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Abstract—In this paper, a fast method for the calculation of
mutual coupling between transmission lines is described. Starting
from the general method of moments, which can handle random
shapes, the calculations are speeded up for the specific case of cou-
pling between lines. This is accomplished by assuming that all lines
are terminated in their characteristic impedance and using the
traveling current waves on these matched lines. Only first-order
coupling between the lines is taken into account. This means that
only the current induced by the source line is taken into account
and all currents resulting from induction by this induced current
are discarded. This results in a much faster method because only
the inverse of the -matrix for the observation line is involved.

Index Terms—Electromagnetic compatibility, line coupling,
method of moments.

I. INTRODUCTION

COUPLING between lines in microwave circuits can
become large, especially when the lines are close to each

other and run parallel. In order to solve a circuit correctly,
this coupling should be taken into account. A classical way
to do this is to use a subsectional method of moments. The
whole circuit is divided into segments that are small compared
to the wavelength. The current is then expanded into basis
functions that represent the current between two adjacent
segments. In the next step, the fields that a current of a basis
function generates at all positions between two adjacent
segments are calculated. A set of equations can now be written
which expresses that, for every position between two adjacent
segments, the total tangential electric field on the conductors
has to be zero (impedance boundary condition). The current on
the conductors is calculated by solving these equations. From
this current the coupling (in decibels) can be calculated. The
advantage of this method is that it can handle random shapes,
by meshing them into squares and triangles. In the case of
lines, however, it does not take advantage of certain physical
relations for transmission lines that are known in advance. As a
result the matrix may become very large for more complicated
circuits and the solution will take a lot of computer resources.
By taking into account these known physical relationships, the
coupling between lines can be calculated a lot faster. Fig. 1
shows the structure that is used to explain the method. Two
lines are located in a multilayered structure (e.g., microstrip,
stripline, etc.). The technique explained further in this paper
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Fig. 1. Two coupled lines, composing a four-port.

can handle arbitrary directions of both lines, as long as they
are sufficiently separated. Both lines have ports at both ends.
All ports are terminated in the characteristic impedance of the
corresponding line. The objective is to calculate the 44

-matrix, which represents the coupling between the four ports.
It is essential to understand that only the coupling between
lines 1 and 2 is calculated. The coupling between the structures
feeding the lines is not considered. The reason for this is that
the technique presented here will be used as a module in an
overall approach for the analysis of planar structures, where the
coupling from and to the feeding parts is taken into account in
a different way.

In this paper, the results of the developed method are com-
pared with those of a standard method of moments. The theory
and corresponding software that implements this standard
method are described in [1]–[3]. Other methods to solve this
problem are discussed in [4]–[6].

II. I TERATIVE SOLUTION FOR STANDARD METHOD OF

MOMENTS

In this section, we will explain how, for a structure consisting
of two lines, the equations expressing the impedance boundary
condition for the two lines can be decoupled and solved itera-
tively.

In a standard method-of-moments procedure, the structure
of Fig. 1 is solved as described in Section I. The resulting set
of equations expressing the impedance boundary condition is
shown in formula 1. The th column of the matrix describes
the fields that the th current basisfunction generates at all ba-
sisfunction positions

(1)
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The excitation [right-hand side of (1)] represents the opposite
of the incident field on the lines. This field is generated by im-
posed currents at the ports. Thematrix can be divided into the
following submatrices:

1) describes the self-coupling of line 1;
2) and are identical due to reciprocity and represent

the coupling between line 1 and 2;
3) represents the self-coupling of line 2.

The subscript on the unknown currents indicates that the re-
sults are exact if the segmentation density goes to infinity. The
relation between these imposed currents and the incident waves
on the lines is determined in the deembedding step [7].

To solve (1) iteratively, we rewrite it as

(2)

When only port 1 is fed (indicated by the subscript), and
we assume that this feed only produces a field on the first line

, then iterative approximations for and can be
obtained as follows:

... (3)

in which is the number of the iteration step.

III. B ASIC METHOD

This section explains how the-parameters are calculated,
normalized to the line impedances.

Since the correction in each step of (3) is proportional to
, sufficient accuracy will be reached rapidly if the norm

of is small. A small value for the norm of indicates low
coupling values between the two lines. Low coupling means that
the lines are sufficiently separated. In this paper, it is further as-
sumed that only line 1 is fed . Also, only two itera-
tion steps will be used. This means that we will only consider
coupling from the “source” line (which is fed) to the “observa-
tion” line and ignore the influence of the induced observation
line current on the source line (higher order coupling). If the
coupling between the lines becomes too large, we can improve
the results by using more iteration steps, which will take the
higher order couplings into account again one by one. A gen-
eral rule of thumb is: if the coupling is equal to dB, then
the second-order effect on the source line will be dB and
on the observation line dB. This is also shown in Section
V. The method cannot be used for tightly coupled (5 dB or
higher) lines because thevalues of the lines change due to the
development of odd and even modes.

Since coupling is low and the-matrix is calculated with all
lines terminated in their characteristic impedance at the ports,
instead of being calculated using step 2 of (3), the current on line
1 may be approximated by a traveling wave. If a unity amplitude

voltage wave excites line 1 at ports 1 or 2, then the current on
line 1 can be approximated by

(line 1) (Exited at port 1) (4a)

(line 1) (Exited at port 2) (4b)

Using step 3 of (3), we can now calculate an approximation for
the current on line 2. Instead of the regular matrix, which
describes the piece of line open at its both ends, we use a mod-
ified matrix, which describes the same line, but matched
at both ends (ports). This matrix will be derived in the fol-
lowing section. Thus, the -matrix used for line 2 is inherently
matched. This means that, if port 3 is at and port 4 is
at on line 2, the relationship between traveling voltage
waves (needed for the calculation of the-parameters) and the
currents is simply

(5a)

(5b)

The subscripts on denote the port number. The minus sign
on and shows that these are the outgoing waves. The cur-
rent at these points can only be due to outgoing waves because
the ports are matched. Once we know the voltage waves at the
ports, we can calculate ( with ) and
( with ) and from reciprocity we also know

and . The parameters will be symmetric provided
that voltage and current waves are normalized: the current on
the source line should be multiplied with the square root of the
source line impedance and the outgoing wave on the observation
line should be divided by the square root of the observation line
impedance. By repeating the above with line 1 fed at port 2 (4b)
instead of port 1 (4a), we can calculate , , , and .
Although the -parameters for the lines are calculated while
they are terminated in their own characteristic impedance, these

-parameters can be easily renormalized to other impedances
or used to calculate nonmatched cases. The remaining problem
is how to express that line 2 is matched.

It is assumed that only one subdivision along the widths of
the lines is used. This yields an excellent approximation as long
as the coupled lines are far apart compared to their width. If
more subdivisions along the widths are required, then the lines
should be divided into parallel longitudinal current strips for
which the same procedure can be used. The results for the dif-
ferent strips should be combined according to the current den-
sity profile across the width of the lines.

In the remainder of this paper, we will discard the iteration
number subscripts. All currents are the result of the first two
iterations.

IV. DERIVATION OF FROM

In this section, a method will be described that can be used to
simulate a matched termination for a line. This matched termi-
nation is needed because we want the current at the ports to be
equal to the outgoing current wave [(5a) and (5b)]. The quality
of the match is not influenced by the position of the line or the
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Fig. 2. Extension of the observation line at both ends.

vicinity of other lines. Subscript 2 is dropped for the coordinate
system of line 2. The basis functions are counted in increasing

direction.
A method to match line 2 is derived from [4]. The first and

last rows of are replaced by rows corresponding to

(6a)

and

(6b)

respectively, where is the number of basis functions on the
line and is the segment length (half the length of a basis func-
tion). Equation (6a) states that at the left-hand-side termination
of the observation line, there can only be a left-hand-side trav-
eling wave and no right-hand-side traveling wave. Equation (6b)
takes care of the termination at the right-hand side of the line.

The matching obtained using solely this technique is not per-
fect because of the sudden stop of the line at the terminations.
Ideally, matching the line means prolonging it up to infinity at
both sides and imposing traveling waves, going to infinity, on
the prolonging pieces in such a way that the current is contin-
uous at both ends of the line. This is explained in Fig. 2. We will
approximate the infinite prolongations by reusing the proper
Green’s function to calculate coupling with a finite

virtual prolongation of the line. This Green’s function was
already calculated for this maximum distance in the reg-
ular method-of-moments procedure because it was needed for
the calculation of . Since this Green’s function is known up
to a distance corresponding to the length of line 2, the field
in a certain point on the line can be approximated by

(7)

The coupling from the virtual prolongation to the line can be cal-
culated up to a distance equal to the length of the original line.
Coupling across larger distances is neglected. The field gener-
ated by the virtual extension of the original line can be approx-
imated by

(8)

in which and are the distances from the port under consid-
eration on the original line and the virtual extension, respec-
tively. This is indicated for the left port in Fig. 2. The larger

becomes, the less accurate this approximation of the infinitely
long line becomes because the integration interval (over the pro-
longation) becomes smaller and smaller. This can be tolerated
because, at larger distances from the port, the coupling from the
prolongation becomes negligible compared to the coupling of
the line itself.

The following paragraph will explain how this theory can be
implemented into the matrix to make the observation line
appear matched.

The central piece of the prolonged line in Fig. 2 (from
to ) is exposed to the incident field from the source line
(upper graph). This field causes a currenton the matched
observation line, which is drawn in the bottom graph. The left-
hand-side extension runs from to and carries a
current equal to

(9a)

The right-hand-side extension runs from to
and carries a current equal to

(9b)

The current on the extension lines is fully known as a function of
and . This implies that the basis functions on the

extension lines only yield two extra unknowns—namely,
and . is a Toeplitz matrix. Its first column contains
the coupling factors between the basis functions of the observa-
tion line as a function of distance. This can be seen as a discrete
Green’s function on a basis function level. These coupling fac-
tors can also be used in the calculation of the coupling from the
extension lines to the central piece: the basis function on the
right-most side of the left-hand-side extension can be coupled
to basis functions 1 through of the central line. Since
we only know the coupling up to a distance of segment
lengths, every next basis function of the left-hand-side extension
(going right- to left-hand side) can be coupled to one basis func-
tion less of the central line. The faster the coupling decreases as
a function of distance, the better this approximation becomes.

We can now construct a “matched” version of . We first
add modified versions of (6a) and (6b) (two extra rows) as fol-
lows:

(10a)

(10b)

These equations express the current continuity at the line to pro-
longation transition. is the number of subsectional basis func-
tions used in the original line.

We then calculate the couplings of and to
the rest of the line. These will be put in two extra columns.

(11)

where denotes the index of the basis function on the center
(original) line for which the coupling from the extension line
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is being calculated. The matched version of the self-cou-
pling matrix is then

(12)

The matrix equation that expresses the impedance boundary
condition for a matched line now becomes

...
... (13)

The quality of the matching at the ports can be checked by split-
ting the current into a left- and a right-hand-side traveling cur-
rent wave using

(14)

The splitting can be done in a discrete manner in terms of the
current coefficients of the basis functions. The segment length
is then used as . At a port, the splitting is calculated using the
current at the port itself and the current calculated at one seg-
ment length away from the port, inside the line. Good matching
means only outgoing waves at the ports. In Section V, this tech-
nique was used to check the quality of the matching (Fig. 3).
The dependence of the reflection at the port on the length of
the extension [the summation interval in formula (11)] is shown
in Section V. It is clear that the reflections at the port become
smaller as the used prolongation length increases. For normal
usage, this extension length is always set to the maximum cal-
culable distance, which is equal to the length of the line.

Once the matrix for the matched observation line is
known, the coupling between the two lines of Fig. 1 can now be
obtained as follows. The current column matrix of line 1
is calculated using (4a) or (4b). Multiplying with yields
the incident field column matrix on line 2 . We can then get
the current column matrix on the second (matched) line from

(15)

It is important that there are no reflections because the-pa-
rameters are calculated with the lines terminated in their char-
acteristic impedance. If the matrix is not “matched,” then the

Fig. 3. Current on observation line:� = left-hand-side traveling wave,+ =
right-hand-side traveling wave, continuous line= total current.

calculated currents at the ends of the observation line will be
zero (open) and the outgoing waves cannot be calculated. If
was calculated using (4a), then and can be calculated
using

(16)

and are calculated in the same way, using (4b) to cal-
culate .

V. NUMERICAL RESULTS

The method described above is tested for the case of two par-
allel pieces of line. The substrate used has a thickness of 0.508
mm and a relative permittivity of 2.2. The distance(Fig. 1)
between the lines is equal to 4 mm. Both lines have a width of
1.542 mm (characteristic impedance of 50) and are 18-mm
long. The results of the new method are calculated using only
one segment along the width of the lines. The standard method
of moments used in this section is described in [1]. For this stan-
dard method, five segments are used along the width of the lines.
Both methods use 72 segments along the length of the lines.

First, the quality of the match obtained with the matrix
is examined at 5 GHz. This is done by splitting the current on the
observation line into right- and left-hand-side traveling waves,
for the source line port 2 excited. The result is shown in Fig. 3.
The ratio between and at the ports is approximately60
dB, which proves the validity of the method.

Once the quality of the match is verified, we can use the new
technique to calculate the parameters and compare them to
the parameters obtained using the full standard method-of-
moments procedure. The results are shown in Fig. 4.

There is an excellent agreement between the results of the
two methods. This shows that, for this line–line distance, the
current profile along the widths of the lines, which was not taken
into account at all because only one segment along the widths
was used, has only a minor effect on the mutual coupling. This
also shows that second-order coupling is still negligible for this
line–line distance.
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Fig. 4. Comparison of theS-parameters obtained by the standard method of
moments (continuous line) and the new method (+ line).

Fig. 5. Comparison of theS-parameters obtained by the standard method of
moments (continuous line) and the new method (+ line).

This calculation was performed on a P-II 450-MHz machine
running Linux. For the example given, the new method needed
0.0133 s per frequency point. The standard method needed
412.29 or 0.1499 s using five segments or one segment along
the widths of the lines, respectively. These times include only
inversion and deembedding. The matrix setup time is not
included because this procedure was not changed.

Another example shows the validity of the method for general
cases. Referring to Fig. 1, the dimensions are mm,

mm, , mm (31 segments),
mm (49 ), mm (51 segments),

mm (69 ). The substrate is the same as for the first example.
The results for , , , and are shown in Fig. 5 and
compared to the results of the standard method of moments.

To check the maximum allowable coupling level (minimum
distance), another example was calculated consisting of two par-
allel lines with . Both lines have a length
of 18 mm and a width of 0.61 mm (50). The substrate is
0.635-mm thick and . The coupling was calculated and
compared to the standard method of moments (using 805 seg-
ments for both lines) for the three distances of 4, 1.5, and 1 mm.

Fig. 6. Comparison for distances of 1 mm (top trace), 1.5 mm (middle trace),
and 4 mm (lowest trace) forS (left-hand-side graph) andS (right-hand-side
graph).

Fig. 7. Magnitude of the current on the line for first-order and higher order
modes. The top curve is first order, the next curve is second order, etc.

The continuous line in Fig. 6 represents the standard method
of moments, the dotted–dashed line the new method. The re-
sults are usable up to 1.5 mm. The maximum coupling is then

10 dB . At closer distances (higher couplings), the re-
sults become bad at high frequencies and the curves shift in fre-
quency because thevalues start changing due to the coupling.

For the distance of 1.5 mm and a frequency of 5 GHz, Fig. 7
shows the magnitude of the first-order and higher order currents
on the source and observation lines. The highest curve repre-
sents the first-order current on the observation line. The next
trace shows the influence of this current on the source line, etc.
The sum of all these currents (only the first ten orders are shown)
will correspond to the solution obtained by full matrix inversion.
From Fig. 7, it is clear that the higher order modes soon become
negligible, which proves the fast convergence of the method and
suggests that only one iteration step is sufficient in most cases.

The last example, shown in Fig. 8, illustrates the dependence
of the reflection at the ports on the length of the virtual exten-
sion. A traveling wave incites on a matched termination and the
reflected wave is calculated using (14). The continuous line is
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Fig. 8. Reflection at a port as a function of the length of the virtual extension.
Continuous line has" = 2:2, dashed–dotted line has" = 9:9.

for a line length of 40 mm and width of 1.542 mm (50) on
a substrate with a thickness of 0.508 mm and . The
dashed–dotted line is for a line length of 40 mm and width of
0.61 mm (50 ) on a substrate with a thickness of 0.635 mm
and . Both lines have 43 segments along the length
and five segments along their width. The calculations where per-
formed at 5 GHz. About one-tenth of a wavelength is needed to
get good results. The left-most point of the curves corresponds
to the technique that was used in [4], where no virtual prolon-
gation was used.

VI. CONCLUSIONS

A new technique for the calculation of line–line coupling has
been presented. It drastically reduces the calculation time: 1)
by using the fundamental mode on the source line; 2) by using
an inherently matched observation line; and 3) by neglecting
higher order coupling. Using this technique, only the self-cou-
pling matrix for line 2 and the coupling matrix between
lines 1 and 2 have to be calculated. Only needs to be
inverted instead of the complete line–line coupling matrix in a
full method-of-moments procedure. Since the observation line
is inherently matched, no deembedding step is needed.
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