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Laguerre-SVD Reduced-Order Modeling
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Abstract—A reduced-order modeling method based on a system an explicit state space description of general coupled transmis-
description in terms of orthonormal Laguerre functions, together  sjon line circuits.
with a Krylov subspace decomposition technique is presented. The
link with Padé approximation, the block Arnoldi process and sin-
gular value decomposition (SVD) leads to a simple and stable im- II. THE LAGUERRE CONNECTION
plementation of the algorithm. Novel features of the approach in- Using any circuit-equation formulation method such as mod-
clude the determination of the Laguerre parameter as a function of ified nodal lvsis (MNA) 13 tabl tc. 114
bandwidth and testing the accuracy of the results in terms of both hed no ‘?‘ ana _yS|s _( . ) [ ]_’ Sparse . ableau, € C [ ]_' a
amplitude and phase. lumped, linear, time-invariant strictly passive [15] multiport cir-
cuit of order N can be described by the following system of

Index Terms—t rre functions, Padé roximation, re- . . .
dex Terms—iaguerre functions, Padeé approximation, re first-order differential equations:

duced-order modeling, singular value decomposition.

Ci=-Gr+ Bu )
I. INTRODUCTION y=L"x. @)

of the behavior of large RLGC interconnects, general ere, the vectos represents the circuit variablesyepresents
require the solution of very large linear networks. Since t € time derivative ofs, the V x N matrix G represents the

main point, from a communications and throughput point &ontnbgtlon of memoryless eIemenFs, such as resistorsythe
view, is the behavior of the interconnect structure at user-da-Mmatrix € represents the contribution from memory elements,

fined ports over a given frequency range, it is of utmost irr‘?—UCh as capacitors and inductors, the vegtts the output of

portance to dispose of a reduced but accurate black-box mogxé{rest, and the vectas represents the excitations at the ports.

IRCUIT simulation tasks, such as the accurate predictiE
[

T
of the network as seen from the chosen ports. In recent ye e thatl” stands for the transpose bf

this has led to the development of reduced-order modeling tech- Ince we Cor}ff'dtir a mlilt'por} formutlgtg] w;;tpl);arts, w?zre
nigues such as asymptotic waveform evaluation (AWE) [1], ma ger?efah” < 4V, the rectangular matrices and. are ot di-
ensionN x p. Moreover, as explained in [6], without loss of

trix Padé via Lanczos (MPVL) [2], [3], symmetric Padé vi .

Lanczos (SyMPVL) [4], block Arnoldi [5], and passive reducedg(?nera“ty_We can t_aké = B. However, for the_ sake of gener-

order interconnect macromodeling (PRIMA) [6]. all_ty, we will maintain the separa#® and[L notation throughout
Though quite different in implementation and numerical stgth's Paper. i -

bility, most of these algorithms tend to obtain a low-order Padg¢ W'th unitimpulse excitations at the pqrts gnd Zero initial con-

approximant [7] of the system transfer matrix via Krylov sub—_'t'ons’ the Laplace transform Of_ the circuit equations (1), (2)

space modeling. Some of these techniques, such as SyMP\’('ﬁ_ldS thep X p port transfer matrix

and PRIMA, are provably passive, partly because the model re- H(s) = LT(G +5C)7'B 3)

duction scheme can be interpreted in terms of congruence trans-

formations [8]. In this paper we propose an algorithm based @Rd the correspondingx p port impulse response matrix

the decomposition of the system transfer matrix into orthogonal

scaled Laguerre functions [9]. The link with Padé approxima- h(t) = L7 H(s). 4

tion, the block Arnoldi process, and the singular value decom-

position (SVD) [10] permits a simple and stable implementéﬂ most of the reduced-order modeling literature, model reduc-

tion of the algorithm. As in PRIMA and SyMPVL, the methodiion strategies are based on Padé approximations of the transfer

is provably passive. The algorithm is applied to transmissidRatrix by means of moment matching. The approach we advo-

lines, coupled transmission lines, and a PEEC circuit [11]. P&Ate inthis paper is the expansion of the impulse response matrix

of the material in this paper was presented at the 1999 EP®) in scaled Laguerre functions [9], defined as

meeting in San Diego [12]. The novelty of the material added o o

consists mainly of a discussion of all the features of the algo- () = V2aeTln(2at),  n=0,1,--  (5)

rithm, the choice of the Laguerre parameter in connection Wi\Wherea is a positive scaling parameter ahi?) is the Laguerre

bandwidth, the accuracy of the results—not only in terms of t'?)%lynomial

amplitude, but also of the phase as a function of frequency—and

et dv ., _,
—_ n
y _ _ ba(t) = 3 (et (6)
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Hence the impulse response mafii¥) admits the Fourier—La- in the w-domain is equivalent to a anth-order Laguerrre ap-
guerre expansion proximation in thes-domain, meaning thakl (s) can be op-
timally approximated in thé{> norm sense by the truncated
Fourier—Laguerre expansion

h(t) =Y Fudi(t). (7)

H(s) =Y F,®7%(s) = Hp(s). (16)
Since the Hardy spac#., [9] consisting of all analytic and —0
square-integrable functions in the open right half-pl&se> 0
is the Laplace transform of; (R ), the sequence of Laplace
transforms of the scaled Laguerre functions

Although we know thaff ,,(s) converges tdH (s) for m — oo
whents > 0 for a strictly passive system, it is necessary, in
order to be able to determine an adequate value for the Laguerre

V2 [s—a\" parameteky, to have more information about the convergence
O(s) = LPn(t) = < ) ) n=0,1, - rate. We start with the partial fraction expansion
St+a \ s+«
(®) kg
forms a uniformly bounded orthonormal basis for the Hardy k=1
spaceH; equipped with the inner product which is valid for simple poles-v;, with Rv;, > 0. It is readily
L e shown that
o) =5 [ i (iw) do © & L e o e a0 g
—00 @ @ = > .
ni:jo MR = forRu>0, Rs20. (18)

and normw(f) = /{f|f)-

Considering that the multiport circuit under scrutiny is strictijt 1S interesting to note that the time-domain version of (18),

passive and hence asymptotically stable, and since the tranSf¥2ined by taking the inverse Laplace transforms with respect
matrix is strictly proper, i.e., to s andw, reads as

| llim |Hij(s)| =0, i, 7=1,---,p (10) Z X))y =6(t —t) fort >0, ¢ >0 (19)
S|—oC n=0

all the entriesH,;(s) of H(s) belong to, and the transfer Which is the reproducing kernel identity for the Laguerre func-

matrix can be expanded into the orthonormal b@@s(s)} as tions. |dent|ty (19) Clearly indicates that even a pure time delay
can be approximated by a Laguerre-type expansion. From (17)

g and (18) we obtain that
H(s)=L"(G+sC)"'B=>_ F,03(s). (11 (18)
n=0

N
Fo=> m%(u). (20)
This can be rewritten as k=1

o0 n Hence, with respect to any matrix notn ||, we have
2 —
V2« <s a) (12)

LY(G+sC)'B = > F,
s+ o ) . 20 =
| H(iw) — Hyp (iw)]] < i Z I1Fll - (21)

Equation (12) has the very simple physical interpretation that k=m+1
any transfer matrix irt{> can be represented as the product ¢fnd in the light of (20) and (8)

a simple low-pass filtex/2a /(s + «) and a weighted infinite

sum of all-pass filters of the tydés — «) /(s +«)]". Moreover, [[H(iw) — H(iw)||

s+«

the bilinear transformation N _mtl
< 2c Z |7k ] vk — 22)
u_s—a (13) Vw? + a2 po |vg + o] — |up — o |vr +
st

For a strictly passive system, this proves the pointwise conver-
maps thes-domain Laguerre expansion (12) into thelomain genceH ,,(iw) — H(iw) asm approaches infinity. It is seen
power expansion that the overall convergence rate is dictated by the largest co-

efficient |(vx — o) /(v + «)| and hence the optimal may be

L7 ([aC + G + ufaC — G])~'B = 12 i P (14) found as the solution to the minimax problem
V4
n=0

Vp — &
Vi +

: (23)

¢ = argmin max
a>0 1<k<N

From this we infer that amth-order Padé approximation of the
modified transfer matrix It should be noted that the optimalthus obtained is also the
value that maximizes the radius of convergence of the power se-
H(u) = L"([aC + G] + u[aC — G])"'B (15) riesinthe r.h.s of (14), in agreement with the asymptotic theory
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developed in [17]. Since the minimum (§& — «)/(v + «)| is  reduced-order modeling strategy presented recently [24] devel-
obtained forx = |v|, it is a simple matter to show that the solu-oped more or less the same idea, although without explicit refer-
tion of the minimax problem (23) is given ky = |v;|, wherej  ence to the Laguerre COB, but with an actual Laguerre param-
is the solution to the discrete minimax problem etera = 1. A major difference with the approach in [24] and
our approach, is that is in fact related to the bandwidth of the
ok — vl ) (24) system—see (27).

vk + [uj]

I
It has been indicated in [2] and [18] that~ 2x B, whereB lll. THE KRYLOV-SVD CONNECTION
is the bandwidth of the system. The relationship between thepefining the matrices
Laguerre parameter and the bandwidttB can be understood

—1 —1
as follows: suppose we truncate the Fourier—Laguerre expansion A=-G7C andR=G'B (28)
of the impulse response matixt) to m terms, i.e., it is shown in [6] that the column-orthogonal mate& associ-
—1 ated with the block Arnoldi process [5] in order to orthogonalize
h(t) = Z F6%(t). (25) the columns of theV x pq Krylov matrix
n=0 K,=[R, AR, A’R, ---, AT 'R] (29)

The coefficients”, can be obtained by means of the discret@e|qs a reduced-order system
Laguerre transform [19] as

Ci = -Gz + Bu (30)
1 m - ~
Fo=——= 3" wila(ti)e"*h(tr/20)  (26) y=L"z (31)
V2o £ .
k=1 with
where thewy, #, are the weights and nodes—zerogoft)—of ¢ = xTox, G=x%¢Gx, B=X"B, L=X"L
the m-point Gauss—Laguerre quadrature rule [20]. This means (32)

that in order to retaimn Laguerre coefficients, the impulse re-gych that the reduced-order transfer matrix

sponse needs to be known up to a tifiex t,,,/2c, wheret,, B . N1

is the largest zero df,, (t). Form large we have asymptotically H(s)=L" (G + SC) B (33)
[21] ¢, = 4m—Ffor example calculations based on [20] yiel
tioooo = 39875.146—and hencel’ =~ 2m/«. By virtue of
the 2WT theorem of Slepian [22] we must haxe > 2B7T or
«a > 4B. If we take2r B as the geometric mean of the bound;;n
on « we can propose the range

qs a pssive Padé approximant of ordeyy — 1 for the original
transfer matrix.

By virtue of the preceding section, the above reasoning re-
ains valid, in the sense of Laguerre approximation, if we de-
fine the modified system matrices

4B<a<n’B @) A=-(aC+@HaC-@) andR=(aC+G)'B.

containing “good” values for the Laguerre parameter. This (34)

shows that there is some leeway in choosingas long as it |n other words, we assert that the column-orthogonal marix

is not too “close” to zero or infinity. Note that, following the associated with the block Arnoldi process as applied td\the

definition (5) of the scaled Laguerre functions, the optimag),; modified Krylov matrix

Laguerre parameter can be interpreted as the reciprocal of . e . .

the time constant of the system, i.a.,.= 1/, and hence the K,= [R, AR AR, -, Aq_lR} (35)

inequa!ities_(27) represent upper and lower bounds for tp%lds a reduced-order system described by

bandwidth-time constant produftr. B R R . R R B R o
Remark 1: Note that the conformal transformation (13) maps ¢ = X'CX, G=X'GX, B=X'B, L=X'L

the open right half-plan®s > 0 onto the open unitdisk:| < 1. (36)

It has been shown [23] that there exists a profound relationst§igch that the reduced-order transfer matrix

between cqmplete orthonormal_ bases (COB)_, such as the La- fI(s) —ir (é+ sC’)_lB 37)

guerre basis, and conformal Riemann mappings from simply

connected regions onto the unit disk. One such COB, relatisch passive Laguerre approximant of ordeg — 1 for the original

to the trivial mappingf(z) = z of the unit disk onto itself, transfer matrix.

is simply the set of monomialsz"} and hence Padé approx- The block Arnoldi algorithm (BAA) [5] can be utilized to

imation inside the unit circle can be thought of as a projegenerate the column-orthogonal matck. Equivalently we

tion technique on this simple COB. On the other hand, the s&tn use a block “thin” QR factorization based on modified

of monomials{s”} in the Laplace domais > 0 is cer- Gram-Schmidt (MGS) orthogonalization [10]. Numerical

tainly not a COB there, but the Laguerre basks:(s)} presents experience [5], [25] has shown that some steps in BAA have

one of the simplest bases, related to the conformal mappitagbe repeated in order to ensure orthogonality to the precision

f(s) =(s—a)/(s+«).In asense we can say that the Laguerref the computer. To avoid this, we opt for an SVD based

technique in the Laplace domain is equivalent to the Padé tetéehnique, which is a numerically more stable algorithm than

nigue inside the unit circle. A single-input/single-output (SISQYIGS [26]. The idea behind the SVD approach is the following.
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Puttingr = pg < N, the dimension of the Krylov matrqu 0.8 . . .
is N x r. Since BAA is equivalent to MGS, we compare the
SVD and the “thin” QR factorization ok ,. We have 07T
K,=XR,=UxvV7* (38) 061 |
where 03
X, U N x r column-orthogonal matrices; S o4 ]
R, 7 X r upper triangular matrix; =
b)) r x r diagonal matrix containing the singular 03
values of the Krylov matrix;
14 7 x r orthogonal matrix.
SinceXTX = UTU = I,, it is easily seen thaK can be
written asX = UQ, whereQ is anr x r orthogonal ma- 0 - ' : : : -
trix. From (36) and (37) we infer that the reduced-order mod 0 ! z 3 f(:H > 6 7 s
transfer matrix can be written as ‘
fNI(s) —ITX (XT(G' + SC)X)_l xR (39) Fig. 1. |H.2(f)| for the lossy transmission line.
=L'UQQ"UT (G +s0)0UQ)~'Q*UT B (40) 180 : : : :
— LTUWUT(G + sC)U)~'UTB. (41) rednced 48

135 | reduced qg=4 - \ 1
Note that the mere requirement th@tis nonsingular is suffi- P <
cient to obtain result (41). The derivations (39)—(41) prove th
it is judicious to use the left SVD column-orthogonal factér 45

instead ofX in the reduced-order modeling scheme. :; ol
The complete SVD-Laguerre-based algorithm is construct E
as follows. -45 ¢
» Select the values far andgq. 90 F
« Solve(G + aC)R, = B.
«Fork = 1,---,q— 1solve(G+ aC)R, = (G - 135y
OéC)Rk,;L. R R R -180 . ) . P . ! !
« USV? = SVD[Ry, Ry, -, R,—1]. 0 1 2 3 4 5 6 7 8
« C=U'CUG=U"GUB=U"BL=U"L. fGHz

Itis also important to evaluatd (s) or H(s) explicitly as a sum Fig. 2.

’ : ' b X arg Hi-(f) for the lossy transmission line.
of partial fractions. Takingo such that7 + soC is nonsingular,

we have n IS the smallest dimension of the Krylov matrix. Hence, in
H(s) =L"(G+ 50C + (s — 50)C)"'B terms of flop counts, MGS is the cheapest method, followed

=LY (I+ (s— s9)E) By (42) by HQR and SVD. However, when orthonormality is critical

where [10]—or equivalently, if passivity is critical [8]—the order of

the three methods must be reversed, i.e., first SVD, next HQR,
E=(G+sC)"'C, Bo=(G+s5C)"'B. (43) and finally MGS. So each of these methods has its own merits
i.e., diagonalizable, admits thih terms of efficiency and robustness. Also it seems that HQR
is a tempting method for future research, especially as there

o exist specific updating algorithms [26]. An additional advan-
E = PAP (44) tage of the Laguerre-based method is that the relevant condition

whereA is a diagonal matrix, yielding the partial fraction exnumber is not con@), but condG+aC); e.g., for the third ex-
pression ample (PEEC circuit) we found typically that cqi@+ «C) <

H(s) = I'P(I + (s — sp)A) P~y (a5) O01*cond@).

To avoid supplementary LU-decomposition overhead, it can be IV. NUMERICAL SIMULATIONS
naturally recommended to choose the paramgtequal toc. . .

Remark 2: As was shown in the derivation leading to (41)',A“ Lossy Transmission Line
any decomposition of the Krylov matrix of the forfﬁq =UZ, Consider a lossy transmission line modeled Adylumped
whereU is column orthogonal and is nonsingular, leads to RLGC sections. The circuit equations for the corresponding
the same reduced transfer matrix. Hence it is useful to compé&pe= 2) twoport are
the computational complexity (flop count) of the three major 4,
methods which carry this out: MGS, SVD, and Householdér:—,~ = —=Gnvn +in —tngr,  n=1-, M (46)

QR (HQR). The flop counts [10] are respectively of the order ;. .
O(mn?), O(4m?n), andO(2mn?), wherem is the largestand Ln—~ = —fnin +vn-1 —vn,  n=1,-, M +1.(47)

SupposingE nondefective,
eigendecomposition
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The input variables are; = wvp, u2 = w41 and the output 0.09 ; . ‘ ——
variables are;, = i1, y» = —ip41. The state variables are the 008 L reduced g=8
entries of theV = 2M + 1-dimensional vector 007 reduced @
z=(v, -, Upm, G, 0, i) (48) 0.06
z 005
The standard’, G, B, L MNA format is easily derived. For e 004 |
example, wher = 2 we have - '
0.03
Cit 0 0 0 0 0.02
0 Cy 0 0 0
0 0 L 0 0 |z 0oL T
0 0 0 L, O 0 ) :
. . 3 35 4
0 0 0 0 Lo 0 05 1 15 szHZ 25
¢ Fig.3. |H for th led | ission li
el 0 _1 1 0 ig. 3. |H12(f)| for the coupled lossy transmission lines.
0 G 0 -1 1
= - 1 0 R 0 0 x 180 I unreduced —|
L1 0 R0 55 | reduced =3 |
- - 3 90 4
G
0 0 < 45
0 0 = ol
+11 O0fu 49 £z
0 0 45 r B
0 -1 90
N —’
B -135
and of coursel, = B. A choice of M = 40 equal RLGC -1800 2 .

sections as in [6] with total parametets,; = 0, Ryt = 10
Q, List = 5 nH, Cy,y = 15 pF yields a system description
of order N = 81. Reduced-order Laguerre models of dimergig. 4. arg H,.(f) for the coupled lossy transmission lines.
sionsr = 2¢ = 8 andr = 2q = 16 are constructed using

o — 9 Fi . . _ — .
so = a = 2r10°. Figs. 1 and 2 showH1»(f)| andarg Hi2(f)  simply a block matrix generalization of (49), i.e., fof = 2 we
versus their reduced-order counterparts. Itis seen thatthe, | 5e
g = 8 Laguerre reduced-order models are indistinguishable

f GHz

from the unreduced model up to respectively 2 and 6 GHz. It Cr 0 0 00
. . . 0o C, 0 0 0
is important to note that both amplitude and phase are approxi-
mated with the same degree of accuracy, i.e., the deviation from
. 0 0 0 Ly O
the exact result starts at the same frequency for both amplitude 0o 0 o 0 L
and phase. This remark holds for all the other examples in the — 3
sequel. o
G 0 -I. I. 0
B. Coupled Lossy Transmission Lines 0 G2 0 I I
=—| I 0 R 0 0 |z
Coupled lossy multiconductor transmission lines can easily —1I, I, 0 Ry, O
be modeled by a multiport generalization of (46), (47). The cir- 0o -1 0 0 R3
cuit equations forM/ sections, obtained from the discretization é
of the coupled matrix telegrapher equations [27], can be written 0 0
as 0 0
dv, . . + | I 0 |= (52)
Cn%I—Gnvn—i—zn—zn_H n=1,---, M (50) 0 0
dey, 0 —I.
LN,L:_Rn,in'i_vn—l_vn 71:1, ) M+1 (51) v
dt B

wherew,, ands,, arec x 1 column vectors an@,,, L,,, G,,, and wherel. is thec x ¢ identity matrix. It is seen that the MNA
R, arec x ¢ square matrices. The standard MNA format is thesystem order iV = (2M + 1)c and the number of columns
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0.7 T T T T T T 180 T T T

.
unreduced

reduced |
reduced q=8 -——----- reglrl’z?edugzs N
06 | reduced g=4 - 1 135 F reduced g=4 -\ ]
0.5 1 0r
- 45 J
é 0.4 %
o T 0r
T 03 g
-45
Q00 - T J
-135 |
" : ; -180 . . : . . A
0 0.5 1 1.5 2 25 3 35 4 (] 0.5 1 1.5 2 25 3 35 4
fGHz fGHz
Fig. 5. |H1s(f)| for the coupled lossy transmission lines. Fig. 6. arg H,3(f) for the coupled lossy transmission lines.
in B = Lisp = 2¢. The discretized example of a 5-cm lonc ' ' ' ' ' T omreduced —
0.014 | i reduced q=45 -t 1

four-port (¢ = 2) multiconductor transmission line consisting | reduced q=45 -
of M = 40 equal sections with total matrices given by (extrar. 0012 | ‘q i
olated from the data in [27]) |

0.01
0.005 —0.0005
Crow = <—0.0005 0.005 ) S S 0008
=
_ [ 0.005 0.001 T 0006
Rior = <0.001 0.005) 2 (®3)
and 0.004
(2473 3.165 0.002 b
Lot = < 3.165 24.73 ) nH
0 N . . .
_( 314 -0.245 0 05 1 15 2 25 3 35 4 45 5
Cror = <—0.245 3.14 ) PF 4 fGHz
yields a system descript_ion of_ordﬁfr = 162. Reduced-order rig 7. |m,,(f)| for the PEEC circuit.
Laguerre models of dimensions = 2¢¢ = 16 and
r = 2cq = 32 are constructed usingy = « = 2710°. 180 ‘ . . . . ‘
We observed that the symmetric transfer mawild( f) is redﬁg;zdu_rzgg“ BN
Toeplitz, except foH12(f) which is only approximately equal 135 | reduced o430, \
to Hy3(f), and block-symmetric i.e.H14(f) = Has(f). 90 |
Figs. 3-6 show |Hi2(f)|, argHi2(f), |His(f)|, and
arg Hi3(f) versus their reduced-order counterparts up ' o “sr
4 GHz. It is seen that the reduced-order models closely ¢ £ oL
proximate the original model over the given frequency rang ¥
The results fory = 8 are even undistinguishable from the exac 45
results. 90 L
C. A PEEC Circuit 135 |
As a third example we take the lumped-element equivale -180 — L N
0 0.5 1 1.5 2 25 3 35 4 4.5 5

circuit for a three-dimensional electromagnetic problem mo
eled via partial element equivalent circuit (PEEC) [11] as docu-
mented in [2]. The two-porp = 2) circuit consists of 2100 ca- Fig. 8. arg H,.(f) for the PEEC circuit.
pacitors, 172 inductors, and 6990 inductive couplings, resulting
in an MNA system of ordeiV = 306. Reduced-order Laguerre gimension; = 2¢ = 120 and found it indistinguishable from
models of dimensions = 2¢ = 60 andr = 2¢ = 90 are con- e ynreduced model over the 5-GHz frequency range.
structed usingo = « = 10710°. Figs. 7 and 8 shoyH12(f)|
andarg Hy2(f) versus their reduced-order counterparts. It is REFERENCES
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