2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 9, September 2000

Table of Contents for this issue

Complete paper in PDF format

Two Techniques for the Efficient Numerical Calculation of the Green's Functions for Planar Shielded Circuits and Antennas

Alejandro Alvarez-Melcón and Juan R. Mosig Fellow, IEEE

Page 1492.

Abstract:

In this paper we present new contributions to the computation of the Green's functions arising in the analysis of multilayered shielded printed circuits and antennas. First the quasi-static term of the spectral domain Green's functions is extracted so that the convergence of the reminder dynamic modal series is enhanced. Moreover, it is shown that by extracting a second-order quasi-static term the convergence is further improved. In regard to the quasi-static terms they are computed in the spatial domain by numerically evaluating the associated spatial images series. Then a new and efficient technique is developed for the summation of the slowly convergent modal series. The technique can be viewed as the application of the integration by parts technique to discrete sequences and greatly accelerates the convergence rate of the series involved. It is shown that the new algorithm is numerically very robust and leads to a drastic reduction in the computational effort and time usually required for the numerical evaluation of the shielded Green's functions.

References

  1. J. C. Cheng, N. I. Dib and L. P. B. Katehi, "Theoretical modeling of cavity-backed patch antennas using a hybrid technique", IEEE Trans. Antennas Propagat., vol. 43, pp.  1003-1013, Sept.  1995.
  2. J. M. Jin and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity", IEEE Trans. Antennas Propagat., vol. 39, pp.  1598-1604, Nov.  1991.
  3. J. M. Jin and J. L. Volakis, "Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite-element method", IEEE Trans. Antennas Propagat., vol. 41, pp.  1580-1586, Nov.  1993 .
  4. J. Gong, J. L. Volakis, A. C. Woo and H. T. G. Wang, "A hybrid finite element-boundary integral method for the analysis of cavity-backed antennas of arbitrary shape", IEEE Trans. Antennas Propagat., vol. 42, pp.  1233-1242, Sept.  1994 .
  5. J. Y. Lee, T. S. Horng and N. G. Alexopoulos, "Analysis of cavity-backed aperture antennas with a dielectric overlay", IEEE Trans. Antennas Propagat., vol. 42, pp.  1556-1562,  Nov.  1994.
  6. F. Zavosh and J. T. Aberle, "Infinite phased arrays of cavity-backed patches", IEEE Trans. Antennas Propagat., vol. 42, pp.  390-398, Mar.  1994.
  7. G. G. Gentili, L. E. Garcia-Castillo, M. S. Palma and F. Perez-Martinez, "Green's function analysis of single and stacked rectangular microstrip patch antennas enclosed in a cavity", IEEE Trans. Antennas Propagat., vol. 45, pp.  573-579, Apr.  1997.
  8. L. P. Dunleavy and P. B. Katehi, "A generalized method of analyzing shielded thin microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1758-1766, Dec.  1988.
  9. J. C. Rautio and R. F. Harrington, "An electromagnetic time-harmonic analysis of shielded microstrip circuits", IEEE Trans. Microwave Theory Tech., vol. 35, pp.  726-730, Nov.  1987.
  10. C. J. Railton and S. A. Meade, "Fast rigorous analysis of shielded planar filters", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  978-985, May  1992.
  11. A. Hill and V. K. Tripathi, "An efficient algorithm for the three-dimensional analysis of passive microstrip components and discontinuities for microwave and millimeter-wave integrated circuits", IEEE Trans. Microwave Theory Tech., vol.  39, pp.  83-91, Jan.  1991.
  12. R. Faraji-Dana and Y. L. Chow, "Accurate and efficient CAD tool for the design of optimum packaging for (M)MICs", Proc. IEE Microwave Antennas and Propagation , vol. 142, pp.  81-88, Apr.  1995.
  13. S. Hashemi-Yeganeh, "On the summation of double infinite series field computations inside rectangular cavities", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  641-646, Mar.  1995.
  14. G. V. Eleftheriades, J. R. Mosig and M. Guglielmi, "A fast integral equation technique for shielded planar circuits defined on nonuniform meshes", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2293-2296, Dec.  1996 .
  15. L. P. Dunleavy and P. B. Katehi, "Shielding effects in microstrip discontinuities", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  1767-1774, Dec.  1988.
  16. A. Alvarez-Melcon and J. R. Mosig, "A Software Tool for the Analysis and Design of the Conformal Array Single Elementary Radiator", LEMA, Swiss Federal Inst. Technol., Lausanne, Switzerland, Tech. Rep. LEMA-RTAA-97-01, ESTEC/Contract 11 698/95/NL/SB, June 1997.
  17. M.-J. Tsai, F. D. Flaviis, O. Fordham and N. G. Alexopoulos, "Modeling planar arbitrarily shaped microstrip elements in multilayered media", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  330-337, Mar.  1997.
  18. M.-J. Tsai, C. Chen and N. G. Alexopoulos, "Sommerfeld integrals in modeling interconnects and microstrip elements in multi-layered media", Electromagnetics, vol. 18, no. 3, pp.  267-288, 1998.
  19. G. G. Gentili and G. de Angelis, "Efficient analysis of scattering by arbitrarily shaped thin obstacles in rectangular waveguide", J. Electromagnetic Waves Applicat., vol. 12, no. 1, pp.  59-71, 1998.
  20. M. J. Park and S. Nam, "Efficient calculation of the Green's function in rectangular waveguides", IEEE Int. Antennas and Propagation Symp., vol. 4, pp.  2354-2357, July  13-18, 1997.
  21. S. Singh and R. Singh, "On the use fo Shanks' transform to accelerate the summation of slowly converging series", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  608-610, Mar.  1991.
  22. R. E. Collin, Field Theory of Guided Waves, New York, NY: Mc Graw-Hill, 1960.
  23. K. A. Michalski and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations", IEEE Trans. Antennas Propagat., vol. 45, pp.  508-519, Mar.  1997.
  24. S. G. Panm and I. Wolff, "Scalarization of dyadic spectral Green's functions and network formalism for three-dimensional full-wave analysis of planar lines and antennas", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2118-2127, Nov.  1994.
  25. J. R. Mosig, "Integral equation techniques,"in Numerical Techniques for Microwave and Millimeter-Waves Passive Structures, T. Itoh, Ed. New York, NY: Wiley, 1989, ch. 3, pp.  133-213. 
  26. J. R. Mosig and F. E. Gardiol, "Analytical and numerical techniques in the Green's function treatment of microstrip antennas and scatterers", Proc. IEE Microwave Antennas and Propagation, vol. 130, pp.  175-182,  Mar.  1983.
  27. J. R. Mosig and T. K. Sarkar, "Comparison of quasistatic and exact electromagnetic fields from a horizontal dipole above a lossy dielectric backed by an imperfect ground plane", IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp.  379-387, Apr.  1986.
  28. A. Alvarez-Melcon and J. R. Mosig, "The summation by parts technique: A novel procedure for the convergence acceleration of series arising in electromagnetic problems", in Proc. XXVI General Assembly Int. Union Radio Sci., URSI'99, Toronto, ON, Canada,Aug. 1999, p.  104.