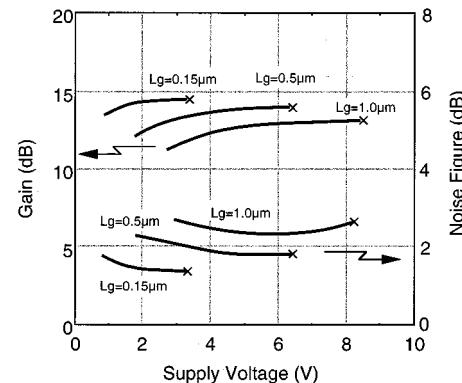


Fig. 7. Gain and NF of the fabricated LNA as a function of the supply voltage at 1.5 GHz.

at an operation current of 3 mA. The input and output ports were matched to the chip externally by stab tuners. The drain voltage was applied up to the condition where punch through of the FET's was occurred. Namely, the maximum supply voltages in Fig. 7 indicate the breakdown voltages of FET's with various gate lengths. The FET with a gate length of $0.15\text{ }\mu\text{m}$ shows lower breakdown voltage as compared to the FET's with a gate length of $1.0\text{ }\mu\text{m}$. The LNA with an $0.15\text{-}\mu\text{m}$ -gate FET exhibits higher gain and lower NF than those LNA's with 0.6- or $1.0\text{-}\mu\text{m}$ gate length at a supply voltage of 1 V. More specifically, the $0.15\text{-}\mu\text{m}$ -gate MODFET is needed to operate the LNA at a supply voltage of less than 1 V. This is because the $0.15\text{-}\mu\text{m}$ FET has smaller C_{gs} and larger transconductance.

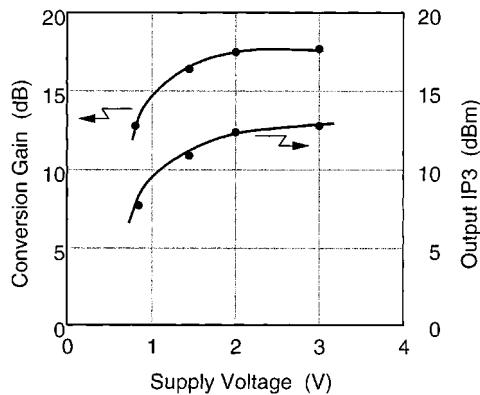


Fig. 8. Conversion gain and output IP3 of the fabricated dual-gate mixer as a function of the supply voltage at 1.5 GHz.

TABLE I
COMPARISON BETWEEN THE DEVELOPED AND CONVENTIONAL IC'S

Performance	Present IC	Conventional IC
Power dissipation (mW)	11	30
Conversion Gain (dB)	30	27
Output IP3 (dBm)	9	10
Noise Figure (dB)	1.6	2.2

C. Dual-Gate Mixer

We evaluated the fabricated dual-gate mixer with $0.15\text{-}\mu\text{m}$ gate length. Fig. 8 shows the measured conversion gain and output IP3 as a function of the supply voltage. The frequency of input RF, local signal, and IF are 1.5, 1.35 GHz, and 150 MHz, respectively. This characteristic was measured by using two signal generators and a spectrum analyzer. The matching was tuned by the same manner as the section of the LNA. Although the RF performance is degraded by reducing the operation voltage, the conversion gain of 15 dB and the output IP3 of 9 dBm are obtained at operation voltage of 1 V for the $0.15\text{-}\mu\text{m}$ -gate MODFET. This characteristic is sufficient for the application to front-end IC's.

D. Front-End IC's

We evaluated the fabricated front-end IC with and without the current-reuse configuration, which consisted of the LNA, local amplifier, and dual-gate mixer at 1.5 GHz. All the RF ports were matched to the chip externally. The isolation between the LNA and local amplifier was as high as 20 dB. This is because the inductance for RF cut was sufficiently large to isolate each component.

The comparison of the RF performance between the present IC and conventional IC is summarized in Table I. The present IC has a current-reuse configuration with the $0.15\text{-}\mu\text{m}$ -gate FET's. On the other hand, the conventional IC has no current-reuse configuration where the gate length of the FET's is $1.0\text{ }\mu\text{m}$. Table I also shows that the power dissipation is reduced from 30 to 11 mW, keeping excellent RF performance. This performance is realized by the current-reuse configuration with $0.15\text{-}\mu\text{m}$ -gate MODFET technology.

V. CONCLUSION

We have developed a low-power GaAs front-end IC with a current-reuse configuration using $0.15\text{-}\mu\text{m}$ -gate MODFET's fabricated by using phase-shift lithography. The current-reuse configuration using $0.15\text{-}\mu\text{m}$ -gate MODFET's reduced the power consumption of a front-end IC by the factor of three. Sufficient RF performance such as conversion gain of 30 dB, NF of 1.6 dB, and output IP3 of 9 dBm at 1.5 GHz was obtained at a supply voltage of 3.6 V and operation current of 3 mA. The present GaAs front-end IC is suited to recent mobile communication systems, which require low dissipation power.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Itoh and Dr. G. Kano for their encouragement through this research and M. Nishitsuji and Dr. A. Tamura for their fruitful discussion on the STO process.

REFERENCES

- [1] F. Bonn, "A low-current high-performance LNA for global positioning receiver applications," in *IEEE MTT-S Technol. Wireless Applcat. Symp. Dig.*, 1995, pp. 113–115.
- [2] H. Koizumi, T. Tateoka, K. Kanazawa, and D. Ueda, *IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig.*, 1995, pp. 77–80.
- [3] C. Kim, *IEEE GaAs IC Tech. Dig. Symp. Dig.*, 1995, pp. 55–58.
- [4] H. Takenaka and D. Ueda, " $0.15\text{-}\mu\text{m}$ T-shape gate fabrication for GaAs MODFET using phase shift lithography," *IEEE Trans. Electron Devices*, vol. 43, pp. 238–244, Feb. 1996.
- [5] H. Ishida, K. Miyatsuji, H. Takenaka, H. Furukawa, T. Tanaka, M. Nishitsuji, A. Tamura, and D. Ueda, "A low-current wide-band amplifier using $0.2\text{-}\mu\text{m}$ -gate MODFET fabricated by using phase-shift lithography," in *IEEE GaAs IC Tech. Symp. Dig.*, 1996, pp. 249–252.
- [6] M. Nishitsuji, A. Tamura, T. Kunishima, K. Yahata, M. Shibuya, M. Kitagawa, and T. Hirao, "Advanced GaAs-MMIC process technology using high-dielectric constant thin film capacitors by low temperature RF sputtering method," in *IEEE GaAs IC Tech. Symp. Dig.*, 1993, pp. 329–332.

Hidetoshi Ishida (M'96) was born in Kyoto, Japan. He received the B.S. and M.S. degrees in electronics engineering from the Kyoto Institute of Technology, Kyoto, Japan, in 1989 and 1991, respectively.

In 1991, he joined Matsushita Electric Industrial Inc. (Panasonic). He then joined the Electronics Research Laboratory, Matsushita Electronics Corporation, Osaka, Japan. He has been involved with the development of GaAs MESFET's, heterojunction bipolar transistors (HBT's), and GaAs monolithic microwave integrated circuits (MMIC's) in the Semiconductor Device Research Center, Matsushita Electronics Corporation.

Mr. Ishida is a member of the IEEE Electron Devices Society, the Japan Society of Applied Physics, and the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.

Haruhiko Koizumi (A'95–M'96) was born in Hiroshima, Japan. He received the B.S. and M.S. degrees in electronics engineering from the University of Electro-Communication, Tokyo, Japan, in 1988 and 1990, respectively.

In 1990, he joined the Electronics Research Laboratory, Matsushita Electronics Corporation, Osaka, Japan, where he has been engaged in the research and development of GaAs MESFET's and GaAs MMIC's.

Mr. Koizumi is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.

Kazuo Miyatsuji (M'96) was born in Osaka, Japan. He received the B.S., M.S., and Ph.D. degrees in electronics engineering from Osaka University, Osaka, Japan, in 1984, 1986, and 1996, respectively.

In 1986, he joined the Kyoto Laboratory, Matsushita Electronics Corporation, Osaka, Japan, where he was engaged in the research and development of Si bipolar and BiCMOS devices. Since 1992, he has been involved with the development of GaAs MESFET's and GaAs MMIC's in the Semiconductor Device Research Center, Matsushita

Electronics Corporation.

Dr. Miyatsuji is a member of the IEEE Electron Devices Society, the Japan Society of Applied Physics, and the Institute of Electronics, Information and Communication Engineers (IEICE), Japan.

Tsuyoshi Tanaka (M'96) was born in Nara, Japan. He received the B.S. and M.S. degrees in applied physics from Osaka University, Osaka, Japan, in 1983 and 1985, respectively.

In 1985, he joined the Electronics Research Laboratory, Matsushita Electronics Corporation, Osaka, Japan. Since then, he has been engaged in the research and development of GaAs MESFET's, MODFET's, HBT's, and GaAs MMIC's.

Mr. Tanaka is a member of the IEEE Electron Devices Society and the Institute of Electronics, Information and Communication Engineers (IEICE), Japan. In 1996, he was the recipient of the Ookouti Prize for the first implementation of a GaAs MMIC with an on-chip ferroelectric capacitor.

Hiroshi Takenaka (S'82–M'83) was born in Shiga, Japan. He received the B.S. and M.S. degrees in electronics engineering from the University of Osaka Prefecture, Osaka, Japan, in 1983 and 1985, respectively.

In 1985, he joined the Kyoto Research Laboratory, Matsushita Electronics Corporation, Osaka, Japan, where he was engaged in e-beam lithography for GaAs MESFET's. From 1990 to 1996, he was involved with the development of GaAs MESFET's and MMIC's, mainly with the development of phase-shift lithography for gate fabrication in the Electronics Research Laboratory, Matsushita Electronics Corporation. Since 1997, he has been involved with the development of next-generation lithography for Si ultra-large-scale integration (ULSI), especially next-generation e-beam lithography in the Process Technology Development Center, Matsushita Electronics Corporation.

Daisuke Ueda (M'96) was born in Oita, Japan. He received the B.S. and M.S. degrees in electronics engineering from the Kyushu Institute of Technology, Fukuoka, Japan, in 1977 and 1979, respectively, and the Ph.D. degree in electronics engineering from Osaka University, Osaka, Japan, in 1987, respectively.

In 1979, he joined Matsushita Electric Industrial Inc. (Panasonic). He then joined the Electronics Research Laboratory, Matsushita Electronics Corporation, Osaka, Japan. From 1987 to 1988, he was a Visiting Scholar at Stanford University, where he was involved with a GaAs/Al-GaAs heterojunction power transistor on an Si substrate. He is currently a General Manager of Research and Development of high-frequency electron devices using compound semiconductors. He is also a Visiting Professor at Hokkaido University, Hokkaido, Japan. His research activity includes both low- and high-power RF devices using GaAs, SiGe, and Si materials.

Dr. Ueda is a member of the IEEE Electron Devices Society, the Japan Society of Applied Physics, and the Institute of Electronics, Information and Communication Engineers (IEICE), Japan. He is currently a deputy chairman of the Electron Device Workshop. In 1996, he was the recipient of the Ookouti Prize for his implementation of a GaAs MMIC with on-chip ferroelectric capacitors, which was put into production for the first time in GaAs history.