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Abstract—Recently, the demand for high-performance wireless global rational function approximations to the frequency-do-
designs has been increasing while simultaneously the speedmain data can potentially represent an interconnect system in
of high-end digital designs have crossed over the gigahertz ihq frequency domain and give accurate time-domain results
range. New simulation tools which accurately characterize . . o . o
high-frequency interconnects are needed. This paper presents when Cqmb'ned W't.h Oth?r circuit ?Iemer_]ts In "’! mOd_'f'Ed
improvements to a new macromodeling algorithm described in  SPICE simulator. This facilitates the simulation of mixed signal
[1]. The algorithm employs curve-fitting techniques to achieve systems that contain microwave, RF, analog, and digital circuits
a pole-residue approximation of the frequency-sampled net- all within the same high-density circuit package.
work. The frequency sampled S-parameters or Y -parameters To quantify the behavior of the-port, a macromodeling

can be obtained from measurement or full-wave simulation to til inf fi bout th lati bet th
characterize the frequency-dependent interconnects behavior. process utllizes Informaton about the relations between the

The improvements extend the approach to lossless structures, iNPut and output responses of a circuit or structure. Some
increase its accuracy with pole-clustering, and ensure its va- types of macromodeling, including asymptotic waveform
lidity with a passivity test. This paper addresses some of the expansion (AWE) [2], Padé via Lanczos (PVL) [3], and Pas-
special considerations that must be made to the method so it g6 Reduced-order Interconnect Macromodeling Algorithm
can efficiently and accurately be applied to lossless circuits and S .
structures. The resulting algorithm is now capable of accurately (_PRIMA) [4] Can. use Clr(.:wt.models obtained through Par-
extracting a wide-band frequency domain macromodel from tial-Element Equivalent Circuit (PEEC) [5] or other methods.
frequency-sampled data for either LCcircuit (lossless) orRLC PEEC discretizes a structure infdl.C networks to approx-
circuits (lossy). The frequency-domain macromodel can be linked imate a full-wave distributed circuit model. The objective
to a SPICE circuit simulator for mixed signal circuit analysis — ot AwE, PVL, and PRIMA in reducing simulation time is
using R_F, analog_, and_dlgltal circuits. The circuit can be simulated based upon reducing the order (i.e., number of elements) of
in the time domain using recursive convolution. o r ToAEe T )
the circuit. These macromodeling techniques use the original
. he ] circuit characterized by the modified nodal admittance (MNA)
modeling, measured data, passivity, poles, pole-residue ap- - . . .
proximation, rational approximation, .S-parameters, transfer matrix [6] as the Inp_ut_ In_formatlon to obtqln argduced-order
functions, transient simulation, transmission linesY -parameters. macromodel. One limitation to these techniques is that they are
not readily applied to networks that have been characterized
with measured or tabulated data.

Some macromodeling approaches use frequency-sampled
HE DIFFICULTIES with performing accurate broadbandlata to characterize the-port system. The advantage of this
interconnect simulation is that typical full-wave techapproach is that the characterizing “information” may come

nigues are often too slow and are incompatible with existirftpm a diversity of sources including full-wave simulation and
circuit simulators. The concept of macromodeling has be@etwork analyzer measurements. A straightforward approach
used in order to strike an optimal balance between accuralsyobtain transient simulation of frequency sampled networks
flexibility, and speed. Macromodeling is the process that allovigto use the inverse fast Fourier transform (FFT) and obtain the
a complicated structure that is difficult or time-consuming tme-domain impulse response. For each time step the time-do-
simulate to be represented accurately by an approximate systeain impulse response is convolved with the input waveform
that can easily be simulated. An interconnect macromodelobtain the system response. The drawback to this approach
defines the behavior of an-port (wheren is the number of is the computational cost of the convolution process. One class
input plus output terminals) interconnect system. For passi@tfrequency-sampled macromodeling [7], [8] expands existing
structures, it is desired that the resulting macromodel be lineaacromodeling techniques like complex frequency hopping
and passive. Frequency-domain macromodels in the form (6fFH) to handle networks characterized by sampled data. CFH
is based on Padé approximations at multiple frequency points.
The method used in [7] overcomes the problem of the inverse
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performed. The technique is effective for ideal linear sourcealgorithm as it applies to lossless structures. An algorithm for
but cannot be applied to circuits containing nonlinear drivingole-clustering is discussed in Section Ill. A method to test for
devices such as MOSFETSs. passivity is presented in Section IV. In Section V, examples of
The CFH technique used in [8] allows for simulation witithe accuracy and usage of the algorithm for several different
nonlinear devices. The difficulty in this method is that for evergtructures are given. Section VI provides some conclusions.
moment, a corresponding derivative of ed€lparameter must
be computed using numeric integration across the entire time Il. APPLICATION TO LOSSLESSNETWORKS
;%?g;rié?gz Eaﬁngsgﬁet?o?i :t?/\?oerlz(s)rwei}[/r? glfar%qeuﬁgﬁlybgslcr)]ﬁhe macromodeling algorithm consists of two steps. The first

sample points, a high order of approximation, or networks Wiﬁ{ep IS to use rational functions givenas a ra_t|o of polynomials
many ports. 0 approximate the frequency-domain behavior of the elements

.of the Y-matrix, or admittance matrix, of the-port structure.
Another approach to frequency-sampled macromodeli . : . .
Ll%e second step involves recasting the ratio of polynomials rep-

that is discussed in [1], [9]-[11] involves using direct rationa : ) . .
S . . Tresentanon for th& -matrix elements into a new form using the
approximations instead of a moment-matching approach. The

. . . S gartial expansion representation to obtain the residues. In order
macromodels obtained from direct rational approximations ¢

: . X ) . i .ogtam a suitable model for lossless networks, several important
be used in conjunction with recursive convolution [12] to effi- ~ .. "~ - : )

. . : . . , . modifications to the derivation and equations presented in [1]
ciently simulate interconnects along with nonlinear devices INd  be made

modified version of SPICE [13]. The method in [10] partitions The first step in the process is to extract the poles of the

the data set into sections to avoid problems associated with . L

: N . ) .. system given the frequency-sampled data. Givenijtie ad-

ill-conditioning and obtains low-order rational approximations’. : ;
. . mittance matrix element as a function of frequeriyys), a

for each set. At the end of each section the resulting approrx—tional aporoximation is made as follows:

imation is added to the approximation obtained from the last PP '

section and the resulting approximation is subtracted from the 0+ a5 + az5® + azs® + -« + ay_y1 5"t + a5

original data for the next iteration. One of the drawbacks df;;(s) = 5 —

. : . . bo+b1s+bas?2 +b3s3+---4+ b, 15"t +b,s"
this approach is that each section adds more pole-residue terms 1
to the approximation. Consequently, the overall model has an @

artificially large number of poles. A separate computation ish P . . is the total b
required in order to obtain a reduced-order model. wheres € (jui, jwa, -+, jws-1, jwy), f is the total number
f frequency points, and is the order of the denominator

The method in [11] uses a novel approach that recursiveq%d numerator polynomials. The macromodel approach is

. ) a
computes pole-zero pairs. The algorithm uses a least Squ?cr)?%ulated for theY -matrix elements, since the modified

curve-fitting technique to find an initial first-order pOIe_Zemversion of SPICE mentioned earlier uses the partial fraction

approximation, then creates a new data set used for the nee>)<([5ansion form of theY-matrix elements. This ability to

approx!mat!on by d|V|d|ng the original data by the flrst—orderenerate macromodels of the elements of Yhenatrix for
approximation. The algorithm calculates a new pole—zero pair

with each iteration. The problem with the method discussed irl}gh—frequenc_y_struct_ures IS important for th_e s_|mu|at|on of
sgstems for digital, mixed-signal, and RF applications.

[11] is that the matrix systems formulated in this approach ar Matrix equations of the fornid][z] = [B] are formulated

only valid for real poles, which restricts the application of thi%y multiplying both sides of (1) and then separating the real

technique takRL and RC circuits. : . .
. - . and imaginary parts of the result. For example,, i§ even and
In [14], Brittingham shows the viability of a global rational . .
=Y, + 5Y;, the result is

approximation technique that is much simpler than a section-b;f—j
section or iterative approach. Brittingham showed that by con- 2 "
ni . . . ap +azs” 4+ -+ aps
straining the poles of the rational approximation to be real or’
complex conjugate pairs, ifdrestalls failure of the method even = Yrbo + 7Yisby + Yobos® 4 4 jYibyo1s™ 4 Y,
when the number of polesis very larg€he approach discussed (2)
in [9] incorporates matrix equations that guarantee this condi-
tion. However, the matrix systems formulated introduce unnethe result of this formulation for other cases is given in [1].
essary ill-conditioning to the approximations by using squaredFor lossless structures it is known that the elements of the
terms ofw in the numerator and denominator polynomials. An¥’-matrix are purely imaginary, thuBe{Y;;} = 0. Conse-
other limitation of this method is that the residue calculation fauently, several columns of the matrix on the left-hand side that
complex conjugate pole pairs may lead to less accurate resuiigormulated in the first step of the process will be zero. In order
The new technique presented in [1] overcomes these limitatiots obtain a solution to the system of equations, these columns
The present paper expands the work of the macromodelimgist be eliminated. Since all of the poles in a lossless network
algorithm discussed in [1] by adding some special consideie purely imaginary and come in conjugate pairs, the order of
tions that must be made for losslegg)) structures. This paper the polynomials, specified by, in (1) must be even. The re-
also presents additional performance enhancements. The aseilting form of the system of equations for a lossless network
racy of the overall algorithm is improved using pole-clusterings given by (3) at the top of the following page, where the addi-
A method to test for passivity of the frequency-domain macrdienal numerical subscript o¥i indicates frequency points that
models is described. Section Il describes the macromodeliragmge from1 to f. The system of equations given in (3) can
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be used to obtain the coefficientg andb;. and thus the fre- Ill. POLE CLUSTERING
quency-domain macromodel representation for the respective

Y-matrix element. one i t 1o the techni : hieved b Vi
The second step of the algorithm is effectively a partial frac- ne improvement fo the technique 1s achieved by applying

tion expansion of (1), except that (unstable) right half-planD olzg#s;?rlﬂgya}fr;e;trt.heﬁﬁ;ezlgri\éitge;ntﬁgﬂ);tfdJ;);each
(RHP) poles are removed after factoring the denominator. § IX. X

Y;;(s) is the network parameter, and m the number of left halk“'—near netyvork have the same poles.'Hovx./ever,.numencgl errors
inherent in the macromodel approximation will result in dif-

plane (LHP) poles, then

cedure.

A new matrix equation is formulated to calculdtg, (a con-
stant) and each residug, for each of the poleg,, and the
Y;;(s) values. The resulting matrix equation for the lossle

Yii(s) = koot

a=1
wherem < n, andn was specified in the first step of the pro

kq
3_pa

ferentY-matrix elements having similar, yet slightly different
pole values. Pole-clustering is a method in which the poles of

different Y-matrix elements that closely match are averaged
together and then considered as one set of poles. The goal of

pole-clustering is to come up with a set of poles that is common
to all elements of th& -matrix in the approximation.
The pole-clustering algorithm is very straightforward. First,

SHl the poles ofY;; are compiled into an initial list of poles.

case is quite different from the equation for circuits with loss. Ao poles of the next -matrix element are then determined.
lossless structure has purely imaginary conjugate pole pairs gfghp, pole for the new -matrix element is then matched with

purely real residues. Consequently, (4) becomes

I {Y;;(s)} = i: <

a=],
for the lossless case, wheta

kq

5= Pa

kq
s —py

s the number of imaginary conju- difference is within tolerance, the initial list is updated with

+

a pole from the initial list. A match is obtained if the differ-
ence between the location a pole in the initial list and a pole
for newY -matrix element is below a specified tolerance. If this

gate pole pairs. The resulting matrix equation for the calculatienweighted average of the “clustered” poles. If any new poles

of the residues is (6) at the bottom of this page.

cannot be matched with any pole from the initial list, then the

The poles and residues for a lossles§’f macromodel can initial list is updated with the new pole location. This process
be generated from (3) and (6). The modifications made to tbéupdating the pole list and comparing with the poles for each
process of calculating the poles and the residues allow thie-matrix elementis continued for all the elements ofthena-
method to correctly extract macromodels for lossless structures. The pole-clustering algorithm is as follows.
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1) Create a data structure, clustered_poles, that will recordA different passivity test must be used for lossless networks,
the values of clustered poles and whithparameter(s) since passive networks have positive real matrices. One con-
they belong to. dition for a rational function to be considered a positive real

2) Startwith the firsk” parameterY;, and copy all the pole function is that the residues of purely imaginary poles must be
values into clustered_poles, and record that these pglesitive and real [17]. This concept can be extended to all the

values belong td7; . elements of th& -matrix of a lossless network by generating
3) Leti = 1 to the total number o¥ -parameters: a matrix that represents the residues corresponding to each ele-
A.Let k = 1 to total number of clustered_poles. ment of theY -matrix for thekth pole. If the resulting matrix is
i) Find the closest “matching” pole itj; to thekth ot symmetric, the off-diagonal elements are modified to make
pole in clustered_poles that minimizes it symmetric by using;; = (ki; + k;;)/2. The matrix will be
|clusteredpole, — matchingpolej| positive-real if the matrixz is positive semidefinite. ThusdF is

positive semidefinite, the macromodel is passive. Note therefore
|clusteredpole, | o N .
that a necessary condition for passivity is that for all diagonal

i) IF the “match” is within tolerance, THEN, ts oft of a loss tructure th id th
computed the weighted average (based on hoﬁi!/\?:ae: dsrggl Jofalossless structure the residues must be pos-

many Y -parameters currently contain tfigh
clustered pole) of th&th clustered_pole and the
matching pole to compute the updated value of V. EXAMPLES

the ith clustered pole value. Next, record that In this section, the macromodeling method is applied to sev-
the kth clustered pole is a member of the paeral examples. The first example is used to show how the choice

rametery;. of the order of the rational function is important to obtain accu-
OR _ _ rate results. The following two examples show the results of the
iii) IF not match is possible, THEN macromodeling method applied to a simple lossless microstrip

add a new pole to the list of clustered_polesstructure as well as a more complicated waveguide structure.
Then record that the new clustered pole is a Fig. 1 shows how the choice of the order of the polynomials

member of the paramets. n in the rational function (1) impacts the accuracy of the fre-
B. Scan through clustered_poles, and update array tlogatency-domain macromodel for a three-secti®hC' circuit.
contains pole values that belongia This figure compares the real and imaginary valuesypf

Atolerance value of 0.5% achieves good resullts in the clusteri@gtained from SPICE with the values i, generated from
process and has been used for the examples presented inftgromodels with varying orders ef. Fig. 2 compares the

work. average error between the macromodel and the exact value of
Y7 for the RLC circuit for different values of.. The error is
IV. PASSIVITY TESTING computed by using
Anotherimprovement to the technique is to add the capability v v
to test for passivity. By removing RHP poles, the algorithm does Error;; (s) = | z‘j(Sk)_— 55 (1)l @)
ensure a stable system, but the macromodel is not guaranteed to |Ys;

be passive. If the original data is passive and the approximation
is good it is expected that the resulting macromodel will be pasthereY’;; is the average value &; for all the frequency points
sive. All the macromodels extracted to date using this algorithsp, Y;;(sx) is computed by SPICE at the frequengy, and
and using an appropriate valuesofire passive. Yij(sk) is the value ofY;; at frequencys; computed by the

A passive network is a network that is unable to create enengpacromodel. The average error is computed by averaging (7)
and does contain independent or dependent sources. A networkall values of:, j, andk. The average error weights the er-
is passive if the Hermitian matri¥(7], whose element§;; are rors in all theY'-matrix elements on an equal basis and does not
equal to(Y;; +Y7;/2), wherei may equay, is positive semidef- focus on the error of one element over another.
inite [15]. This means thdt?] = Re{[Y]} when the networkis  In the RLC circuit example, for a value of that is equal to
symmetric. For a nonsymmetric netwol®] = Re{[Y]} for and above the threshold order of five (which happens to be the
the diagonal elements aé;; = (Y;; + Yj’;/2) for the off-di- actual order ok, ), the macromodel results overlay the SPICE
agonal elements. One interesting result of the positive semidefsults very well. For macromodels that are generated with a
inite nature of 7] is thatRe{Y} > 0 for all diagonal elements value ofn that is below the threshold order, the accuracy of the
[16]. A matrix can be tested for positive semidefiniteness tapproximation is usually very poor. The macromodels obtained
performing a simple algorithm called the Pivot Test [16]. Thifom below-threshold values af may not even result in a pas-
is done by successively pivoting on the diagonal entridésin  sive macromodel. Macromodels generated using values of much
first by pivoting on the first diagonal elemeri;;, then pro- greater than the threshold order are accurate but may contain
ceeding by pivoting on the second diagonal elem@&syt, and extra poles that have small residues that arise due to numerical
so on.[G] will be positive semidefinite if after the successiveeasons. The threshold order in a real system corresponds to the
pivoting process, the resulting matii&] has nonnegative di- number of dominant poles.
agonal elements. This passivity test has been applied to lossyhe improved macromodeling procedure has been applied to
networks. a lossless microstrip structure shown in Fig. 3. The lossless mi-
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Fig. 4. Comparison ot -parameters computed by HP-ADS and 12th-order

Fig. 1. Frequency domain fit fory, approximations to aiLC circuit. (a) macromodel for lossless microstrip example,l¢a)Yi;} and (b)Imn{Y7.}

Re{Y1:} and (b)Im{Yi.}.
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Fig. 2. Average error (log scale) for varying orders of approximation of a e Time € e

three-sectiom® L C' circuit.

Fig.5. Transient simulation of the output voltage of a lossless microstrip using

A . . . HP-ADS and macromodeling technique.
crostrip is 3 cm long. The microstrip structure was simulated in g g

the frequency domain with a commercial transmission line sim-

ulator HP-ADS [18] to extract th& parameters. This data was

used to develop a macromodel of this structure. Fig. 4 compaesxl that a macromodel order of = 12 is sufficient to accu-

the elements of th& -matrix directly computed from HP-ADS rately reconstruct the original data. The macromodel was used
with the Y-matrix computed from the macromodel for the cas@ a transient simulation of the microstrip line. The circuit used
wheren = 12. These results show that there is excellent agrea-5-V step with a 0.1-ns rise time as a voltage source, a 1-pF
ment between the macromodel and the original HP-ADS datapacitor on the output, and a fDsource resistance. Fig. 5
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Fig. 6. Parallel-plate waveguide with dielectric past= 14 mm,b = 6 mm,c = 6.4 mm,d = 3.2 mm,e = 3.2 mm,f = 8 mm,&,. = 8.2.

compares the value of the far-end voltage of the line from a
direct transient simulation from HP-ADS and a transient sim-
ulation using the rational function form of the macromodel in
AZSPICE. This figure shows excellent agreement between the
original and macromodeled results.

The macromodeling technique was applied to a structure that __

—— FDFD
--—- Macromodel

A -

was modeled using a full-wave simulation approach based uporE -0.2
the solution of Maxwell's equations. This example demon- &
strates the capability of the technique to obtain an accurate” ~04
frequency-domain macromodel given full-wave simulation data ‘
L . - -0.6 |
of a complex structure. A finite-difference frequency-domain
(FDFD) full-wave simulator tool [19] was used to obtain the 08 v
two-port S-parameters of a parallel-plate waveguide structure
with a dielectric post, as shown in Fig. 6. The presence of -1 s ‘
the dielectric post in the waveguide generates higher order 0 5e+0?: 1e+10
. . . requency
modes in the waveguide. The frequency behavior of these
modes are neglected when simple equivalent circuit models (a)
are used to simulate this structure, and thus it is important to
use a full-wave simulation approach to capture the appropriate
frequency response. 08 |
The FDFD simulation approach can be used to obtain many FDFD
frequency points, but only a fraction of them are actually needed —___ Macromodel
to obtain a suitable macromodel approximation. To obtain the 06 T
macromodel, thes-parameters are first converted¥oparam-
eters using the following transformations [20]: N 04t
>
1 w £
Yo= = — 8 -
0 ZO 770d ( ) 0.2 A
o N
_ Yo © or \F ~ L\/\/“ ‘J\»f ")
(14 S11)(1 + Sa2) — S12521
-0.2 ;
0 5e+09 1e+10
Y11 = D[(1 — S11)(1 + Sa2) + S12521] (10) Frequency
Yia = D[-25] (11) (b)
Fig. 7. Y -parameters computed by FDFD and macromodeH 32) order
Yy, = D[—2521] (12) for parallel-plate waveguide example. {@{Y::} and (b)Im{Yi-}
where Z, is the waveguide impedance that is used as the ref-
Y22 = D[(1 — S22)(1 + S11) + S12521] (13) erence impedance from which to characterizetkgarameters
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of the post. The parameteris the width, and! is the height of ~ [4] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: Passive reduced-

the gap of the parallel-plate waveguide. order interconnect macromodeling algorithiEEE Trans. Computer-
. Aided Des.vol. 17, pp. 645-653, Aug. 1998.
The Y'-parameters were computed usifgparameter data 5] A. E. Ruehli and H. Heeb, “Circuit models for three-dimensional ge-

from the FDFD simulation at 126 frequency points ranging from ometries including dielectricsJEEE Trans. Microwave Theory Tech.

_ vol. 40, pp. 1507-1516, July 1992.
100 MHz to 13.9 GHz. A macromo,del of the parameters [6] C.Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to net-
was generated for a value of= 32. Fig. 7 compares the ele- work analysis,"lEEE Trans. Circuits Systvol. CAS-22, pp. 504-509,
ments of th&”-matrix directly computed from the FDFD simu- June 1975.

; ; i<[7] R. Sanaie, E. Chiprout, and M. S. Nakhla, “A fast method for frequency
lation and with the values computed from the macromodel. Thist™ 7 20 = = = = b o vLS| interconnectteEE Trans, Mi-

figure shows that the FDFD results and results obtained fromthe  crowave Theory Techvol. 42, pp. 2562-2571, Dec. 1994.
macromodel are in good agreement. The large fluctuations an@g] R. Achar and M. S. Nakhla, “Efficient transient simulation of em-
; bedded subnetworks characterizedsbgarameters in the presence of
resonances in the frequency response are accurately reproduced nonlinear elementsJEEE Trans. Microwave Theory Techol. 46, pp.
with the macromodel. 2356-2363, Dec. 1998.
In order to determine the correct order of this model, sev-[9] W. T. Beyene and J. E. Schutt-Aine, “Efficient transient simulation of
; ; ; high-speed interconnects characterized by sampled d&&F Trans.
eral different macromodels with were conducted. Polynomial Comp.. Packag, Manufact. Technol\BI. 21, pp. 105114, Feb. 1998,
orders ofn = 16, 28, 30, and32 were tried. The average error [10] L. M. Silveira, I. M. Elfadel, J. K. White, M. Chilukuri, and K. S. Kun-
computed from (7) was computed for these cases and com- dert, “Efficient frequency-domain modeling and circuit simulation of

_ i i transmission lines,[EEE Trans. Comp., Packag. Manufact. Techngl. B
pare. Whemn = 16, the average error between the original vol. 17, pp. 505513, Nov. 1994,

Y—parameters and the approximate-parameters was 91%. [11] E. C. Chang, “Transient simulation of lossy coupled transmission lines
Whenn = 28, the error dropped to 83%, and when= 30 using iterative linear least squares fitting and piecewise recursive con-
order approximation the error dropped to 42%. Whes 32, volution,” IEEE Trans. Circuits Syst, vol. 43, Nov. 1996.

. ] 12] S. Lin and E. Kuh, “Transient simulation of lossy interconnects based
the error dramatically dropped to 0.693%! This example ShOWg on the recursive convolution formulationZEE Trans. Circuits Syst.

that it is important to compute the proper ordernofo obtain vol. 39, pp. 879-892, Nov. 1992.
accurate results and that even a slight increasecian resultin ~ [13] M. Celik, "AZSPICE, Modified from Berkely SPICE 3F4," Ctr. Elec-
. . . tron. Packag. Res., Univ. Ariz., Tucson, 1996.
significant accuracy in the resulting macromodel. [14] J.N. Brittingham, E. K. Miller, and J. L. Willows, “Pole extraction from
real-frequency information,Proc. IEEE vol. 68, pp. 263-273, Feb.
1980.

[15] W.H.Kim and H. E. Meadowsylodern Network Analysis New York:
Wiley, 1971, p. 195.
VI. CONCLUSION [16] H. W. Brinkmann and E. A. Klotz,inear Algebra and Analytic Geom-
etry. Reading, MA: Addison-Wesley, 1971, pp. 445-446.
) o . [17] N. Balabanian and T. A. Bickartinear Network Theory Beaverton,
With the passivity test, pole-clustering, and the lossless = OR: Matrix, 1981, p. 465.

extension, the g|oba| rational approximation macromode"ndlS] HZ-ADS,hHeWIett chléard,EESOF Divison, “Advanced Design System
. . . 1.0,” Tech. Rep., 1998.
technlque has been greatly |mproved. The new a'lgor'thrr[]w] L. Zhao, A. C. Cangellaris, and J. L. Prind®educed-Order Modeling

provides the microwave circuit designer with an improved of Electromagnetic Systemisniv. Arizona, Ctr. Electron. Packag. Res.
design tool that can generate accurate frequency-do- (CEPR) software manual, Oct. 1998. _ _
main macromodels of complex interconnects. For digital,[zol \?Ves'}/gy Fi%g%r‘ Microwave Engineering Reading, MA: Addison-
mixed-signal, or RF applications the macromodels enable ' '

circuit designers to obtain transient simulations of complex

interconnect structures characterized by frequency-sampled

data along with nonlinear devices like MOSFETs. By

modifying the algorithms associated with the pole-residue

calculations, the overall result is a fast and accurate al-

gorithm capable of correctly handling both the lossless

and lossy case. The improvements have also increased the

accuracy of the pole calculations and provided a method to

evaluate passivity of the result.

Mark Elzinga received the B.S.E.E. and the
M.S.E.E. degrees from the University of Arizona,
Tucson, in 1997 and 1999, respectively.

He has been a Research Assistant with the Center
for Electronic Packaging Research since he started
his graduate studies in the Electrical and Computer
Engineering Department at the University of Ari-
zona. As an undergraduate, he worked as a Student

REFERENCES

[1] M. Elzinga, K. Virga, L. Zhao, and J. L. Prince, “Pole-residue formu
lation for transient simulation of high-frequency interconnects usi Engineer for Hughes Missile Systems Company
householder LS curve-fitting techniquesEEE Trans. Adv. Packag. s in the Hybrid Microelectronics Division. In 1994,
vol. 25, pp. 142-147, May 2000. he and a partner formed a corporation, Animated

[2] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluationTechnology Inc., where he has been developing a proprietary high-speed
for timing analysis,”IEEE Trans. Computer-Aided Dexol. 14, pp. three—dimensional animation system as well as consulting for other businesses.
639-649, May 1990. He now works at Intel Corporation. His interests include interconnect modeling,

[3] P.Feldmann and R. W. Freund, “Efficient linear circuit analysis by Padéomputational electromagnetics, CAD tool development, high-speed circuit
approximation via the Lanczos processEE Trans. Computer-Aided design, packaging, digital design, microprocessors, computer graphics, and
Des, vol. 14, pp. 639-649, 1995. C++ programming.




1468 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 9, SEPTEMBER 2000

Kathleen L. Virga (S’85-M'87-SM'97) received John L. Prince (S'65-M'68—-SM'78—F'90) received

the B.S. degree from California State University, the B.S.E.E. degree from Southern Methodist

Long Beach, in 1985, the M.S. degree from Cal- University, Dallas, TX, and as an NSF Graduate

ifornia State University, Northridge, in 1987, and Fellow received the M.S.E.E and Ph.D. degrees in

the Ph.D. degree from the University of California electrical engineering from North Carolina State

at Los Angeles (UCLA) in 1996, all in electrical University, Raleigh.

engineering. He is currently Professor of Electrical and
She is currently an Assistant Professor in the Computer Engineering and Director of the Center

Electrical and Computer Engineering Departmen for Electronic Packaging Research at the University

at the University of Arizona, Tucson. From 1985 of Arizona, Tucson. He came to the University of

to 1996, she worked in the Radar Systems Group, Arizona in 1983. He has been Principal Investi-

Hughes Electronics Electromagnetic Systems and Solid State Microwayegor of the Semiconductor Research Corporation (SRC) Program in VLSI

Laboratories. Her work experience includes the design and developmentPattkaging and Interconnection Research at the university since 1984. During

phase shifters, RF feed networks, radiator elements, and transmit/recdi981-1992, he was Acting Director, Packaging Sciences at SRC. He has

(T/R) modules for airborne phased-array and active array antennas. ldgtensive industrial experience. He is active in consulting work in both the

current research interests include high-density circuit design packaging aaliability and packaging areas. He is coauthor on two books in the field of

interconnects as well as the development of novel antennas for radar afettronic packagingSimultaneous Switching Noise of CMOS Devices and

wireless communications systems. She holds 4 U.S. patents and has authSystems by Senthinathan and Prince, arfitectronic Packaging: Design,

or coauthored over 25 technical publications. Materials, Processing and Reliabilitpy Lau, Wong, Prince, and Nakayama.
Dr. Virga was awarded a Hughes Aircraft Company Doctoral Fellowshiple teaches a course in electronic packaging at the University of Arizona.

She is amember of the IEEE Antennas and Propagation (AP-S) and Microwalie current research interests center on developing modeling and simulation

Theory and Techniques (MTT) Societies, USNC-URSI Commission B, Etachniques for switching noise in packages and MCMs, on modeling and

Kappa Nu, Tau Beta Pi, and Sigma Xi. In 1999, she was elected to sesimulation techniques for mixed-signal system packaging, and on developing

a three-year term on the Administrative Committee (AdCom) for the IEERigh-frequency measurements on packaging structures. He is the author or

Antennas and Propagation Society. From 1997 to 1999, she was the PA@Ruthor of over 150 papers in the field of electronic packaging, and 30 papers

(Professional Activities) Chair for the AP-S Society and the Associate Editor the fields of semiconductor device physics, process development, and

responsible for the PACE column for the ARVEagazine In 1996, she received reliability.

the UCLA Department of Electrical Engineering Graduate Woman of the

Year award. She was the invited keynote speaker for the 1996 California State

University Northridge, School of Engineering commencement.




