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Abstract—A reduced-order modeling method based on a system
description in terms of orthonormal Laguerre functions, together
with a Krylov subspace decomposition technique is presented. The
link with Padé approximation, the block Arnoldi process and sin-
gular value decomposition (SVD) leads to a simple and stable im-
plementation of the algorithm. Novel features of the approach in-
clude the determination of the Laguerre parameter as a function of
bandwidth and testing the accuracy of the results in terms of both
amplitude and phase.

Index Terms—Laguerre functions, Padé approximation, re-
duced-order modeling, singular value decomposition.

I. INTRODUCTION

C IRCUIT simulation tasks, such as the accurate prediction
of the behavior of large RLGC interconnects, generally

require the solution of very large linear networks. Since the
main point, from a communications and throughput point of
view, is the behavior of the interconnect structure at user-de-
fined ports over a given frequency range, it is of utmost im-
portance to dispose of a reduced but accurate black-box model
of the network as seen from the chosen ports. In recent years
this has led to the development of reduced-order modeling tech-
niques such as asymptotic waveform evaluation (AWE) [1], ma-
trix Padé via Lanczos (MPVL) [2], [3], symmetric Padé via
Lanczos (SyMPVL) [4], block Arnoldi [5], and passive reduced-
order interconnect macromodeling (PRIMA) [6].

Though quite different in implementation and numerical sta-
bility, most of these algorithms tend to obtain a low-order Padé
approximant [7] of the system transfer matrix via Krylov sub-
space modeling. Some of these techniques, such as SyMPVL
and PRIMA, are provably passive, partly because the model re-
duction scheme can be interpreted in terms of congruence trans-
formations [8]. In this paper we propose an algorithm based on
the decomposition of the system transfer matrix into orthogonal
scaled Laguerre functions [9]. The link with Padé approxima-
tion, the block Arnoldi process, and the singular value decom-
position (SVD) [10] permits a simple and stable implementa-
tion of the algorithm. As in PRIMA and SyMPVL, the method
is provably passive. The algorithm is applied to transmission
lines, coupled transmission lines, and a PEEC circuit [11]. Part
of the material in this paper was presented at the 1999 EPEP
meeting in San Diego [12]. The novelty of the material added
consists mainly of a discussion of all the features of the algo-
rithm, the choice of the Laguerre parameter in connection with
bandwidth, the accuracy of the results—not only in terms of the
amplitude, but also of the phase as a function of frequency—and
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an explicit state space description of general coupled transmis-
sion line circuits.

II. THE LAGUERRECONNECTION

Using any circuit-equation formulation method such as mod-
ified nodal analysis (MNA) [13], sparse tableau, etc. [14], a
lumped, linear, time-invariant strictly passive [15] multiport cir-
cuit of order can be described by the following system of
first-order differential equations:

(1)

(2)

Here, the vector represents the circuit variables,represents
the time derivative of , the matrix represents the
contribution of memoryless elements, such as resistors, the

matrix represents the contribution from memory elements,
such as capacitors and inductors, the vectoris the output of
interest, and the vectorrepresents the excitations at the ports.
Note that stands for the transpose of

Since we consider a multiport formulation withports, where
in general , the rectangular matricesand are of di-
mension . Moreover, as explained in [6], without loss of
generality we can take . However, for the sake of gener-
ality, we will maintain the separate and notation throughout
this paper.

With unit impulse excitations at the ports and zero initial con-
ditions, the Laplace transform of the circuit equations (1), (2)
yields the port transfer matrix

(3)

and the corresponding port impulse response matrix

(4)

In most of the reduced-order modeling literature, model reduc-
tion strategies are based on Padé approximations of the transfer
matrix by means of moment matching. The approach we advo-
cate in this paper is the expansion of the impulse response matrix

in scaled Laguerre functions [9], defined as

(5)

where is a positive scaling parameter and is the Laguerre
polynomial

(6)

It is known [16] that the sequence forms a uniformly
bounded orthonormal basis for the Hilbert space .
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Hence the impulse response matrix admits the Fourier–La-
guerre expansion

(7)

Since the Hardy space [9] consisting of all analytic and
square-integrable functions in the open right half-plane
is the Laplace transform of , the sequence of Laplace
transforms of the scaled Laguerre functions

(8)

forms a uniformly bounded orthonormal basis for the Hardy
space equipped with the inner product

(9)

and norm .
Considering that the multiport circuit under scrutiny is strictly

passive and hence asymptotically stable, and since the transfer
matrix is strictly proper, i.e.,

(10)

all the entries of belong to and the transfer
matrix can be expanded into the orthonormal basis as

(11)

This can be rewritten as

(12)

Equation (12) has the very simple physical interpretation that
any transfer matrix in can be represented as the product of
a simple low-pass filter and a weighted infinite
sum of all-pass filters of the type . Moreover,
the bilinear transformation

(13)

maps the -domain Laguerre expansion (12) into the-domain
power expansion

(14)

From this we infer that an th-order Padé approximation of the
modified transfer matrix

(15)

in the -domain is equivalent to a anth-order Laguerrre ap-
proximation in the -domain, meaning that can be op-
timally approximated in the norm sense by the truncated
Fourier–Laguerre expansion

(16)

Although we know that converges to for
when for a strictly passive system, it is necessary, in
order to be able to determine an adequate value for the Laguerre
parameter , to have more information about the convergence
rate. We start with the partial fraction expansion

(17)

which is valid for simple poles with . It is readily
shown that

for (18)

It is interesting to note that the time-domain version of (18),
obtained by taking the inverse Laplace transforms with respect
to and , reads as

for (19)

which is the reproducing kernel identity for the Laguerre func-
tions. Identity (19) clearly indicates that even a pure time delay
can be approximated by a Laguerre-type expansion. From (17)
and (18) we obtain that

(20)

Hence, with respect to any matrix norm , we have

(21)

and in the light of (20) and (8)

(22)

For a strictly passive system, this proves the pointwise conver-
gence as approaches infinity. It is seen
that the overall convergence rate is dictated by the largest co-
efficient and hence the optimal may be
found as the solution to the minimax problem

(23)

It should be noted that the optimalthus obtained is also the
value that maximizes the radius of convergence of the power se-
ries in the r.h.s of (14), in agreement with the asymptotic theory
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developed in [17]. Since the minimum of is
obtained for , it is a simple matter to show that the solu-
tion of the minimax problem (23) is given by , where
is the solution to the discrete minimax problem

(24)

It has been indicated in [2] and [18] that , where
is the bandwidth of the system. The relationship between the
Laguerre parameter and the bandwidth can be understood
as follows: suppose we truncate the Fourier–Laguerre expansion
of the impulse response matrix to terms, i.e.,

(25)

The coefficients can be obtained by means of the discrete
Laguerre transform [19] as

(26)

where the , are the weights and nodes—zeros of —of
the -point Gauss–Laguerre quadrature rule [20]. This means
that in order to retain Laguerre coefficients, the impulse re-
sponse needs to be known up to a time , where
is the largest zero of . For large we have asymptotically
[21] —for example calculations based on [20] yield

—and hence . By virtue of
the theorem of Slepian [22] we must have or

. If we take as the geometric mean of the bounds
on we can propose the range

(27)

containing “good” values for the Laguerre parameter. This
shows that there is some leeway in choosing, as long as it
is not too “close” to zero or infinity. Note that, following the
definition (5) of the scaled Laguerre functions, the optimal
Laguerre parameter can be interpreted as the reciprocal of
the time constant of the system, i.e., , and hence the
inequalities (27) represent upper and lower bounds for the
bandwidth-time constant product .

Remark 1: Note that the conformal transformation (13) maps
the open right half-plane onto the open unit disk .
It has been shown [23] that there exists a profound relationship
between complete orthonormal bases (COB), such as the La-
guerre basis, and conformal Riemann mappings from simply
connected regions onto the unit disk. One such COB, related
to the trivial mapping of the unit disk onto itself,
is simply the set of monomials and hence Padé approx-
imation inside the unit circle can be thought of as a projec-
tion technique on this simple COB. On the other hand, the set
of monomials in the Laplace domain is cer-
tainly not a COB there, but the Laguerre basis presents
one of the simplest bases, related to the conformal mapping

. In a sense we can say that the Laguerre
technique in the Laplace domain is equivalent to the Padé tech-
nique inside the unit circle. A single-input/single-output (SISO)

reduced-order modeling strategy presented recently [24] devel-
oped more or less the same idea, although without explicit refer-
ence to the Laguerre COB, but with an actual Laguerre param-
eter . A major difference with the approach in [24] and
our approach, is that is in fact related to the bandwidth of the
system—see (27).

III. T HE KRYLOV-SVD CONNECTION

Defining the matrices

and (28)

it is shown in [6] that the column-orthogonal matrix associ-
ated with the block Arnoldi process [5] in order to orthogonalize
the columns of the Krylov matrix

(29)

yields a reduced-order system

(30)

(31)

with

(32)
such that the reduced-order transfer matrix

(33)

is a passive Padé approximant of order for the original
transfer matrix.

By virtue of the preceding section, the above reasoning re-
mains valid, in the sense of Laguerre approximation, if we de-
fine the modified system matrices

and

(34)

In other words, we assert that the column-orthogonal matrix
associated with the block Arnoldi process as applied to the

modified Krylov matrix

(35)

yields a reduced-order system described by

(36)
such that the reduced-order transfer matrix

(37)

is a passiveLaguerreapproximant of order for the original
transfer matrix.

The block Arnoldi algorithm (BAA) [5] can be utilized to
generate the column-orthogonal matrix. Equivalently we
can use a block “thin” QR factorization based on modified
Gram–Schmidt (MGS) orthogonalization [10]. Numerical
experience [5], [25] has shown that some steps in BAA have
to be repeated in order to ensure orthogonality to the precision
of the computer. To avoid this, we opt for an SVD based
technique, which is a numerically more stable algorithm than
MGS [26]. The idea behind the SVD approach is the following.
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Putting , the dimension of the Krylov matrix
is . Since BAA is equivalent to MGS, we compare the
SVD and the “thin” QR factorization of . We have

(38)

where
, column-orthogonal matrices;

upper triangular matrix;
diagonal matrix containing the singular

values of the Krylov matrix;
orthogonal matrix.

Since , it is easily seen that can be
written as , where is an orthogonal ma-
trix. From (36) and (37) we infer that the reduced-order model
transfer matrix can be written as

(39)

(40)

(41)

Note that the mere requirement thatis nonsingular is suffi-
cient to obtain result (41). The derivations (39)–(41) prove that
it is judicious to use the left SVD column-orthogonal factor
instead of in the reduced-order modeling scheme.

The complete SVD-Laguerre-based algorithm is constructed
as follows.

• Select the values for and .
• Solve .
• For solve

• SVD
•

It is also important to evaluate or explicitly as a sum
of partial fractions. Taking such that is nonsingular,
we have

(42)

where

(43)

Supposing nondefective, i.e., diagonalizable, admits the
eigendecomposition

(44)

where is a diagonal matrix, yielding the partial fraction ex-
pression

(45)

To avoid supplementary LU-decomposition overhead, it can be
naturally recommended to choose the parameterequal to .

Remark 2: As was shown in the derivation leading to (41),
any decomposition of the Krylov matrix of the form ,
where is column orthogonal and is nonsingular, leads to
the same reduced transfer matrix. Hence it is useful to compare
the computational complexity (flop count) of the three major
methods which carry this out: MGS, SVD, and Householder
QR (HQR). The flop counts [10] are respectively of the order

, , and , where is the largest and

Fig. 1. jH (f)j for the lossy transmission line.

Fig. 2. argH (f) for the lossy transmission line.

is the smallest dimension of the Krylov matrix. Hence, in
terms of flop counts, MGS is the cheapest method, followed
by HQR and SVD. However, when orthonormality is critical
[10]—or equivalently, if passivity is critical [8]—the order of
the three methods must be reversed, i.e., first SVD, next HQR,
and finally MGS. So each of these methods has its own merits
in terms of efficiency and robustness. Also it seems that HQR
is a tempting method for future research, especially as there
exist specific updating algorithms [26]. An additional advan-
tage of the Laguerre-based method is that the relevant condition
number is not cond , but cond ; e.g., for the third ex-
ample (PEEC circuit) we found typically that cond

cond .

IV. NUMERICAL SIMULATIONS

A. Lossy Transmission Line

Consider a lossy transmission line modeled bylumped
RLGC sections. The circuit equations for the corresponding

twoport are

(46)

(47)
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The input variables are , and the output
variables are , . The state variables are the
entries of the –dimensional vector

(48)

The standard , , , MNA format is easily derived. For
example, when we have

(49)

and of course . A choice of equal RLGC
sections as in [6] with total parameters ,

, nH, pF yields a system description
of order . Reduced-order Laguerre models of dimen-
sions and are constructed using

. Figs. 1 and 2 show and
versus their reduced-order counterparts. It is seen that the,

Laguerre reduced-order models are indistinguishable
from the unreduced model up to respectively 2 and 6 GHz. It
is important to note that both amplitude and phase are approxi-
mated with the same degree of accuracy, i.e., the deviation from
the exact result starts at the same frequency for both amplitude
and phase. This remark holds for all the other examples in the
sequel.

B. Coupled Lossy Transmission Lines

Coupled lossy multiconductor transmission lines can easily
be modeled by a multiport generalization of (46), (47). The cir-
cuit equations for sections, obtained from the discretization
of the coupled matrix telegrapher equations [27], can be written
as

(50)

(51)

where and are column vectors and , , , and
are square matrices. The standard MNA format is then

Fig. 3. jH (f)j for the coupled lossy transmission lines.

Fig. 4. argH (f) for the coupled lossy transmission lines.

simply a block matrix generalization of (49), i.e., for we
have

(52)

where is the identity matrix. It is seen that the MNA
system order is and the number of columns
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Fig. 5. jH (f)j for the coupled lossy transmission lines.

in is . The discretized example of a 5-cm long
four-port multiconductor transmission line consisting
of equal sections with total matrices given by (extrap-
olated from the data in [27])

S

(53)

and

nH

pF (54)

yields a system description of order . Reduced-order
Laguerre models of dimensions and

are constructed using .
We observed that the symmetric transfer matrix is
Toeplitz, except for which is only approximately equal
to , and block-symmetric i.e., .
Figs. 3–6 show , , , and

versus their reduced-order counterparts up to
4 GHz. It is seen that the reduced-order models closely ap-
proximate the original model over the given frequency range.
The results for are even undistinguishable from the exact
results.

C. A PEEC Circuit

As a third example we take the lumped-element equivalent
circuit for a three-dimensional electromagnetic problem mod-
eled via partial element equivalent circuit (PEEC) [11] as docu-
mented in [2]. The two-port circuit consists of 2100 ca-
pacitors, 172 inductors, and 6990 inductive couplings, resulting
in an MNA system of order . Reduced-order Laguerre
models of dimensions and are con-
structed using . Figs. 7 and 8 show
and versus their reduced-order counterparts. It is
seen that the , Laguerre reduced-order models
are very close to the unreduced model up to respectively 2 and
4 GHz. We also simulated a reduced-order Laguerre model of

Fig. 6. argH (f) for the coupled lossy transmission lines.

Fig. 7. jH (f)j for the PEEC circuit.

Fig. 8. argH (f) for the PEEC circuit.

dimension and found it indistinguishable from
the unreduced model over the 5-GHz frequency range.
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