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A Contribution to the Modeling of Longitudinally Periodic
Waveguides by the Help of the TLM Method

Marc Walter, Oliver Pertz, and Adalbert Beyer

Abstract—To efficiently simulate longitudinally periodic waveguide, the
Floquet’s theorem is implemented to modify the transmission-line matrix
(TLM) algorithm. In the literature, similar algorithms are presented for
the finite-difference time-domain method and fundamental problems are
addressed. The aim of this paper is to explain and solve these problems
and misunderstandings and to extend the approach to the TLM method.
Simulation results show the validity of the technique proposed.

Index Terms—Capacitive loaded rectangular waveguide, coupling fac-
tors, - diagram, Floquet’s theorem, periodic waveguide structures.

I. INTRODUCTION

In [1] and [2], the possibility of simulating longitudinally periodic
structures using the finite-difference time-domain (FDTD) method is
described. Besides the algorithm for two FDTD networks there are also
coupling factors shown which allow a simulation with only one net-
work. It is mentioned in this contribution that the same concept is ap-
plicable to the transmission-line matrix (TLM) method, but there are no
further statements given for this. Differences between the TLM method
and the FDTD method exist among other things in the different arrange-
ment of the field components, whereby even coupling factors can differ.
Further considerations have been made to check this question.

II. THEORY AND ALGORITHMS FOR THESIMULATION OF PERIODIC

WAVEGUIDE STRUCTURES

As mentioned in Section I, the problem addressed above firstly rep-
resents a general task. The mathematical background is not trivial at all.
Thus, some mathematical basics of Floquet’s theorem are represented
[3]. It can be shown that a vector differential equation system of the
form

_x = A(t)x (1)

with the column vectorx and theT periodicn � n matrixA(t), is
given by functionsx(t), which have the property

x(t+ T ) = e
Tx(t) (2)

with a constantT > 0 and a complex quantity
 representing the
eigenvalue as solution, whereby
 is uniquely determined up to an ad-
ditive termjm(2�=T ); m integer. It can be shown thatx(t) can also
be written in the form

x(t) = e
tf(t) with f(t+ T ) = f(t): (3)

This is the general form of the Floquet’s theorem. In the literature, the
calculation of periodic waveguides is usually performed by the help of
the theorem given in (3).

Manuscript received January 30, 1998.
The authors are with the Department of Electrical Engineering, Gerhard-Mer-

cator-University Duisburg, D-47057 Duisburg, Germany (e-mail: a.beyer@uni-
duisburg.de).

Publisher Item Identifier S 0018-9480(00)07399-3.

Now, applying the Floquet’s theorem to longitudinally peri-
odic waveguides withz1 and z2 two cross-sectional planes of
which distancel = z2 � z1 matches with the physical period of
the waveguideF (z) = e�
z�(z) with �(z + l) = �(z) and
F (z) 2 fEx; Ey; Ez; Hx; Hy;Hzg is valid. This yields

F (z + l) = e�
lF (z): (4)

Generally, even for periodic waveguides with lossless materials, it can
be assumed that the real part of the complex propagation coefficient

 = � + j� does not vanish. Following the Floquet’s theorem [see
(4)] the possible values for
 are uniquely determined, up to an addi-
tive termjm(2�=T ); m integer. Thus, for a given phase constant�
even the attenuation constant� is uniquely determined. Usually, the
correlation of� and� is not known so that even by simulating peri-
odic waveguides with lossless materials the approximation� = 0 has
to be used. Attenuation would, hence, become noticeable by a temporal
reduction of the field energy similar to the case of a simulation of lon-
gitudinally homogeneous lines. The approximation can be regarded as
valid if the attenuation is not too large.

Although thez dependency of the field components is not really har-
monic, the relationship betweenz1 andz2 corresponds to the case of
longitudinally homogeneous waveguides if� = 0 is assumed. Hence,
the same exchange algorithm can be used which has already been de-
scribed for longitudinally homogeneous lines. This is, however, only
under the assumption of a complex-valued TLM network for the sim-
ulation valid.

A simulation of standing waves permits a field component to be sep-
arated in the formF (z; t) = F cos(�z)Ft(t). Then, between two arbi-
trary planesz1 andz2 the relationsF (z1; t) = v2F (z2; t); F (z2; t) =
v1F (z1; t), with

v1 =
1

v2
=

cos(�(z1 + l))

cos(�z1)
(5)

l = z2�z1 > 0 are valid. The factorv1 in (5) corresponds to the oper-
ator given in [1]. Hence, it seems to be sufficient to use equations of the
form U i

2(z1) = v2U
r

9 (z2); U
i

9(z2) = v1U
r

2 (z1) (analogously for the
ports 4 and 8 of the symmetrical condensed node (SCN) in Fig. 1) for
a new exchange algorithm, whereby only a real-valued TLM network
is then needed. It is, however, easy to show that this is not sufficient.
To prove the last statement the idea is the following. Let

cos(� +��) = v1 cos(�) (6)

with given factorv1. Hereby, the following conditions are valid:� = z1
and�� = �l. Let first jv1j � 1, then�� can be determined as

�� = arccos(v1 cos(�))� �: (7)

Because ofjv1j � 1 different values of�� can be calculated for dif-
ferent values of� from this equation. The expression�� should be
independent from� because of having prescribed that�� = �l. Co-
ordinates like� cannot be included into TLM simulations because of
those working exclusively coordinate free. Otherwise,� is unknown,
the phase constant� = ��=l is also unknown for givenl.
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Fig. 1. Symbolic representation of the SCN [6].

At this point it can also be argued in opposition that the factorv1 does
not uniquely determine the phase constant� if the value for� = z1

is not even known. In other words, the zero phase would have to be
known if all z dependencies are expressed relatively toz1 and with it
corresponding to the zero phase�z1. Otherwise, for a given valuev1, a
nondenumerably infinite amount of solutions exists for�. For the cou-
pling factors, however, only a countably infinite amount of possibilities
exists for� what corresponds to the statements mentioned above con-
cerning the Floquet’s theorem.

A significant simulation result cannot be expected with this real-
valued network variant because of a given valuev1 being possibly asso-
ciated with more or less arbitrary values of�. That way, no frequency
changes could be observed after changing� in our first simulations.
For jv1j > 1, the same argumentation applies tov2. Probably this is
also the explanation for a statement given in [1] which claims that exci-
tations would have to be carried out carefully in order to be “efficient”
for certain zero-phase angles.

The problems can then be eliminated if the zero phase, i.e.,z1, can be
fixed. This could be done simplest by the help of an electric(�z1 = �)
or magnetic(�z1 = 0) wall atz1. For the simulations, a magnetic wall
was chosen. The coupling factor simplifies then to

v1 = cos(�l) =
1

v2
: (8)

The formulation of the exchange algorithm can now be described
easily. As mentioned above, the magnetic wall be situated at
z1. Because of this magnetic wall it is valid in an SCN for
U i

2(z1): U
i

2(z1) = Ur

2 (z1). Hence,Ur

9 (z2) is given by the scattering.
Therefore, it has to be calculated in a way thatU9(z2) = v1U2(z1).
Subsequently, it follows

U
i

9(z2) = 2v1U
r

2 (z1)� U
r

9 (z2): (9)

With this exchange algorithm for the cross-section planes atz1 andz2
some experiments have successfully been realized. Hereby, it was not
necessary to be in particular careful while exciting. This matches also

Fig. 2. Simulation of free harmonic TEM-waves in vacuum after a step from
� = 0 m up to� = 30 m . Curvea: one single TLM node. Curveb: 10
TLM nodes one after another in propagation direction.

with a statement given in [1], where a magnetic wall made the algorithm
“robust,” too.

III. SIMULATIONS AND EVALUATIONS

A. Peculiarities of the Algorithm

Simulations with our method are usually done by increasing the
phase constant� stepwise and using the field of the previous simu-
lation part directly as excitation field for the simulation par with the
new value of�. This nonperfect excitation causes the appearance of
higher frequencies.

Fig. 2 shows the simulation of two free harmonic TEM waves in
vacuum after a step of the phase constant� from 0 m�1 up to 30 m�1.
For curvea, only one single step in the space domain in the propaga-
tion direction was used. The behavior of the depicted field components
appears very smooth. For curveb in Fig. 2, ten layers of the simulation
range from curvea have been assembled to one space domain which
can be thought of as a periodic structure in spite of its homogeneity.
Opposite to curvea, however, a sudden appearance of not decaying
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Fig. 3. Periodic and capacitively loaded ideal rectangular waveguide:a = 20 mm,b = 10 mm,d = 3 mm, andl = 30 mm.

Fig. 4. f -� of a periodically capacitive loaded rectangular waveguide.
Continuos line: analytical approximate calculation according to [5]. Symbols:
simulation results. Dashed line: curve of the H-type of the not capacitively
loaded rectangular waveguide.

high-frequency components could be observed after the phase
step leading to the stepped behavior of the field component. It
can be shown that these steps belong to phase constants�n, with
�n�z = ��z + n2�, which lead to identical coupling factorsv1
andv2. In [4], it is pointed out that the appearance of wavetypes at
higher frequencies even cannot be suppressed using smaller steps of�.
Nevertheless, this effect does not restrict the validity of the algorithm
in any way.

B. Simulation of a Periodic Capacitively Loaded Rectangular
Waveguide

A periodic capacitively loaded rectangular waveguide is calculated
in ([5], chs. 9.5, 9.7) using two different methods. The capacitive
loading leads to separated stopbands and passbands. For the structure
represented in Fig. 3, the calculations have been performed for the
three lowest modes (solid lines in Fig. 4). We used a value ofd = 0:3b

to demonstrate that even very small stopbands can be resolved with
our method.

The simulation result presented in Fig. 4 was calculated by the help
of a Fourier transform (symbols). The weak capacitive loading leads
to the small stop areas as predicted by the approximate calculations.

Nevertheless, the periodicity of the capacitive loading can uniquely be
recognized regarding the curves. In comparison to this, the curve of an
undisturbed rectangular waveguide is also shown (dashed line).

IV. CONCLUSION

In the frame of this work, diverse problems have been treated in
order to simulate and analyze longitudinally periodic structures effi-
ciently using the TLM method. First of all, the mathematical basics for
the treatment of periodic waveguides and the necessary algorithm for
the simulation has been explained and described. The conditions of an
exchange algorithm for TLM applications according to its efficiency
and robustness have thereby been discussed. This treatment rendered it
possible to discover and clear up some problems addressed in the liter-
ature.

In order to show the feasibility of the technique presented, a periodic
capacitively loaded rectangular waveguide has successfully been sim-
ulated.
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Analysis of Partial-Height Ferrite-Slab Differential
Phase-Shift Sections

Bernice M. Dillon and Andrew A. P. Gibson

Abstract—Rectangular waveguide loaded with transversely magnetized
ferrite slabs is a classic arrangement used in the construction of high-power
differential phase-shift circulators. The characterization of this structure
is extended in this paper by using a combined magnetostatic/microwave
finite-element method to evaluate propagation characteristics in terms of
material parameters, frequency, and bias field. Magnetic flux density was
found to vary by typically 20% across a partial-height ferrite slab. Experi-
mental phase-shift data agreed to within 5% of numerical calculations for
a 9.25-GHz device. Supplementary design data are presented for the first
higher order mode in the cutoff plane, the effect of material properties on
phase shift, and to compare below and above resonance operation.

I. INTRODUCTION

The principle of operation of a ferrite circulator using a gyrator was
first proposed by Hogan [1]. In rectangular waveguide, a practical
implementation uses a ferrite differential phase-shift section and two
3-dB directional couplers or hybrid T-junctions [2], [3]. Differential
phase shifters (DPSs) were originally constructed using full height
transversely magnetized ferrite slabs, positioned between the broad
walls of the waveguide where the microwave magnetic field is cir-
cularly polarized. For high-power applications, thinner partial-height
ferrite slabs adjacent to the broad wall have the advantage of being
easier to cool. A megawatt peak-power DPS circulator was examined
by Helszajn and Walker [4]. They presented an analysis of the
resonance regions to identify magnetizations, which minimize losses,
together with experimental data on the performance of a range of
ferrite materials.

The first published results of a theoretical analysis of a single full-
height slab in rectangular waveguide was given by Kales [5]. More de-
tailed analyses describing fields and higher order modes were subse-
quently presented [3], [6], [7]. The twin full-height slab geometry used
in latching phase shifters was first analyzed by Laxet al. [6] with fur-
ther work described in [3] and [7]–[9]. Partial-height slabs cannot be
treated analytically, and numerical methods must be employed. When
the cross section of the ferrite slab is small compared to the waveguide,
perturbation techniques can be used to evaluate the propagation con-
stant for the weakly magnetized case [10], [11]. In the past 20 years,
the finite-element (FE) method has proven to be the most popular nu-
merical method for analyzing ferrite loaded waveguides, although other
techniques have been used such as the finite-difference-time domain
method [12]. FE techniques were originally applied to ferrite-loaded
waveguides by Konrad [13]. Since then, new formulations have been
developed to avoid spurious modes [14] and to calculate the phase con-
stant rather than frequency as the eigenvalue [15]. Specialized formu-
lations for the transverse magnetization of ferrites [16], [17] and mag-
netization in an arbitrary direction have also been proposed [18], [19].

In this paper, the propagation characteristics of a partial-height slab
DPS are presented. A combined magnetostatic/microwave FE solver is
employed to calculate phase constants and transverse microwave fields
in terms of frequency, bias field, and material parameters. The magne-
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Fig. 1. Magnetization curve of ferrite. Inset is a cross section of the DPS
showing the magnetic bias circuit. Waveguide size: 22.86 mm� 10.16 mm.
Slab size: 7.35 mm� 2.034 mm. Offset from waveguide wall: 2.34 mm.

tization curve and magnetic circuit geometry are input to a magneto-
static solver to establish the spatial variation of the magnetization and
internal magnetic field in the ferrite slabs. This avoids the use of de-
magnetizing factors and accounts for fringing effects and nonuniform
fields. Variations of 20% in the bias flux density were calculated for a
typical ferrite slab. This is an important result, which may explain the
early onset of nonlinear effects limiting high-power DPS performance.
Using this data and the microwave frequency, a full permeability tensor
is then constructed for the ferrite. The waveguide cross-sectional geom-
etry together with the ferrite tensor and dielectric properties describe
the microwave problem, and this is solved using a vector FE formula-
tion in terms of the transverse-field components. This procedure was
applied to a 9.25-GHz device where differential phase shift was calcu-
lated as a function of the gap bias field. Starting from the demagnetized
case through to a saturated ferrite, the calculations agreed to within
5% of measured data. Further studies indicate that slab geometry has
a more significant effect on single-mode bandwidth than bias field or
material properties. However, bias field and material properties play an
important role in phase-constant splitting and the associated differen-
tial phase shift. Above resonance, use of the dominant mode is limited
by nonsymmetrical mode splitting and reduced differential phase shift.
Examination of the transverse magnetic field illustrates that the opera-
tion of the DPS is related to the classic edge-mode field displacement
effect [7]–[9].

II. DIFFERENTIAL PHASE-SHIFTER SECTION

DPSs are used to obtain nonreciprocal phase shift in the dominant
waveguide mode. The length of the ferrite-loaded waveguide section
is important if the correct phase shift is to be achieved. In rectangular
waveguide, the phase shifter is constructed by positioning ferrite slabs
adjacent to the top and bottom sidewalls close to one of the end walls.
The position coincides with the point where the alternating magnetic
fields of theTE10 in an empty waveguide are circularly polarized. The
ferrite is magnetized by a dc magnetic field perpendicular to the planes
of the circularly polarized magnetic fields and the resulting tensor per-
meability leads to the nonreciprocal phase shift. A typical waveguide
cross section is shown in the inset of Fig. 1.

0018–9480/00$10.00 © 2000 IEEE
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Fig. 2. Flux densityBBB from a magnetostatic solution for waveguide cross section showing concentration around ferrite slabs.B = 0:1896 T.

III. M AGNETOSTATIC/MICROWAVE FE METHOD

The propagation characteristics of the modes in the waveguide cross
section are calculated using an FE analysis of the electric and magnetic
transverse field components. The tensor values used to specify the fer-
rite in the waveguide are calculated from a solution of the associated
magnetostatic problem.

A. Microwave Solution

Ferrite-loaded waveguides with nonuniform magnetizations support
hybrid modes, which require a vector field analysis. A formulation
in terms of the transverse electric (EEEt) and magnetic (HHHt) field
components is used here. The coupled equations derived directly from
Maxwells equations, written in terms of the radian frequency! and
the propagation constant�, are

!�EEEt �rt �
1

!�zz
[rt �EEEt + j!�ztHHHt] + �ẑ �HHHt = 0

!�ttHHHt � (�j!�tz) �
1

!�zz
rt �EEEt + j!�ztHHHt)

�rt �
1

!�
(rt �HHHt)� �ẑ �EEEt = 0

where the permittivity� is a scalar quantity and the permeability tensor
has been separated into transverse and axial parts

�̂ =
�tt �tz

�zt �zz
:

When the ferrite is magnetized in the plane perpendicular to propaga-
tion, the spatially varying tensor entries are evaluated from the signal
frequency!, the internal magnetic fieldHHHi, and the magnetizationMMM

�tt =
�0

!d

!d + !my!oy �!mx!oy

�!my!ox !d + !mx!ox
(1a)

�tz =�
�

zt = j
�0

!d

!!my

�!!mx

(1b)

�zz =
�0

!d
(!d + !my!oy + !mx!ox ) (1c)

where!ox = 
HHHi � x̂, !oy = 
HHHi � ŷ, !mx = 
MMM � x̂, !my =

MMM � ŷ, !d = !2

ox + !2

oy � !2, and
 is the gyromagnetic ratio
and�0 is the permeability of free space. No assumptions have been
made regarding the uniformity of the bias field. If the applied field
is assumed to be uniform, then zero entries would occur in some off-
diagonal tensor values.

An FE solution of these equations is obtained by constructing a mesh
over the waveguide cross section. The discretized electric and magnetic
fields within each element of the region are approximated using edge
variables. The solution of the discretized equations is obtained using
a weighted residual approach, and this leads to an eigenvalue matrix
problem of the form

Ax = �
2
Bx

wherex is the vector of unknown field coefficients andA andB are
real symmetric banded matrices.

B. Magnetostatic Solution

To evaluate the tensor entries accurately, the internal field and mag-
netization within the ferrite must be known. The relationship between
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Fig. 3. Measured and calculated values for differential phase shift
(degrees/millimeters) for ferrite magnetized below resonance with frequency
= 9:25 GHz. Inset is longitudinal section of the DPS. Single-slab length:
11.43 mm. Double-slab length: 31.23 mm.

Fig. 4. Variation of cutoff frequencies with slab width. Slab height: 2.034 mm.
B = 0.

these values and the applied bias field is complicated by the effect of
the demagnetizing field due to the surface divergence of the magnetiza-
tion vector. For nonellipsoidal ferrite shapes, the demagnetizing field
is nonuniform, leading to spatially varying tensor values. Joseph and
Schlomann [20] evaluated the demagnetizing field in ferrites of arbi-
trary shape with a uniform bias field. A magnetostatic FE solution is
used here to calculate theMMM; HHHi variables directly. A mesh is con-
structed over the full geometry including the ferrite-loaded waveguide,
magnetic material, and current windings. All materials are character-
ized by their permeability, and nonlinear materials such as ferrite and
magnetic materials are characterized by their magnetization curves. A
standard two-dimensional FE magnetostatic solver is used to solve the
nonlinear Poisson equation in terms of the axial component of the mag-
netic vector potential [21]. The flux densityBBBdc, field intensityHHHi,
and magnetizationMMM can all be evaluated from the magnetic poten-
tial  . Once these values are known throughout the ferrite, the tensor

Fig. 5. Variation of cutoff frequencies with slab height. Slab width: 7.35 mm.
B = 0.

Fig. 6. Backward wave for higher order mode.B = 0:2 T.

values can be calculated for a specific frequency using the relationship
defined by (1a)–(1c).

IV. COMPARISON WITH EXPERIMENT

To verify the accuracy of the calculations, the results were compared
with measured values for a DPS section.

For the FE calculations, the ferrite is completely defined by its mag-
netization curve and relative permittivity. The ferrite used here has a
relative permittivity�r = 11:4 and its magnetization curve is shown
in Fig. 1. The inset of Fig. 1 is a sketch of the magnetic bias circuit
showing the transverse waveguide cross section with ferrite slabs. The
applied bias fieldBgap in any calculation is assumed to be the mag-
netic flux density at the center point between the two ferrite slabs. To
ensure a uniform field between the poles of the magnet, the pole face
was taken to be four times the width of the ferrite.Bgap is varied by
changing the current(I) in the windings of the electromagnet. The
magnetic flux density in the ferrite slabs calculated by the magneto-
static solver is shown in Fig. 2. For reasons of scale, only the ferrite
slabs and the air gap between them are illustrated. The concentration
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(a)

(b)

Fig. 7. Typical microwave magnetic-field intensity of dominant mode. Frequency: 9.25 GHz. (a) Unmagnetized dominant mode. (b) Forward and reverse dominant
mode.B = 0:16 T.

and bending of the flux density at the slab corners is evident. The mag-
netic flux density through a cross section of the ferrite slab in Fig. 2
varies by 20%. This is a significant effect, which is often neglected in
alternative analysis techniques where a uniform bias field is assumed.
For example, with high-power operation, the field concentration at the
slab corners can result in the onset of nonlinear effects earlier than ex-
pected.

The longitudinal waveguide cross-sectional geometry used in the
microwave FE calculations is shown in the inset of Fig. 3. It is
composed of two single-slab sections and a central double-slab sec-
tion. The single-slab section is used as a match to the empty wave-
guide. FE calculations were done for the single- and double-slab

section separately and the results were combined to give a differen-
tial phase shift over the length of the phase shifter for the dominant
mode. This hybrid mode is related to theTE10 mode in an empty
rectangular waveguide. Fig. 3 illustrates good agreement to within
5% between the measured and calculated phase shifts. A contrib-
utory factor to the error may be the accuracy in the definition of
the shape of the magnetization curve.

V. RESULTS FORTYPICAL PHASE-SHIFTER CROSSSECTIONS

The split in the phase constants between the forward- and reverse-
propagating modes is the crucial parameter in the design of DPS sec-
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Fig. 8. Variation of phase-constant split with magnetization. The frequency is
9.25 GHz; waveguide geometry as in Fig. 1. The resonance region is defined
where�=� > 1.

tions. To quantify the effect of various geometrical and material param-
eters on this split, both the cutoff and propagating planes are examined.
For these calculations, saturation magnetization ofMs = 2000 G is
used. The geometry of the waveguide cross section is identical to that
illustrated in Fig. 1.

A. Cutoff Plane Calculations

Cutoff plane calculations are important to determine the frequency
bandwidth available for single-mode operation. The first higher order
mode for the waveguide cross-sectional geometry in Fig. 1 is a hybrid
mode related to theTE20 mode in an empty waveguide. Fig. 4 illus-
trates the variation in cutoff frequency with slab width for the unmag-
netized case. Increasing the slab width from 0 to 12.3 mm reduces the
single-mode bandwidth from 6.6 to 5.4 GHz. Fig. 5 illustrates the vari-
ation in cutoff frequency with slab height for the unmagnetized case.
As the height increases, the cutoff frequencies of both modes reduce.
An octave operating bandwidth is maintained from the empty to the
full-height case where the cutoff frequencies are reduced by 50%.

A study was also made of the effect of dielectric constant in the fer-
rite slabs. Relative permittivities from 9 to 13 have little affect on the
cutoff frequencies. The dominant mode cutoff decreases by approxi-
mately 1% over this range and the higher order mode by approximately
4%.

The effect of magnetization on cutoff frequencies was then exam-
ined. For a magnetized ferrite, the frequency must be specified when
calculating the tensor permeability and, thus, the modal cutoff frequen-
cies cannot be calculated directly by setting the phase constant to zero.
Using an iterative approach, the dominant and first higher order mode
cutoff frequencies are found to increase slightly with increasing mag-
netization. For the unmagnetized geometry, the dominant mode cutoff
is 5.76 GHz and that of the first higher order mode is 11.49 GHz, re-
spectively. These increased to 5.95 and 11.54 GHz when the gap bias
field (Bgap) is increased to 0.2 T.

Analysis of the cutoff planes of strongly magnetized ferrites also
reveals the existence of split cutoff frequencies for reverse- and for-
ward-propagating modes. The frequency split increases with magne-
tization, and backward wave propagation is found to exist within the
split cutoff frequencies. This effect is more pronounced for the higher
order mode, which has a backward-wave bandwidth of 0.12 GHz when
Bgap = 0:2 T, whereas the dominant mode backward wave band-

Fig. 9. Variation of phase-constant split with different dielectric permittivity
of ferrite. Frequency: 9.25 GHz (waveguide geometry as in Fig. 1).

Fig. 10. Variation of phase split with different saturation magnetization values.
Frequency: 9.25 GHz (waveguide geometry as in Fig. 1).

width is only 0.05 GHz. Fig. 6 illustrates the variation of phase con-
stant with frequency for the higher order mode with this gap field.
At 11.43 GHz(A), the mode first appears, but the forward-propa-
gating mode has a decreasing phase constant typical of backward waves
(A–A0). At 11.54 GHz(A0), the mode reverts to a typical propagating
mode. The existence of backward waves in magnetized ferrites has
been noted previously by other authors [22], [7].

B. Propagating Plane Calculations

When the ferrite is demagnetized, each pair of forward- and reverse-
propagating modes have the same phase constants, transverse electric
variation, and magnetic field variation. Fig. 7(a) illustrates the trans-
verse magnetic field for the dominant mode when the ferrite is unmag-
netized. The field is concentrated in the ferrite slabs due to the higher
relative permittivity. With a magnetized ferrite, the magnetic fields of
the forward- and reverse-propagating modes couple differently with
the internal magnetic field and this gives rise to the edge-mode effect
clearly discernible in the magnetic fields of Fig. 7(b). This shifting of
the field concentration toward the slab edge inoneof the modes and
the associated split phase constants give the ferrite slabs their nonre-
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ciprocity. The edge-mode field displacement effect and the split phase
constants increase with the gap bias field until it is a maximum at sat-
uration. Increasing the magnetization further does not increase the dif-
ferential phase shift. Fig. 8 illustrates the forward- and reverse-prop-
agating phase constants as a function of magnetization at a fixed fre-
quency. A resonance region where the electromagnetic energy is lost to
the ferrite is shown. In the resonance region, the calculated dominant
mode cuts off, however, many other modes exist. Above resonance,
the split phase constant is reduced, decreases with increasing magne-
tization, and no longer symmetrical. The operation point in the DPS is
usually chosen to be close to the saturation magnetization below the
resonance region.

The size of the phase-constant split can be increased by increasing
the dielectric permittivity, as shown in Fig. 9. AtBgap = 0:18 T, the
differential phase split between the forward- and reverse-propagating
modes increases by 56% when the relative permittivity is changed from
9 to 13. Increasing the saturation magnetization of the material will
also result in a larger split. Fig. 10 shows the forward and reverse split
for three different materials. These materials were simulated using the
same magnetization curve, but by changingMs value. AtBgap =

0:225 T, the differential phase split between the forward- and reverse-
propagating modes increases by 49% when theMs value increases
from 1500 to 2500 G.

VI. CONCLUSIONS

Rectangular waveguide loaded with ferrite slabs is a classic arrange-
ment for high-power DPSs. The FE procedure proposed here is used
to evaluate the differential phase shift as a function of bias field for a
fixed geometry, signal frequency, and ferrite internal properties. The
magnetostatic solution revealed typical variations of 20% in bias flux
density within the ferrite slab—this result may explain the early onset
of nonlinear effects in high-power DPSs. A direct comparison of dif-
ferential phase shift with an experimental 9.25-GHz device validated
the numerical calculations to within 5%. Bias field and relative permit-
tivity were found to have little effect on the cutoff plane of the phase
shifter. Differential phase shift is improved by increasing magnetiza-
tion and relative permittivity. Above resonance operation is restricted
by nonsymmetrical splitting and lower differential phase shift. Infor-
mation on backward-wave propagation and field plots were included
for completeness.
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Improved Microwave Performance on Low-Resistivity Si
Substrates by Si Ion Implantation

Pin-Quan Chen and Yi-Jen Chan

Abstract—Microwave characteristics of spiral inductors on low-resis-
tivity Si substrates have been improved by implanting Si ions. Spiral
inductors fabricated on these implanted substrates demonstrate better

-value and microwave performance. The -value of inductor enhanced
60% on the implanted substrates than that of low-resistivity Si substrates.
An equivalent circuit model of inductor has been evaluated to discuss the
effect of substrate loss.

I. INTRODUCTION

Monolithic microwave integrated circuit (MMIC) designs on Si sub-
strates have become an important topic in recent years. By improving
the process technologies, Si-based active devices, MOSFET’s and
BJT’s for example, demonstrate an extremely highft andfmax, which
is sufficient for microwave applications. However, it is relatively
difficult to realize high-Q passive elements on low-resistivity (low-R)
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Fig. 1. (a) Calculated effective inductance and (b)Q-values of the 1.5-turn
spiral inductors fabricated on implanted Si substrates, low-resistivity Si
substrates, and high-resistivity Si substrates (from 45 MHz to 15 GHz).

Si substrates because of the nature loss under the microwave operation.
Among them, the spiral inductor, which is extensively used in biasing
and matching circuits, is the main issue to resolve this low-Q problem.
Many approaches have been proposed to achieve better microwave per-
formance of inductors on low-R Si substrates, including inductors with
a pattern ground shielding [1], with multi-layer metals [2]–[5], or by in-
serting a thick polymide layer [6]. These solutions are basically focused
on reducing substrate conduction and loss, resulting in an elimination
of wave propagation loss in the substrate, and therefore improving the
associatedQ-value.

Ion implantation technology has been proposed to reduce the loss
of Si substrate through a high-resistivity surface layer by disordering
the lattice sites [7]. In this paper, we systematically implanted Si+

28 into
conventional low-R Si substrates (� � 5–10 
�cm) to damage the Si
lattice structure, and an amorphous layer will be formed subsequently
on the surface of Si substrates. The thickness of this surface amorphous
layer varies with different implant energies and doses, which can be es-
timated by the LSS simulator. In this study, spiral inductors were fab-
ricated on the implanted Si substrates. By measuring the microwave
characteristics of spiral inductors, we can evaluate the performance
improved through this implantation technology. For comparisons, we
also fabricated the spiral inductors on the high-resistivity (high-R) Si
substrate, where resistivity is 4 k
�cm. In addition, through lines (600
�m-long) were fabricated on these Si substrates. By measuring theS21,
the insertion loss resulting from the substrate effect can also be deter-
mined.

Fig. 2. Q-value and effective inductance at 900 MHz versus turns of spiral
inductors on Si implanted (concentration:3�10 cm ), low-R, and high-R
substrates.

Fig. 3. Equivalent circuit model of spiral inductor on Si substrates.

Fig. 4. MeasuredS insertion loss of a 600-�m-long through line on different
prepared substrates.

II. I MPLANTATION CONDITIONS AND FABRICATION OF SPIRAL

INDUCTOR

The maximum energy of the ion implanter is 200 keV with an ion
source of SiH4. A multi-implantation approach was used to realize a
uniform distribution of implanted profile for a depth of 0.4-�m thick,
which is limited by the implanter maximum energy. We systematically
changed implanted Si concentrations from1� 10

19 cm�3 to 4� 10
19
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TABLE I
EXTRACTED PARAMETERS CORRESPONDING TO THEINDUCTOR EQUIVALENT CIRCUIT MODEL (INDUCTOR WITH A 1.5-TURNS)

*: not necessary of this R in the equivalent circuit of high-R substrate.

cm�3 to evaluate how this damage layer affects the microwave perfor-
mance.

After the realization of the implanted substrates, the square-shaped
spiral inductors were subsequently fabricated on the substrate by using
air-bridge technology, which can minimize the parasitic capacitance
between the cross over metal lines. The Au metal lines were deposited
by electroplating, and the thickness is about 6�m to reduce the loss
from ohmic conduction. The metal line-width and spacing are all
25-�m wide in our spiral inductor design. The inner diameter of
inductors is 130�m.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The spiral inductors are designed for a direct two-portS-pa-
rameter evaluation. MicrowaveS-parameters (from 45 MHz to 15
GHz) were measured by an HP8510C network analyzer in conjunc-
tion with on-wafer G-S-G coplanar Cascade probes. The de-em-
bedding work has to be done first on Si substrates in order to re-
move the parasitic effects from probe pads and feeding lines. The
two-portS-parameters were first transferred into one-portS-param-
eters by terminating a 50 load on the output ports, and the
subsequentZ-parameters can be calculated. Based on the real and
imaginary parts ofZ-parameters, the effective resistance (real part)
and inductance (imaginary part) versus frequencies can be extracted
[8]. The associatedQ-value can also be obtained. Fig. 1(a) and (b)
shows the effective inductance and theQ-value of spiral inductors
fabricated on low-R Si substrates, implanted substrates, and high-R

substrates, respectively. These spiral inductors are 1.5 turns with a
metal thickness of 6�m. The bias voltage for a 2-mA leakage
current between two metal lines (100-�m wide separation) is 2.5
V for a low-R Si substrate; however, this value is above 200 V
for the implanted substrate (concentration:3�10

19 cm�3). It indi-
cates that Si+28 implantation technology is a sufficient way to create
a high-resistivity surface layer. The effective inductance is around
1.1 nH for inductors fabricated on all kinds of substrates, and this
value is relatively insensitive to frequencies up to 15 GHz. As
to the effective resistance, inductors on implanted substrates show
lower values than those on low-R Si substrates. Due to a higher
conducting loss at high frequencies, effective resistances increases
versus frequencies. As we can see in Fig. 1(b), at low frequencies,
the Q-values increase versus frequencies, which is determined by
the ohmic conducting mechanism. However,Q-values move down-
ward by further increasing the frequencies, which is associated with
substrate parasitic effect dominating at higher frequencies. It there-
fore forms a peakQ-value in Fig. 1(b). The peakQ-values shift
to high-frequency end at implanted and high-R substrates, which
is associated with a reduced substrate parasitic effect causing this

shift. The maximumQ-value of inductor on low-resistivity Si sub-
strate is 3.8, and it reaches 5.8 as the implant concentration in-
creases to3� 10

19 cm�3. TheQ-value slightly reduces to 5.2 for
the implant concentration of4 � 10

19 cm�3. This slight decrease
of Q-value maybe correspondent to the self-annealing effect within
the damaged layer in high dose substrates, alleviating the degree of
damaged crystalline. Therefore, it translates that the optimum ion
concentration for the enhancement of microwave performance for
spiral inductor is about3� 10

19 cm�3. As to the high-R Si sub-
strate, the maximumQ-value is 9.3, which is much higher than
those of implanted substrates.

Spiral inductors fabricated on different prepared Si substrates with
various turns were also investigated, and results are shown in Fig. 2.
The peakQ-values decrease by increasing the turn number of spiral
inductors, which is associated with the increase of conducting loss and
the associated parasitic capacitance from the substrate. For a concen-
tration of3 � 10

19 cm�3, the peakQ-value with a 4.5-turns drops to
3.2. ThisQ-value drop is more significant in the case of low-R sub-
strates, where the substrate parasitic effect is more severe. However,
Q-value reduction versus inductor-turns is negligible on high-R sub-
strates. The effective inductances obtained at 900 MHz are similar for
these three different substrates and demonstrate a systematic increase
vs. inductor-turns. A maximum inductance of 8 nH is obtained for a
4.5-turns inductor, and this value is enough for a practical MMIC de-
sign.

In addition to direct calculations from measuredS-parameters, we
also establish an equivalent circuit model shown in Fig. 3. For these
spiral inductors, the equivalent circuit model provides an analytic tool
to identify the improving factors caused by this ion implantation ap-
proach. The elements of the equivalent circuit model listed in Table I
were extracted from curve-fitting procedure of the two-portS-param-
eters (from 50 MHz to 7 GHz) of an inductor with a 1.5 turn on var-
ious prepared substrates. This fitting process was executed by HP MDS
software.Rsub refers to the substrate resistance, andCsi is associated
with the grounding capacitance. These two elements represent mainly
the substrate parasitic effect. During the curve fitting, we observed that
Rsub of inductor on a high-R Si substrate is not necessary, which trans-
lates that the substrate loss of high-R substrate is negligible. TheRsub

of an inductor on a low-R Si substrate is about 7.4 k
, and this value
enhances to 900 k
 for an implant concentration of3 � 10

19 cm�3

substrate. The averageCsi of implanted substrates is also improved to
0.8 pF, as compared with the original average 8 pF on low-R substrates.
Therefore, it suggests that the implanted layers indeed improve the Si
substrate loss and parasitic capacitance, resulting in a higherQ-value
and better frequency response of spiral inductors.

A 600-�m-long through line was also fabricated for a direct
two-port measurement to evaluate the transmission-line loss
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through the different Si substrates. This through line is designed
for a 50-
 input impedance based on the high-resistivity Si sub-
strate.S-parameters of these through lines on different prepared
substrates were evaluated. As seen in Fig. 4, theS21 insertion
loss of the through line on a low-R Si substrate are all below
2.5 dB within the measured frequency band. As to the implanted
substrates, the insertion loss is small at low frequencies and
starts to increase at the high-frequency end. By increasing the
implant concentration, the microwave substrate loss has been
improved. Through lines on a high-R substrate show a great
microwave performance where the insertion loss is below 0.1 dB
at frequencies up to 3 GHz. Although the improved microwave
performance can be obtained from the implanted substrate, the
substrate parasitic effect, such asRsub; Csi, cannot be as good as
the results from high-R substrates, which are due to the thickness
limitation of implant-damaged layers.

IV. CONCLUSION

In summary, by creating an implant-damaged layer on low-resistivity
Si substrates, the microwave performance of the spiral inductors can
be improved. This technology provides a high resistive surface layer
resulting in a higherQ-value and a lower parasitic effect of spiral in-
ductors. The microwave performance of Si substrate is systematically
improved and reaches an optimum implant concentration of3� 10

19

cm�3. However, by using the conventional implanter, due to the limi-
tation of implant energy, the damaged layer is too thin to prevent the all
loss from the substrate. Since this approach is compatible with IC tech-
nologies, by further increasing the implant energy, ion implant tech-
nologies are very attractive for Si MMIC applications.
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Asymmetric Four-Port and Branch-Line Hybrids

Hee-Ran Ahn and Ingo Wolff

Abstract—Two different asymmetric branch-line hybrids, a con-
ventional-direction asymmetric branch-line hybrid (CABH) and an
anti-conventional-direction asymmetric branch-line hybrid (AABH) are
discussed and their design equations are derived. On the basis of the
derived design equations, a uniplanar CABH was fabricated with coplanar
wave guide (CPW) technology and measured.

Index Terms—AABH, asymmetric branch-line hybrids, asymmetric
four-port hybrids, CABH.

I. INTRODUCTION

Ring hybrids and branch-line hybrids are of primary importance
in microwave integrated circuits. Historically, the first ring hybrid
was described by Tyrrel in 1947 [1]. Since that time, ring hybrids
have been investigated by a number of engineers [2]–[12]. On the
other hand, branch-line hybrids have been studied for a long time
separately from the ring hybrids [13]–[20]. These studies on ring
hybrids and branch-line hybrids focus on symmetric four-port hybrids
where the conventional even- and/or odd-mode excitation analyses
can be used [21]. Additionally, the relation between ring hybrids and
branch-line hybrids has never been considered. As these four-port
hybrids are used with active elements and/or other passive elements,
additional matching circuits are necessary to obtain the desired output
performances. In these cases, if these four-port hybrids are terminated
by arbitrary impedances, the total size of integrated microwave circuits
can be reduced [22]–[24]. Recently, for the first time, Ahnet al.
treated asymmetric four-port ring hybrids [22], [23] and described
very briefly the conventional-direction asymmetric branch-line hybrid
(CABH) [24].

In this paper, the relation between an asymmetric ring hybrid (ring
hybrid with arbitrary power divisions and arbitrary termination imped-
ances) and two asymmetric branch-line hybrids (branch-line hybrids
with arbitrary power divisions and arbitrary termination impedances)
are discussed depending on their power division characteristics. From
the relation, the design equations of the two asymmetric branch-line
hybrids are derived using the method given by Ahnet al. [22]. Also, it
is shown that the derived design equations are used not only for conven-
tional branch-line hybrids but also for conventional impedance trans-
formers using the one-stage branch-line [18]–[20]. On the basis of the
derived design equations, a uniplanar CABH is designed with a power
split ratio of 3 dB and measured.

II. A NALYSES

Fig. 1 shows three four-port hybrids terminated by arbitrary imped-
ances. If one of four ports is isolated in the case of port
1 excitation,
there are three different cases as seen in Fig. 1. In Fig. 1(a), the power
excited at port
1 is split between two output ports,
2 and
4 , while
port
3 is isolated. The two output signals are in-phase or out-of-phase
depending on the input-port chosen. This application is defined as an
asymmetric ring hybrid and sufficiently discussed in [22], [23]. While
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the above-mentioned asymmetric ring hybrid has 0� or 180� phase dif-
ference between the two output signals, the signals at the two output
ports in Fig. 1(b) and (c) have 90� phase difference. These two kinds
of hybrids are the so-called asymmetric branch-line hybrids.

The power division characteristic of the branch-line hybrid in
Fig. 1(b) is as same as that of the conventional branch-line hy-
brid [13]–[20]. Thus, it may be named aconventional-direction
asymmetric branch-line hybrid(CABH). On the other hand, the
power division direction of the branch-line hybrid in Fig. 1(c) is
reverse. For this reason, this asymmetric branch-line hybrid may
be named ananti-conventional-direction asymmetric branch-line hy-
brid (AABH). It will be shown that the design equations of these
two asymmetric branch-line hybrids are different from each other.
However, from Fig. 1, it may be recognized that these CABH,
AABH, and ring hybrid are in principle the same in their func-
tion. Therefore, under the assumption ofjS41j = 0, the equivalent
circuit of port 
1 excitation may be constructed in Fig. 2 [22]. In
the case of Fig. 2(a), when the power is excited at port
1 , the
voltage across a loadRb is equal to that across the transmission
line with a characteristic impedanceZ2 and a loadRc. Therefore,
if the ratio of jS21j to jS31j is required that ofd1 to d2 as de-
fined in Fig. 2(a), the impedance looking into the transmission line
with Z2 loaded withRc, In 
3 should be(d21=d

2

2)�Rb as indicated
in Fig. 2(b). In case of aY -junction device [25], [26], such as a
Wilkinson three-port power divider, an isolation resistor is neces-
sary to isolate between two output ports and to complete matches
at the two out-ports which are connected with an isolation resistor.
For the asymmetric ring hybrid shown in Fig. 1(a), two arms with
Z2 andZ3 are connected with two output ports
2 and
4 for the
isolation between the two output ports and perfect matches at these
two outports. In case of the CABH in Fig. 1(b), the two arms with
Z3 andZ4 are connected with the two output ports
1 and
3 in
order that no power is transported to port
4 and two ports
1 and

3 are matched when the power is excited at port
1 . Therefore,
the total power excited at port
1 is delivered to port
2 and the
power reached at port
2 is divided into the loadRb at port 
2
and the loadRc at port
3 in Fig. 2(a). In the practical situation
of Fig. 1(b), a very small amount of the excited power at port
1
reflects into port
4 and also an extremely small amount of the
power delivered at port
3 is traveling into port
4 . In order that
the port
4 is isolated from the excited power and perfect match-
ings appear at port
2 and 
3 , the phase difference between the
two waves must be 180� against each other and the scattering pa-
rameter ratio ofjS14j to jS34j must bed2 to d1. In the case of the
asymmetric ring hybrid in Fig. 1(a), an isolated port
3 is placed
between the two output ports
2 and
4 . Therefore, the two output
signals are either in equal phase or in 180� phase difference. In
the case of the CABH, if port
4 is needed to be isolated from
the power excited at port
1 , the phase difference of the transmis-
sion arc length,(�1+�2+�3��4) must be�180�. For a real
impedance to be transformed to another real impedanceRa using
a transmission line withZ1 as shown in Fig. 2(b), the electrical
length �1 of the transmission line must be 90� or odd multiples
of 90�. In the same way, that of�2 in Fig. 2(a) must also be 90�

or odd multiples of 90�. Therefore, all transmission line lengths
must be�=4’s or odd multiples of�=4’s. Thus, the phase differ-
ence between the two output signals at ports
2 and
3 is 90� or
odd multiples of 90� in Fig. 2(a). Thus, if�1 = �2 = �=2, the
characteristic impedances of the CABH are

Z1 =
d2
1

d2
1
+ d2

2

p
RaRb; Z2 =

d1
d2

p
RbRc: (1)

Fig. 1. Three power division representations of asymmetric 4-port hybrids in
case of a port
 excitation. (a) The power division between port
 and port

. (b) The power division between port
and port
. (c) The power division
between port
 and port
.

Fig. 2. The excitation at port
 in case of Fig. 1(b). (a) Under assumption of
jS j = 0. (b) Simplifying of Fig. 2(a).

From the condition of satisfying the assumption ofjS41j = 0 [22],
the two characteristic impedancesZ3 and Z4 may be derived as

Z3 =
d2
1

d2
1
+ d2

2

p
RcRd; Z4 =

d1
d2

p
RdRa; (2)

where the ratio ofd1 to d2 is the scattering parameter ratio be-
tween the two output ports in Fig. 2(a), andRa; Rb; Rc and Rd

are termination impedances.
From the derived design equations (1) and (2), in case ofRa = Rb =

Rc = Rd andd1 = d2, the results are recognized as those of the
well-known 3-dB branch-line hybrid [27], [28]. In the case ofd1 = d2,
the results are equal to those reported by [24]. The branch-line hybrid
has been used as an impedance transformer [18]–[20]. In the case of
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TABLE I
DATA OF THE REALIZED CABH WITH A POWER SPLIT RATIO 3 dB AND

� = � = � = � = 90 AT DESIGNFREQUENCY OF3 GHZ. w: CENTER

STRIP WIDTH, g: GAP WIDTH AND l: LINE LENGTH.

Fig. 3. Layout of a coplanar CABH with a power split ratio of 3 dB terminated
by 30
, 60
, 40
 and 50
.

a conventional impedance transformer using a one-stage branch-line
hybrid, if Ra = Rd = Z01; Rb = Rc = Z02 and the coupling
factor is defined asjS31j=jS21j = d2=d1 = k, the results are equal
to those derived by [19], whereZ01 andZ02 are the input and output
impedances.

Applying the same method, the design equations of the AABH are

Z1 =
d1
d2

p
RaRb; Z2 =

d2
1

d2
1
+ d2

2

p
RbRc

Z3 =
d1
d2

p
RcRd; Z2 =

d2
1

d2
1
+ d2

2

p
RdRa: (3)

A. Uniplanar Asymmetric Branch-Line Hybrid (CABH)

On the basis of the derived design equations (1) and (2), a uniplanar
CABH was fabricated on Al2O3 substrate ("r = 9:9 andh = 635 �m)

(a)

(b)

Fig. 4. Measured results of CABH terminated by 30
, 60
, 40
 and 50

with a power split ratio 3 dB. (a) Power division and isolations. (b) Reflected
coefficients at all ports.

using coplanar waveguide technology. This uniplanar CABH was de-
signed with a power split ratio of 3 dB and terminated by 30
, 60

, 40
, and 50
. The experimental data of the CABH are given in
Table I andZ01; Z02; Z03 andZ04 in Table I are the transformer-line
impedances to transform termination impedances to 50
. The layout
of the CABH is given in Fig. 3 and all the characteristic impedances
of the transmission lines are different from each other, as seen in Fig.
3. Measured power division and isolation results of the CABH are de-
picted in Fig. 4(a), and measured all-port matching results are plotted
in Fig. 4(b). If this uniplanar CABH is ideally designed, the value of
jS21j is �1.764 dB at the center frequency of 3 GHz from the cal-
culation of10Logbd21=(d21 + d22)c, but the measured value ofjS21j
is �1.9259 dB. The difference between ideal and measured results
comes from the losses of transmission lines, dielectric material, con-
nectors, and so on. Since the uniplanar CABH was designed with the
3-dB power-split ratio, the ideal value ofjS31j is �4.764 dB and the
measured result ofjS31j is �4.957 dB. From the measured results of
Fig. 4(a) and (b), measured isolation results arejS41j = �34. 22 dB
andjS23j = �36.62 dB, and matchings at all ports arejS11j = �31.53
dB, jS22j = �22.90 dB,jS33j = �29.92 dB andjS44j = �29.26 dB
at the center frequency of 3 GHz.

III. CONCLUSION

In this paper, asymmetric four-port hybrids, asymmetric ring hy-
brids, and two types of asymmetric branch-line hybrids, CABH and
AABH, are newly defined depending on which port is isolated. From
the definition, new design equations for the CABH and the AABH are
derived. Using these components and their design equations, the size
of microwave integrated circuit can be reduced.
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Noise Temperature of a Lossy Flat-Plate Reflector for
the Elliptically Polarized Wave-Case

T. Y. Otoshi and C. Yeh

Abstract—This short paper presents the derivation of equations neces-
sary to calculate noise temperature of a lossy flat-plate reflector. Reflector
losses can be due to metallic surface resistivity and multilayer dielectric
sheets, including thin layers of plating, paint, and primer on the reflector
surface. The incident wave is elliptically polarized, which is general enough
to include linear and circular polarizations as well. The derivations show
that the noise temperature for the circularly polarized incident wave case
is simply the average of those for perpendicular and parallel polarizations.

Index Terms—Elliptical polarization, noise temperature, point, primer,
reflector.

I. INTRODUCTION

Although equations for power in an incident and reflected elliptically
polarized wave can be derived in a straightforward manner, the equa-
tions for the associated noise temperatures are not well known nor, to
the authors’ knowledge, can they be found in published literature. It is
especially of interest to know what the relations are when expressed in
terms of perpendicular and parallel polarizations and the corresponding
reflection coefficients. The following presents the derivations of noise-
temperature equations for three cases of interest.

II. THEORY

A. Power Relationships

For the coordinate system geometry shown in Fig. 1, the fields for
an incident elliptically polarized plane wave at the reflection point are
[1], [2]

Ei =Exiâ̂âaxi +Eyiâ̂âayi (1)

Hi =Hxiâ̂âaxi +Hyiâ̂âayi (2)

where

Exi =E1e
j(!t�kz ) (3)

Eyi =E2e
j(!t�kz +�) (4)

Hxi =�
Eyi

�
(5)

Hyi =
Exi

�
(6)
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Fig. 1. Coordinate system for incident and reflected plane waves. The symbols
with boldfaceâ̂âa are unit vectors and� and � are angles of incidence and
reflection, respectively. The plane of incidence is the plane of this page.

where! is the angular frequency,t is time, � is the characteristic
impedance of free space,k is the free-space wavenumber, andzi is the
distance from an arbitrarily chosen source point on the incident wave
ray path to the reflection point on the reflector surface (Fig. 1). In (3)
and (4), it is important to note thatE1 andE2are scalar magnitudes
and� is the phase difference betweenExi andEyi.

The Poynting vector [1] for the incident wave is expressed as

P i =
1

2
Re Ei �H

�

i (7)

where�, �, andRe denote cross product, complex conjugate, and real
part, respectively.

Then assuming all of the incident power travels through an areaA

in the direction of Poynting vector, the total incident wave power is

PTi = P i � â̂âazi dA (8)

where� denotes the dot product. Substitutions of (1)–(7) into (8) result
in

PT i =
1

2�
E

2

1 + E
2

2 A: (9)

The equations for the reflected wave are obtained by replacing the
subscripti with r in all of the equations for the incident wave except
for (3) and (4). From Fig. 1, it can be seen that the expressions forExr

andEyr are

Exr =�kExie
�jkz (10)

Eyr =�?Eyie
�jkz (11)

where
�k is the voltage reflection coefficient for parallel polarization

at the reflection point and is a function of incidence angle�i
(see Fig. 1)

�? is the voltage reflection coefficient for perpendicular polar-
ization at the reflection point and is a function of incidence
angle�i

andzr is the distance from the reflection point on the reflector surface
to an arbitrary observation point along the reflected ray path.

Then following steps similar to those used to obtain (9), the total
power for the reflected wave, can be derived as

PTr =
1

2�
�k

2

E
2

1 + j�?j
2
E

2

2 A: (12)

It is assumed that the lossy flat-plate reflector in Fig. 1 has sufficient
thickness so that no power is transmitted out the bottom side. Then the
dissipated power is

Pd = PT i � PTr: (13)

B. Noise-Temperature Relationships

For the geometry of Fig. 1, the equation for the noise temperature of
the lossy flat-plate reflector can be derived from

Tn =
Pd

PT i
Tp (14)

whereTp is the physical temperature of the reflector in units of kelvin.
For example, if the lossy conductor is at a physical temperature of 20�C,
thenTp = 293.16K. Use of (9), (12), and (13) in (14) gives

Tn = 1� j�epj
2

Tp (15)

where

j�epj
2 =

�k
2

E2

1 + j�?j
2
E2

2

E2

1
+ E2

2

: (16)

Equation (15) is the elliptically polarized wave noise-temperature
equation that is general enough to apply to linear and circular polariza-
tions as well. In the following, the noise-temperature expressions for
three different polarization cases are derived.

Case 1: If the incident wave is linearly polarized with the E-field
perpendicular to the plane of incidence, thenE1 = 0 and (15) becomes

Tn = (Tn)? = 1� j�?j
2

Tp: (17)

Case 2: If the incident wave is linearly polarized with the E-field
parallel to the plane of incidence, thenE2 = 0 and (15) becomes

Tn = (Tn)k = 1� �k
2

Tp: (18)

Case 3: If the incident wave is circularly polarized, thenE1 = E2

and

Tn = (Tn)cp = 1�
�k

2

+ j�?j
2

2
Tp: (19)

Note then that(Tn)cp is also just the average of(Tn)? and(Tn)k or

(Tn)cp =
1

2
(Tn)? + (Tn)k : (20)

The reader is reminded that, since the reflection coefficients are func-
tions of incidence angle�i, the noise temperatures are also functions
of �i as well as polarization.

C. Excess Noise-Temperature Relationships

It is of interest to see what the relationship is for excess noise tem-
perature as well. For painted reflector noise-temperature analyses [3],
it is convenient to use the term excess noise temperature (ENT). It is
defined in [3] as the total noise temperature of a painted reflector minus
the noise temperature of the reflector (bare metal) without paint. Math-
ematically, it is expressed as

�Tn = Tn2 � Tn1 = 1� j�2j
2

Tp � 1� j�1j
2

Tp (21)
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where�1 and�2 are the input voltage reflection as seen looking at the
unpainted (bare conductor) and painted reflector surfaces, respectively,
and are functions of incidence angle and polarization. These reflection
coefficients can be obtained through the use of multilayer equations
such as those given in [4].

Then from (17)–(21) it follows that, for the perpendicular-, parallel-,
and circular-polarization cases

(�Tn)? = (Tn2)? � (Tn1)?

= 1� j�2j
2

? Tp � 1� j�1j
2

? Tp (22)

(�Tn)k = (Tn2)k � (Tn1)k

= 1� j�2j
2

k Tp � 1� j�1j
2

k Tp (23)

(�Tn)cp = (Tn2)cp � (Tn1)cp : (24)

Substitution of (20) into (24) gives

(�Tn)cp =
1

2
(Tn2)? + (Tn2)k �

1

2
(Tn1)? + (Tn1)k

=
1

2
(Tn2)? � (Tn1)? + (Tn2)k � (Tn1)k :

(25)

Substitutions of (22) and (23) into (25) give

(�Tn)cp =
1

2
(�Tn)? + (�Tn)k : (26)

Equation (26) shows that the ENT for the circular-polarization case
is simply the average of the ENTs of perpendicular and parallel polar-
izations. Although not shown mathematically, the ENTs are functions
of incidence angle�i.

III. A PPLICATIONS

The NASA Deep Space Network (DSN) operates a network of
large reflector antennas for deep-space communications. Minimizing
the noise temperatures of these antennas and their associated re-
ceiving subsystems translates into maximizing the ground-received
signal-to-noise ratios. A noise contributor that has not received much
attention in the past is the noise-temperature contribution from the
paints and primers on the antenna reflector surface. An example of the
use of (17) and (18) is shown in Fig. 2. Noise temperatures at 32 GHz,
due to 6061-T6 aluminum only [3], are shown as functions of inci-
dence angle. An example of the use of (26) is shown in Fig. 3, which is
a plot of excess noise temperature as a function of the paint thickness
of Triangle no. 6 paint [3] and zinc chromate primer. This particular
paint and primer has been used on all DSN antenna main-reflector
and subreflector surfaces in the past. The input reflection coefficients
of the multilayered dielectric stack consisting of paint, primer, and
reflector were computed through the use of a computer program [4]
furnished by the UCLA Electrical Engineering Department.

Water-film noise-temperature studies also can be made using the
equations given in this short paper. For example, a configuration that
was studied in [5] was a plane wave normally incident on a layer of
water film terminated by an equivalent load assembly that consisted
of a fiberglass dielectric layer bonded to the top surface of a lossless
flat-plate reflector. Fig. 4 shows the overall input reflection coefficient
(expressed as return loss) as a function of the equivalent load reflection
coefficient phase angle. In practice, this phase angle is made variable
by changing the dielectric layer thickness [5]. If the dielectric layer
thickness is zero, the phase angle is 180�. If the return losses in Fig. 4
are converted to voltage reflection coefficient magnitudes, then for this

Fig. 2. The noise temperature of a flat 6061-T6 aluminum mirror at 32
GHz and 293.2K (20C) physical temperature. Although not shown, the noise
temperature curve for circular polarization is the average of those for parallel
and perpendicular polarizations.

Fig. 3. The total excess noise temperature due to a Triangle no. 6 paint layer
of thicknesst and a fixed zinc chromate primer-layer thickness of 0.0152 mm
(0.6 mil) at 30 incidence angle and 32 GHz.

Fig. 4. Return loss versus load phase angle for various thicknesses of water
films terminated in an equivalent load assembly having a reflection coefficient
magnitude of0:9994 at 12 GHz. The incidence angle for the case under study
is 0 .
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normal incidence case either (17) or (18) can be used to calculate the
noise temperature (of the particular wet reflector configuration under
study) as a function of the equivalent load reflection coefficient phase
angle.

IV. CONCLUDING REMARKS

In the short paper, noise-temperature equations were derived from
power equations for the incident and reflected wave. The relationships
between noise temperatures of the different polarized wave cases were
not obvious to the authors until the equations were derived from basic
theoretical considerations. Hence, this paper serves to document the
relationships and derivations. These noise-temperature formulas have
proven to be useful for painted reflector studies [3] and will be useful
for studies of plating [6]–[8] on reflector surfaces as well.
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Multilayer Microstrip Directional Coupler
with Discrete Coupling

Denis Jaisson

Abstract—A multilayer microstrip coupler with a high directivity has
been developped, involving two strips which crossover twice at a right angle.
A general full-wave model has been derived. It has been simplified in a
quasi-static approximation. Based on the latter, a computer-aided design
has been carried out, using finite differences in a commercial package. This
design has been experimented, showing good agreement with the simplified
model.

Index Terms—Coupler, finite differences, microstrip, multilayer, quasi-
static.

I. INTRODUCTION

The work described in this paper was motivated by the need for a
small microstrip directional coupler with an approximate 15-dB cou-
pling factor, a directivity and a return loss at all ports greater than 20
dB within a frequency bandwidth of 5% or more around 1900 MHz.
It was to serve in sampling the output signal from the power mplifier
(PA) of a transmitter.

Multilayer printed circuit board (PCB) techniques that were devel-
opped for low-frequency applications are now used in microwave cir-
cuits. They involve layers of glass-epoxy FR4 or low-cost thermoset
substrates developed for the mobile communications market. They give
the microwave designer a new degree of flexibility in terms of the struc-
tures that can be implemented.

Taking advantage of these techniques, a novel multilayer microstrip
coupler was designed, which involves two microstrip crossovers. It can
be implemented at no additional cost in PCBs where other functions
require multiple layers. Its geometry makes it easy to integrate, and
etching tolerance is not critical.

A static electric field analysis [1] and a full-wave analysis [2] of the
microstrip crossover have been reported, which were based on Green’s
functions. Starting with a full-wave analysis, an equivalent circuit
is derived in the present paper. Modeling is simplified by making a
quasi-static approximation, whereby good accuracy is maintained by
accounting for both electricand magnetic phenomenae. In a design
example, elements of the equivalent circuit are computed using a
flexible finite differences (FD) method [3]. Finally, experimental
results are listed.

II. THE COUPLER

Two kinds of couplers are used in microwave systems, which involve
transmission lines in the broad sense, in order to achieve directivity. In
codirectionalcouplers, incident and coupled wave travel in the same
direction. These couplers can consist of two hollow metal waveguides
which leak power into each other by means ofdiscretecoupling through
small holes machined in the wall between them [4]. These holes are�=4
apart at mid-band. There must be at leasttwo of them, in order for the
coupler to be directive.Contradirectional couplers on the other hand,
often involve two parallelquasi-TEM transmission lines such as mi-
crostrips [5], with a mixeddistributedelectric and magnetic coupling.
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Fig. 1. Multilayer microstrip coupler.

In these couplers, incident and coupled waves travel in opposite direc-
tions.

The new structure shown in Fig. 1 is a codirectional coupler with two
microstrips which couplelocally in two places by crossing over each
other. A wave that is incident at port
1 of top microstripM1 couples to
bottom microstripM2 through the first crossover, equally toward ports

2 and
4 . By the time it couples through the second crossover, phases
of the first coupled signal and the incident wave have changed in such a
way, that the two coupled signals cancel each other atisolatedport
2 ,
and add up atcoupledport
4 . The crossover in Fig. 2 was modeled, in
order to combine coupled waves with proper phase and magnitude in
the coupler, and achieve good directivity.

III. FULL-WAVE ANALYSIS OF THE CROSSOVER

In the derivation of an equivalent circuit, single-mode relationships
are sought for between voltages in planesy � �y1 andx � �x2
in Fig. 2, and the currents that flow through these planes. The latter
are placed at far enough a distance from the crossover, where only the
fundamental mode of each microstrip can propagate. Since voltages
and currents arefield integrals, it is convenient to start from Maxwell’s
equations inintegral form [6]. Losses are neglected.

Assuming thin conductors,volumecurrent densityJ onM1 andM2

is expressed in terms ofsurfacecurrent densityJS

J = JS�(z � zi); i = 1; 2 (1)

where�(z � zi) is the pulse function ofz centered on heightzi of
Mi above groundplanez � 0. The representation ofJ in (1) is ade-
quate even at a frequencyf where skin depthds is small compared to
thicknesst of Mi (H � 0 insideMi) [6]. In Fig. 3, surfaceSH with
oriented contourCH is wrapped aroundM1 betweeny � �y1. J is
related to electric and magnetic phasorsE andH by

C

H � dl = j!

S

"E � dS+

S

J � dS: (2)

Bring SH close toM1, and join the edges ofSH which are parallel to
uy. In (2), J � dS � 0. The outward flux of"E throughSH is the
electric chargeQ1 onM1 betweeny � �y1. The contour integral of
H is

C

H � dl

=
+w =2

�w =2

(H(�y1; z
+

1 )�H(�y1; z
�

1 )) � ux dx

Fig. 2. Top view of the crossover.

Fig. 3. Section of microstrip.

�
+w =2

�w =2

(H(y1; z
+

1 )�H(y1; z
�

1 )) � ux dx: (3)

Scalar product of boundary condition

uz � (H(z+1 )�H(z�1 )) = JS (4)

with unit vectoruy , gives the jump ofH acrossM1 in (3)

C

H � dl = I
�

1 � I
+

1 (5)

where

I
�

1 =
+w =2

�w =2

JS(�y1) � uy dx (6)

is the totaluy-directed current onM1 going throughy � �y1. Equa-
tion (2) can now be rewritten as

I
�

1 � I
+

1 = j!Q1: (7)

Similarly

I
�

2 � I
+

2 = j!Q2 (8)
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where

I
�

2 =
+w =2

�w =2

J2(�x2) � ux dy (9)

is theux-directed current onM2 going throughx � �x2. Q2 is the
electric charge onM2 betweenx � �x2.

As quantities that areindependantof each other, theQi ’s can be
expressed in terms ofany two independant variablesV10 andV20

Qi =

2

j=1

Cij(!)Vj0; i = 1; 2 (10)

Let Vi0 be the voltage to ground ofMi above pointO

Vi0 = �
z

0

Ez(x = y = 0)dz: (11)

SubstitutingQi from (10), in (7) and (8) yields

I
�

i � I
+

i =

2

j=1

j!Cij(!)Vj0 (12)

whereC12 = C21 from reciprocity [6].
Two more relationships are needed between theI�i ’s and theVi0’s,

for the crossover to be fully characterized. LetSE be a surface in plane
x � 0, with 0 � y � y1 and0 � z � z1, supported by oriented
contourCE .

Using the voltage ofM1 in y � y1

V
+

1 = �
z

0

Ez(x = 0; y = y1) dz: (13)

Maxwell integral equation

�
C

E � dl = j!

S

H � dS (14)

is rewritten as

V10 � V
+

1 = �j!

S

Hx dy dz = j!�
+

1 (15)

where�+1 is the magnetic flux throughSE . Replacing+y1 with �y1
in Fig. 3 and in (13) and (15) yields

V10 � V
�

1 = �j!��1 : (16)

Similarly

V20 � V
�

2 = �j!��2 (17)

where

V
�

2 = �
z

0

Ez(x = �x2; y = 0)dz (18)

Fig. 4. Equivalent circuit of the crossover.

is the voltage ofM2 in planex � �x2, and��2 is the magnetic flux
through a surface in planey � 0 bound by planesx � 0;�x2 and
z � 0; z2. As independant quantities, the��i ’s can be expressed in
terms of independant variablesI�1 andI�2

�
�

i =

2

j=1

Lij(!)I
�

i ; i = 1; 2: (19)

From symmetry, and becauseM1 andM2 form a right angle, currents
onM1 for example, including the relatively small transversal compo-
nent, do not contribute to��2 .

Therefore

L12 = L21 = 0: (20)

Substituting (19) and (20) into (15)–(17) yields

Vi0 � V
�

i = �j!Lii(!): (21)

The equivalent circuit in Fig. 4 is drawn, based on (12) and (21). Be-
cause it is afull-wavemodel,E andH must be solvedsimultaneously,
in order to obtain exact values forCij(!) andLii(!). Computation
of the latter is simplified by making a quasi-static approximation, as is
commonly done for single transmission lines, allowing forE andH to
be treatedseparately. A model based on a staticelectric field analysis
has been reported [1]. While adequate in the static case, it does not ac-
count for crossover’s influence on incidentH at f if ds � t. M2 for
example, cannot cross underM1 without disturbingH generated by
M1, and yet fulfil the boundary condition (H tangential toM2), even
in the caseI�2 = 0.

IV. QUASI-STATIC APPROXIMATION FOR THECROSSOVER

Cut off the ends of theMi ’s beyond planesy � �y1 andx � �x2,
and let the latter be magnetic walls (MWs). Submit eachMi to a DC
voltageVi0. The behavior of the crossover is fully described by (10),
whereCij(0) are the capacitive factors of theMi ’s. Let nowy � �y1
andx � �x2 be electric walls (EWs), and let eachMi carry DC cur-
rent I+i = I�i . The behavior of the crossover is governed by (19),
whereLii(0) is the self-inductance ofMi. The quasi-static approxi-
mation states that

Cij(!) �= Cij(0)

Lii(!) �= Lii(0)
(22)

whereCij(0) andLii(0) are derived fromstatic fieldsE andH. Its
advantage lies in thatCij(0) andLii(0) are computedseparately, be-
causestatic fields areindependantof each other. It is stressed that
Cij(! 6= 0) andLii(! 6= 0), as defined by (10) and (19), are not
capacitances and inductances proper. Indeed capacitances and induc-
tances in general are static quantitiesstricto sensu.
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Fig. 5. Measurements of the multilayer coupler.

V. FINITE DIFFERENCES

Cij(0) andLii(0) are computed using 3DSim,1 a program based
on an FD method. 3DSimwas Zydeco’s internal development program
for a low-cost electromagnetic simulator. The FD method offers con-
venient flexibility with regard to geometry. It also allows to account for
nonzerot. It is briefly outlined in this section.

In the case ofCij Laplace’s equation

r2
V = 0 (23)

is solved for potential� = �rE in volume

VFD

jxj � x2

jyj � y1

0 � z � 5z1

(see Fig. 2).VFD is discretized into small boxes andE is approximated
to a constant. At any given box cornerPi with potential�i one has

6

j=1

�jcij � �i

6

j=1

cij = 0; i = 1; 2; . . . (24)

where cornerPj is next toPi on one of axisx; y; z.
If PiPj is sayux-directed, coefficientcij is given by

cij =
1

4�xij

4

k=1

"0"
(k)
r �yk�zk =

4

k=1

cijk (25)

13DSimis a trademark of Zydeco Developments Limited. [Oline.] Available:
http://www.zydeco.20m.com

where�xij is the length ofPiPj ; �yk and�zk are they- andz-di-
mensions of boxesk = 1 � � � 4 which share edgePiPj , and"(k)r is rel-
ative permittivity inside boxk. To computeC11 for example, boundary
conditions��V �1 = 1;��V

�

2 = 0 and��0are enforced onM1;M2

and groundplanez � 0, respectively. Equation (24) is a linear system
with a sparse matrix. It is processed with an iterative solver [7] im-
proved with a convergence acceleration scheme [8]. Once the�i ’s have
been computed, total capacitanceC = C11 is obtained from stored
electrostatic energy

W =
C(V �1 )2

2
=

1

2
i k

cijk(�i � �j)
2 (26)

C22 is computed forV10 = 0 andV20 = 1, andC12 from C =
C11 + C22 � 2C12 for V10 = V20 = 1. The above expression for
W is stationary[9]. In other words, afirst-order numerical error on
�i brings about asecond-order error onC. Symmetry of the crossover
about MWsx � 0 andy � 0 can be taken advantage of, by discretising
one quarter only ofVFD, and multiplyingW by four.

FindingLii by solving theelectric dualof the magnetic problem, has
been suggested in the early days of discontinuity modeling for sand-
wiched striplines [10], whereby EWs and MWs are interchanged, and
"0"

(k)
r is replaced with�0 in (25). Similar toE, fieldH of the original

problem can be derived from a potential, as long as field lines do not
make a closed loop around a conductorwithin VFD [11]. This is the
case when the aforementioned symmetry is used. IfI1 = 1 andI2 = 0

for instance, MWs
x � 0

0 < z < z1
and

x � 0

z > z1
become two EWs in

the dual problem, with respective potential 0 and 1. In this case, (26)
yieldsC = L11. Conductors on the other hand become MWs, showing
the implication ofds � t atf : H � 0 insideM2, which may not be
disregarded whenL11 is computed.
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VI. BURIED MICROSTRIP

Most commercial CAD packages for microwave circuit design do
not include a model for buried microstripM2. The latter can be simu-
lated using the same FD method. However, if one observes that most of
the energy propagated byM2 is located within a region where permit-
tivity is homogeneous(0 � z � z1), one can save time by adapting an
existingmodel forM2, including its two bends. As has been shown and
verified experimentally,M2 can be modeled with good accuracy using
the same strip with no substrates and with all dimension scaled up by
factor

p
"r , connected between two ideal transformers with a 1:"

1=4
r

ratio [12].

VII. D ESIGN AND EXPERIMENT

The coupler in Fig. 1 was designed to monitor the output power of a
transmitter’s PA. Because the current from the active device of this PA’s
last stage is large, and the output matching network requires manual
trimming, top stripM1 is connected between the PA and the transmit-
ters antenna, whileM2 samples PA’s output. Moreover losses along
M1, and therefore its lengthl1, must be minimized. In a coupler with
discrete coupling between two hollow waveguides, each of the latter
runs over the same distance between two coupling holes. In the struc-
ture in Fig. 1, on the other hand, this distance can be given values that
differ betweenM1 andM2, so as to minimizel1, and to flatten cou-
pling jS41j versus frequency somewhat.

Two substrate layers with relative permittivity"r = 3:25, height
z2 = z1 � z2 = 0:787 mm, and copper clads witht = 18 �m (ds =
1:5 �m at 1900 MHz) were imposed.50
 access microstrips were
kept at a0:6 mm = 2h distance from the crossovers. Their widths
are, respectively,w51 = 3:72 mm for the top layer andw52 = 1:51
mm for the bottom layer. Crossovers were simulated in volumeVFD
with x2 = 3w1=2 andy1 = 3w2=2 (Fig. 2).VFD was discretized into
44� 49� 61 boxes. 3DSimgaveC11 � C12 = 0:0548 pF,C22 �
C12 = 0:472 pF,C12 = 0:454 pF,L11 = 0:972 nH, andL22 = 1:03
nH for just overlaping areajxj � w1=2; jyj � w2=2. These values
account for proper deembedding, whereby2w2 � Cu1 and2w2 � Lu1
have been substracted, respectively, fromC11 andL11 for example
(Cu1 andLu1 are the unit length capacitance and inductance ofM1).
Touchstone predicted a 20-dB minimum directivityjS41j=jS21j over
bandwidthBc = 10% at center frequencyfc = 1923 MHz, with a
coupling factorjS41j = �14:3 dB at fc, and anjS41j ripple of less
than 0.7 dB overBc, for w1 = 3:1 mm,w2 = 2:08 mm, l1 = 8:73
mm, andl2 = 9:43 mm (Fig. 1).

Measurements are shown in Fig. 5. Directivity reaches a 33-dB max-
imum atfm = 1903 MHz (keep in mind that good directivity is only
useful as long as access ports are well matched).fc is off fm by 1%

of fm. Measured bandwidth isBm = 8%. jS41j goes from�15.7 to
�15.4 dB overBm, and return loss is better than 22 dB at all ports.
Direct transmission loss=jS31j is less than 0.3 dB atfm.

VIII. C ONCLUSION

A new microstrip coupler was presented. It involves multiple layers
which are now standard in mass production of microwave circuits
for mobile communications. Good agreement between measurement
and simulation was obtained, by applying an FD method to a simple
quasi-static model. Measured performance show good potential
for narrow-band applications, namely superior directivity. The new
coupler may be the preferred choice from a manufacturing point of
view also, if one considers the drawbacks of side coupling: 1) critical
etching tolerance and 2) depending of the manufacturing process,
dendrites might form through electrochemical migration between
conductors during operation, and cause temporary shorts, especially at
high power levels. This phenomenon has been identified as one of the
toughest challenges of PCB bass production [13].
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