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Abstract—This paper reports our latest progress in developing
low-loss and low-crosstalk silicon MMIC interconnects for mil-
limeter-wave applications. The proposed silicon/metal/polyimide Ground
(SIMPOL) structure based on multilayer polyimide technology Metal
is extremely effective in reducing noise crosstalk, and also pro-
vides very low line loss, even at the millimeter-wave regime.

The measurement results of the developed SIMPOL structures

demonstrate extremely low noise crosstalk <—40 dB) in the

entire frequency range (up to 50 GHz), which is limited by the

dynamic range of the measurement equipment, and excellent

insertion loss (<—0.25 dB/mm) up to 45 GHz. In addition, the

SIMPOL concept is applied for the first time successfully in the

design and fabrication of branch-line hybrids at millimeter-wave Ground Metal S
frequencies, 30 and 37 GHz.
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. INTRODUCTION

ITH THE strong demand on advanced wireless commu-
nication services for broadband digital data communica-

tions, highly integrated circuits such as mixed-signal IC’s and ) ! Si0,
advanced system-on-a-chips have attracted a great deal of atten- WS
tion, due to their significant benefits such as overall chip size )

reduction, lower fabrication cost, as well as enhanced system

performance. This is particularly true for very-high-frequenchig. I1- hCrOSSI-S_ectional vieWSbof the fﬁbricalted SIMPOL interconnect. (a)

W|r8|eSS Communl.C-atlo-n SyStemS because |t-pr.OV|d-eS an aﬂéﬂ%ﬁ ?n ?Il_r;l'tl)lee Ilgterconnect. ( ) Two-channel interconnect. (Parameters are

tional benefit of mitigating the severe transmission line loss at

very high frequencies. Meanwhile, significant progress in sil-

icon devices, such as high-speed SiGe HBT.s,( > 160 GHz) but the cost effectiveness of the technique has yet to be fully

[1], has made it possible to realize silicon-based mixed-sigriddressed [2], [3].

MMIC'’s and system-on-a-chip at millimeter-wave frequencies. In this paper, we present our recent progress in implementing

However, serious noise-crosstalk between digital and RF/anatbg silicon/metal/polyimide (SIMPOL) structure, a novel

circuits and significant transmission line loss on conductive sipterconnect concept for broadbans 60 GHz) mixed-signal

icon substrates have mainly limited the applications of the higilicon MMIC’s using multilayer polyimide technology. It

frequency devices to high-frequency MMIC's. provides several significant advantages over conventional mi-

Numerous efforts have been made to reduce signal Id¥§strip-type structures, such as extremely low noise crosstalk,

and noise crosstalk in these high-frequency MMIC’s. Milow signal loss, and cost effectiveness [4], [5]. Prototype test

cropackaging, providing reasonably good performance in noigéuctures including branch-line hybrids at millimeter-wave

crosstalk and insertion loss, might be an attractive solutioifiéquencies have been designed and fabricated. The mea-
surement results demonstrate the superior performance of
the SIMPOL in noise isolation and insertion loss, and also
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Fig. 2. Layout of the fabricated SIMPOL interconnect. (a) Uniform
transmission line. (b) Coupled lined (= 4 mm, Wgyp = 150 pm,
Scpw = 64 um, Wepw = 90 /Lm,Lco“plcd = 1000 um,S =150 /Lm)

advantageous features such as extremely low crosstalk even at CPW probing pads ;
very high frequency range>(50 GHz), low insertion loss by
using low-loss polyimide layers, broadband performance, and ()

cost effectiveness by using CMOS-grade low-cost low-resistive

silicon substrate. The detailed configuration and characteristf#% 3. Photographs of the fabricated SIMPOL interconnect. (a) Uniform

. . ansmission line. (b) Coupled lines.
are described in [4]. (b) Goup

As an evaluation step of the proposed SIMPOL, asimpliﬁedf he high-frequenc\s-parameter measurements. thev should
SIMPOL test structure which does not have the recessed are irt& '9 quencys-p U » ey shou
2 reated as carefully as the SIMPOL interconnect for reliable

the silicon substrate is fabricated as shown in Fig. 1. Howev asurement results. Imoedance mismatch and abruot mode
the modified model should offer corresponding performances% C - 'mp - rupt m
conversionina poorly designed CPW-to-stripline transition will

the original SIMPOL structure with respect to the performanc . ) .
use inaccuracy and severe ripples in the measurement data

arameters such as noise crosstalk and insertion loss. The Fa%.— e )
P ich are difficult to calibrate out. We have observed that one

ggzgzg ep()jrci)ﬁg]ures of the simplified SIMPOL interconnect Igf the most critical areas of the CPW-to-stripline transition is the

In order to address the fundamental performance of the p;ggatmn of the top-ground planes. As shown in Fig. 4, full cov-

. rage of the tapered signal lines with the top ground metal pro-
osed SIMPOL structure as an interconnect, two types of com- o S
P ’ P y gas a smooth transition from CPW mode to stripline mode and

ponents have been designed and fabricated. Fig. 2(a) andyg .
shows the layouts of the fabricated uniform lines and coupl roves the measurement accuracy substantially. The length of
tapered linel.p.; in Fig. 4, also affects the measurement,

lines used to characterize the insertion loss and noise crossial the effect is not as sianificant as the previous parameter. and
parameters of the SIMPOL structure. In the new design, ev . 9 P P '
termined to be 6@m.

single line is completely shielded by vertical metal walls a
shown in Fig. 2. This complete isolation has improved the accu-
racy in the crosstalk measurements by preventing indirect cou-
pling through the substrate between the lines. Fig. 3 shows thé'he S-parameters of the fabricated test structure were mea-
photographs of fabricated components. The profile of the fabsured on an HP 8510C network analyzer, using a pair of GGB
cated SIMPOL is denoted in Table I. Picoprobes with 15@+m pitches (50 A-GSG-150-LP). A short-

The coplanar waveguide (CPW) probing pads and CPW-topen-load-thru (SOLT) calibration was carried out for the fre-
stripline transitions are not a part of the SIMPOL interconneajuency range from 1 to 50 GHz with a standard calibration set
However, since they have a significant effect on the accura@@S-5) for stable calibrations.

I1l. M EASUREMENT OFSIMPOL INTERCONNECT
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TABLE |
PROFILE OF THESIMPOL TEST STRUCTURE 0
-10
Maximum Value Minimum Value -20 -
First Polyimide Layer Thickness 13.77 pm 13.04 pm o 30
Total Polyimide Layer Thickness 27.41 ym 26.94 um T U
Transmission Line (Ti/Al) Thickness 1.6 um 1.6 um g -40 S11
Bottom Metal (Ti/Al) T:l1ickness 1.0 pm 1.0 pm % -50 Near-end (S31)
Top M?tal (Tl/:Al) Thickness 0.5 um 0.5 pm 5 60 = - - -Far-end(541)
Resistor (NiCr) Value 50.1Q 50.1Q H
o -70 -
9 80 -
. -90 -
st Top metal ground -100 i : . : : : : i :
0 5 10 15 20 25 30 35 40 45 50
Top polyimide Frequency (GHz)
o : ' layer
P ) (@)
s aper Bottom
S Py 4 polyimide layer 0
——————————— | -10 1
CPW probing pads _. 20| == ==Noise Floor (near)
g -30 Noise Floor (far)
5 -40 -
Fig. 4. Detailed configuration of CPW-to-stripline transition and CPW E -50. 4
probing padsLspe- = 60 pem). s .60
& 70
n
0 ’ 0 -80
0.1 -90 1
T 02 HY L 5 -100 ————————
E T 0 5 10 15 20 25 30 35 40 45 50
g -0.3 1 10T
z - F GHz)
o 0.4 4 o requency (
8 -0.5 15 S
g 0.6 - £ (b)
£ 0.7 20§
§ 0.8 | Fig. 6. Noise crosstalk and return loss measurement of the SIMPOL coupled
= 7 + -25 lines shown in Fig. 2(b). (a) Noise coupling and return 1385 £ 15 um). (b)
-0.9 4 Noise floor level.
-1 — -30
0 5 10 15 20 25 30 35 40 45 50 ) )
Frequency (GHz) measure_ment has been |mpr0veql considerably compared to
the previous measurement [5]. Fig. 5(a) and (b) shows the
(a) measured insertion losses per unit length (1 mm) and the return
0 0 losses for the lines with the widths of 15 and 26, respec-
. tively. In order to characterize the pure insertion loss (metal
E _ and dielectric loss) of the SIMPOL structure, insertion loss is
g 0.3 - L 10 g_ defined and calculated from the measufgd and return losses
Py 0.4 4 § by subtracting the amount of the return loss from the amount
S 051 15 - of the measured,;. The insertion loss of the wider line, as
£ ‘8'3 I | 20§  anticipated, is slightly lower than that of the narrower one
8 '0'8 | & mainly due to the lower metal loss, but in both cases very good
£ 09 . T2 and smooth insertion losses {£0.25 dB/mm up to 45 GHz)
-1 S — -30 are achieved with reasonably good return losses in the entire
0 5 10 15 20 25 30 35 40 45 50 frequency range. The sudden degradation of the insertion losses
Frequency (GHz) gt the higher freql_Jency end-45 GHz) is probably cau_sed by
increased calibration tolerance at the higher frequencies.
(b) Meanwhile, the noise crosstalk of the coupling structures

Fig. 5. Insertion loss and return loss measurement of the SIMPOL uniforﬁ{lown in Fig. Z(b)_ is measured, and the results are shown in
lines shown in Fig. 2(a). (a) Line widifiV') = 15 um @45 ). (b) Line width  Fig. 6(a) along with the return loss. Due to the completely
(W) =20 pm (38 Q). enclosed architecture of the SIMPOL structure, the coupled
noise level is expected to be extremely low even at the high
After calibration, we first measured the insertion loss dfequency end (50 GHz). Both the near-end coupling and the
4-mme-long straight lines as shown in Fig. 2(a). With the nevar-end coupling show excellent isolation levets{3 dB up
design of the CPW-to-stripline transition, the accuracy of the 30 GHz and<—40 dB up to 50 GHz) in the entire frequency
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Fig. 8. S-parameter measurement of the SIMPOL branch-line hybrids. (a)

30-GHz branch-line hybrid/{coupica = 1372 pm). (b) 37-GHz branch-line

(b) hybrid Leoupica = 1089 pm).

Fig. 7. Fabricated SIMPOL branch-line hybrid. (a) Layout drawing of the ~
designed hybrid. (b) Photograph of the fabricated hybrid. IV.' BRANCH-LINE HYBRID APPLICATION

The SIMPOL interconnect is extremely effective at noise

range. The measured coupling levels are noticeably improvié@lation, with an excellent level of signal loss even at mil-
compared with the previous results where the coupling leveigeter-wave frequencies. This is demonstrated in the previous
above 30 GHz are slightly higher than the noise floor level b§ection by measuring simple structures such as uniform lines
5-10 dB [5], which is caused by indirect coupling through thand coupled lines. In order to extend the SIMPOL concept to
substrate. This improvement is accomplished by two enhand®dlimeter-wave circuit components, branch-line hybrids have
design parameters: CPW-to-stripline transition design ahgen designed and fabricated at 30 and 37 GHz with the poten-
complete shielding of individual lines. This result impliegial applications to millimeter-wave wireless communication
significant amount of power propagates to the substrate agitcuits. Fig. 7(a) and (b) shows the layout and the photograph
couples to neighboring circuits. The improved transition dimir¢f a designed coupler.
ishes the discontinuity effect and the substrate propagation, ané\ branch-line hybrid is a popular 3-dB directional coupler
individual shielding prevents the coupling of the propagatethich splits incoming power into two output ports at the same
power to the other line. level with a 90 phase difference while no power is coupled

Furthermore, the monotonic increase of the coupling leveltg the remaining isolated port. Power splitting ratio of the two
caused mainly by the test system dynamic range limitation, r@tputs is the critical figure of merit of a branch-line hybrid [6].
by the imperfection of the SIMPOL structure. Fig. 6(b) shows In order to measure four-port branch-line hybrids with a
the measured background noise level, which corresponds totive-port measurement system, the two idling ports must be
transmission coefficient when the two probes are suspendeddrminated with resistive loads (5Q). Mismatching of the
the air by 5mm while maintaining identical distance to that délling port may cause a severe inaccuracy in fhiparameter
the SIMPOL test structure. The noise floor is considered as timeasurement, and the performance cannot be predicted in a
maximum sensitivity of test equipments. The measured cawliable manner.
pling levels 63; and.S4;) are exactly at the same level of the Fig. 8(a) and (b) shows the measurge¢parameters of the
noise floor. It represents that the isolation of the SIMPOL is dsanch-line hybrids at 30 and 37 GHz, respectively. Both hy-
high as the test equipment measures, and that higher isolatioils perform excellent power-splitting ratios along with good
level can be demonstrated as long as test equipments provieteirn losses. The 30-GHz hybrid shows the measured output
higher dynamic range. powers of—4.12 and—3.95 dB at the port 2 and 3 at 30 GHz,
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and the 37 GHz hybrid shows the output powers-&73 dB
and—3.76 dB at 37 GHz. The loss of the 30-GHz hybrid is 0
served greater than that of the 37-GHz hybrid. This is beca
the physical size of the hybrid at 37 GHz (108&) is smaller
than that at 30 GHz (1372m) while the loss per unit length at
37 GHz (0.232 dB/mm) is only slightly higher than the loss
30 GHz (0.205 dB/mm). ! :
When the bandwidth of a hybrid is defined as where two o @\ ) Los Angeles, where he is currently working as

. . . an Assistant Research Engineer in the Electrical
puts have relatlvg magn'tUde d'ﬁerences |¢SS than 0.2 dB, mf'gineering Department. He has been involved with various numerical
measured bandwidths of the designed hybrids demonstrate 3etBniques for microwave and millimeter-wave circuits and antennas, gen-

GHz for the 30 GHz hybrid and 10.53 GHz for the 37G Hz hyeration and transmission of picosecond electrical pulses, crosstalk problems
. . in high-density MMIC'’s, miniature circuits for mobile communications, and
brid, respectively.

millimeter-wave focal plane imaging arrays. He has authored or coauthored
more than 100 refereed journal and conference papers, two book chapters, and
one book. His current research interests include broadband planar antennas,
V. CONCLUSION high-efficiency microwave amplifiers, RF interconnect for mixed signal
. MMIC'’s, quasioptical power combining, photonic band-gap (PBG) structures,
We have presented a novel interconnect concept f@itive integrated antennas for multimedia communication systems and imaging

broadband silicon MMIC implementation. The prototypéffay%,and high-power broadband RF photonic devices for millimeter and
measurement reSl_JItS .demonsltrate that .the SIMF_)OL structtl Tll(g?;ﬁtsvrévga;\r/]ee eggitgir:rll)?rc])?'a Japan Microwave Prize at the 1998 Asia-
is extremely effective in reducing the noise coupling betweeracific Microwave Conference.

adjacent transmission linesc{40 dB up to 50 GHz). The

insertion line loss is also very low<(-0.25 dB/mm up to

45 GHz) with easily achievable thick polyimide layer (27

#m). The successful application of the SIMPOL structure to

branch-line hybrids at millimeter-wave frequencies (30 and

37 GHz) indicates that this novel SIMPOL structure should

provide an attractive solution for low-cost high-performance

wireless application up to millimeter-wave frequencies.
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