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Abstract—This paper reports our latest progress in developing
low-loss and low-crosstalk silicon MMIC interconnects for mil-
limeter-wave applications. The proposed silicon/metal/polyimide
(SIMPOL) structure based on multilayer polyimide technology
is extremely effective in reducing noise crosstalk, and also pro-
vides very low line loss, even at the millimeter-wave regime.
The measurement results of the developed SIMPOL structures
demonstrate extremely low noise crosstalk ( 40 dB) in the
entire frequency range (up to 50 GHz), which is limited by the
dynamic range of the measurement equipment, and excellent
insertion loss ( 0 25 dB/mm) up to 45 GHz. In addition, the
SIMPOL concept is applied for the first time successfully in the
design and fabrication of branch-line hybrids at millimeter-wave
frequencies, 30 and 37 GHz.

Index Terms—Branch-line hybrid, crosstalk, insertion loss, in-
terconnect, mixed-signal MMIC, noise isolation, silicon IC.

I. INTRODUCTION

W ITH THE strong demand on advanced wireless commu-
nication services for broadband digital data communica-

tions, highly integrated circuits such as mixed-signal IC’s and
advanced system-on-a-chips have attracted a great deal of atten-
tion, due to their significant benefits such as overall chip size
reduction, lower fabrication cost, as well as enhanced system
performance. This is particularly true for very-high-frequency
wireless communication systems because it provides an addi-
tional benefit of mitigating the severe transmission line loss at
very high frequencies. Meanwhile, significant progress in sil-
icon devices, such as high-speed SiGe HBT’s ( 160 GHz)
[1], has made it possible to realize silicon-based mixed-signal
MMIC’s and system-on-a-chip at millimeter-wave frequencies.
However, serious noise-crosstalk between digital and RF/analog
circuits and significant transmission line loss on conductive sil-
icon substrates have mainly limited the applications of the high-
frequency devices to high-frequency MMIC’s.

Numerous efforts have been made to reduce signal loss
and noise crosstalk in these high-frequency MMIC’s. Mi-
cropackaging, providing reasonably good performance in noise
crosstalk and insertion loss, might be an attractive solution,
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Fig. 1. Cross-sectional views of the fabricated SIMPOL interconnect. (a)
Single-channel interconnect. (b) Two-channel interconnect. (Parameters are
shown in Table I.)

but the cost effectiveness of the technique has yet to be fully
addressed [2], [3].

In this paper, we present our recent progress in implementing
the silicon/metal/polyimide (SIMPOL) structure, a novel
interconnect concept for broadband (50 GHz) mixed-signal
silicon MMIC’s using multilayer polyimide technology. It
provides several significant advantages over conventional mi-
crostrip-type structures, such as extremely low noise crosstalk,
low signal loss, and cost effectiveness [4], [5]. Prototype test
structures including branch-line hybrids at millimeter-wave
frequencies have been designed and fabricated. The mea-
surement results demonstrate the superior performance of
the SIMPOL in noise isolation and insertion loss, and also
denote its applicability to advanced millimeter-wave wireless
communication systems.

II. DESIGN AND FABRICATION OF SIMPOL INTERCONNECT

Compared to conventional microstrip-based interconnect
structures, the proposed SIMPOL structure provides several
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Fig. 2. Layout of the fabricated SIMPOL interconnect. (a) Uniform
transmission line. (b) Coupled lines (L = 4 mm, W = 150 �m,
S = 64 �m,W = 90 �m,L = 1000 �m,S = 150 �m).

advantageous features such as extremely low crosstalk even at
very high frequency range ( 50 GHz), low insertion loss by
using low-loss polyimide layers, broadband performance, and
cost effectiveness by using CMOS-grade low-cost low-resistive
silicon substrate. The detailed configuration and characteristics
are described in [4].

As an evaluation step of the proposed SIMPOL, a simplified
SIMPOL test structure which does not have the recessed area in
the silicon substrate is fabricated as shown in Fig. 1. However,
the modified model should offer corresponding performances to
the original SIMPOL structure with respect to the performance
parameters such as noise crosstalk and insertion loss. The fab-
rication procedures of the simplified SIMPOL interconnect is
described in [4].

In order to address the fundamental performance of the pro-
posed SIMPOL structure as an interconnect, two types of com-
ponents have been designed and fabricated. Fig. 2(a) and (b)
shows the layouts of the fabricated uniform lines and coupled
lines used to characterize the insertion loss and noise crosstalk
parameters of the SIMPOL structure. In the new design, every
single line is completely shielded by vertical metal walls as
shown in Fig. 2. This complete isolation has improved the accu-
racy in the crosstalk measurements by preventing indirect cou-
pling through the substrate between the lines. Fig. 3 shows the
photographs of fabricated components. The profile of the fabri-
cated SIMPOL is denoted in Table I.

The coplanar waveguide (CPW) probing pads and CPW-to-
stripline transitions are not a part of the SIMPOL interconnect.
However, since they have a significant effect on the accuracy

(a)

(b)

Fig. 3. Photographs of the fabricated SIMPOL interconnect. (a) Uniform
transmission line. (b) Coupled lines.

of the high-frequency -parameter measurements, they should
be treated as carefully as the SIMPOL interconnect for reliable
measurement results. Impedance mismatch and abrupt mode
conversion in a poorly designed CPW-to-stripline transition will
cause inaccuracy and severe ripples in the measurement data
which are difficult to calibrate out. We have observed that one
of the most critical areas of the CPW-to-stripline transition is the
location of the top-ground planes. As shown in Fig. 4, full cov-
erage of the tapered signal lines with the top ground metal pro-
vides a smooth transition from CPW mode to stripline mode and
improves the measurement accuracy substantially. The length of
the tapered line, in Fig. 4, also affects the measurement,
but the effect is not as significant as the previous parameter, and
determined to be 60m.

III. M EASUREMENT OFSIMPOL INTERCONNECT

The -parameters of the fabricated test structure were mea-
sured on an HP 8510C network analyzer, using a pair of GGB
Picoprobes with 150-m pitches (50 A-GSG-150-LP). A short-
open-load-thru (SOLT) calibration was carried out for the fre-
quency range from 1 to 50 GHz with a standard calibration set
(CS-5) for stable calibrations.
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TABLE I
PROFILE OF THESIMPOL TEST STRUCTURE

Fig. 4. Detailed configuration of CPW-to-stripline transition and CPW
probing pads (L = 60 �m).

(a)

(b)

Fig. 5. Insertion loss and return loss measurement of the SIMPOL uniform
lines shown in Fig. 2(a). (a) Line width(W ) = 15 �m (45 
). (b) Line width
(W ) = 20 �m (38 
).

After calibration, we first measured the insertion loss of
4-mm-long straight lines as shown in Fig. 2(a). With the new
design of the CPW-to-stripline transition, the accuracy of the

(a)

(b)

Fig. 6. Noise crosstalk and return loss measurement of the SIMPOL coupled
lines shown in Fig. 2(b). (a) Noise coupling and return loss (W = 15 �m). (b)
Noise floor level.

measurement has been improved considerably compared to
the previous measurement [5]. Fig. 5(a) and (b) shows the
measured insertion losses per unit length (1 mm) and the return
losses for the lines with the widths of 15 and 20m, respec-
tively. In order to characterize the pure insertion loss (metal
and dielectric loss) of the SIMPOL structure, insertion loss is
defined and calculated from the measuredand return losses
by subtracting the amount of the return loss from the amount
of the measured . The insertion loss of the wider line, as
anticipated, is slightly lower than that of the narrower one
mainly due to the lower metal loss, but in both cases very good
and smooth insertion losses ( 0.25 dB/mm up to 45 GHz)
are achieved with reasonably good return losses in the entire
frequency range. The sudden degradation of the insertion losses
at the higher frequency end (45 GHz) is probably caused by
increased calibration tolerance at the higher frequencies.

Meanwhile, the noise crosstalk of the coupling structures
shown in Fig. 2(b) is measured, and the results are shown in
Fig. 6(a) along with the return loss. Due to the completely
enclosed architecture of the SIMPOL structure, the coupled
noise level is expected to be extremely low even at the high
frequency end (50 GHz). Both the near-end coupling and the
far-end coupling show excellent isolation levels (3 dB up
to 30 GHz and 40 dB up to 50 GHz) in the entire frequency
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(a)
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Fig. 7. Fabricated SIMPOL branch-line hybrid. (a) Layout drawing of the
designed hybrid. (b) Photograph of the fabricated hybrid.

range. The measured coupling levels are noticeably improved
compared with the previous results where the coupling levels
above 30 GHz are slightly higher than the noise floor level by
5–10 dB [5], which is caused by indirect coupling through the
substrate. This improvement is accomplished by two enhanced
design parameters: CPW-to-stripline transition design and
complete shielding of individual lines. This result implies
significant amount of power propagates to the substrate and
couples to neighboring circuits. The improved transition dimin-
ishes the discontinuity effect and the substrate propagation, and
individual shielding prevents the coupling of the propagated
power to the other line.

Furthermore, the monotonic increase of the coupling level is
caused mainly by the test system dynamic range limitation, not
by the imperfection of the SIMPOL structure. Fig. 6(b) shows
the measured background noise level, which corresponds to the
transmission coefficient when the two probes are suspended in
the air by 5mm while maintaining identical distance to that of
the SIMPOL test structure. The noise floor is considered as the
maximum sensitivity of test equipments. The measured cou-
pling levels ( and ) are exactly at the same level of the
noise floor. It represents that the isolation of the SIMPOL is as
high as the test equipment measures, and that higher isolation
level can be demonstrated as long as test equipments provide
higher dynamic range.

(a)

(b)

Fig. 8. S-parameter measurement of the SIMPOL branch-line hybrids. (a)
30-GHz branch-line hybrid (L = 1372 �m). (b) 37-GHz branch-line
hybrid (L = 1089 �m).

IV. BRANCH-LINE HYBRID APPLICATION

The SIMPOL interconnect is extremely effective at noise
isolation, with an excellent level of signal loss even at mil-
limeter-wave frequencies. This is demonstrated in the previous
section by measuring simple structures such as uniform lines
and coupled lines. In order to extend the SIMPOL concept to
millimeter-wave circuit components, branch-line hybrids have
been designed and fabricated at 30 and 37 GHz with the poten-
tial applications to millimeter-wave wireless communication
circuits. Fig. 7(a) and (b) shows the layout and the photograph
of a designed coupler.

A branch-line hybrid is a popular 3-dB directional coupler
which splits incoming power into two output ports at the same
level with a 90 phase difference while no power is coupled
to the remaining isolated port. Power splitting ratio of the two
outputs is the critical figure of merit of a branch-line hybrid [6].

In order to measure four-port branch-line hybrids with a
two-port measurement system, the two idling ports must be
terminated with resistive loads (50). Mismatching of the
idling port may cause a severe inaccuracy in the-parameter
measurement, and the performance cannot be predicted in a
reliable manner.

Fig. 8(a) and (b) shows the measured-parameters of the
branch-line hybrids at 30 and 37 GHz, respectively. Both hy-
brids perform excellent power-splitting ratios along with good
return losses. The 30-GHz hybrid shows the measured output
powers of 4.12 and 3.95 dB at the port 2 and 3 at 30 GHz,
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and the 37 GHz hybrid shows the output powers of3.73 dB
and 3.76 dB at 37 GHz. The loss of the 30-GHz hybrid is ob-
served greater than that of the 37-GHz hybrid. This is because
the physical size of the hybrid at 37 GHz (1089m) is smaller
than that at 30 GHz (1372m) while the loss per unit length at
37 GHz (0.232 dB/mm) is only slightly higher than the loss at
30 GHz (0.205 dB/mm).

When the bandwidth of a hybrid is defined as where two out-
puts have relative magnitude differences less than 0.2 dB, the
measured bandwidths of the designed hybrids demonstrate 3.18
GHz for the 30 GHz hybrid and 10.53 GHz for the 37G Hz hy-
brid, respectively.

V. CONCLUSION

We have presented a novel interconnect concept for
broadband silicon MMIC implementation. The prototype
measurement results demonstrate that the SIMPOL structure
is extremely effective in reducing the noise coupling between
adjacent transmission lines ( 40 dB up to 50 GHz). The
insertion line loss is also very low ( 0.25 dB/mm up to
45 GHz) with easily achievable thick polyimide layer (27

m). The successful application of the SIMPOL structure to
branch-line hybrids at millimeter-wave frequencies (30 and
37 GHz) indicates that this novel SIMPOL structure should
provide an attractive solution for low-cost high-performance
wireless application up to millimeter-wave frequencies.
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