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Abstract—in this paper we apply the domain decomposition BEMs are numerically more efficient than the other techniques
approach in conjunction with the finite difference (FD) method provided the environment of the interconnect is homogeneous,
to compute efficiently the capacitance matrixes of crossovers and which. however. is seldom ever the case in real-world intercon-
via type of interconnect structures, formed by traces that are ’ ! . . .
nonorthogonal in general. In the past we have applied the FD r?eCt Strl’_'c_tures' A considerable Improve_ment In th? computa-
method, in conjunction with the perfectly matched layer (PML) tional efficiency of the BEM has been achieved by using the fast
and the impedance boundary condition for FD mesh truncation, multipole method (FMM); however, there is a time penalty to be
to compute the capacitances of orthogonal interconnect configura- paid in using this method when the interconnect is embedded in
tions. In this work we extend the above approach to apply to more 5, itjjayer dielectric. Though the latter problem is very conve-

general geometries, e.g., vias and crossovers with arbitrary angles. . . . ;
The paper presents some representative numerical results and niently and efficiently handled by using the closed-form Green’s

examines the convergence and efficiency issues of the proposedunction, it is not well suited for analyzing nonplanar or con-
algorithm. formal dielectrics. If the mesh truncation problem can be ad-

Index Terms—Capacitance, domain decomposition, finite-differ- dréssed in a convenient manner, the FD or FE schemes offer the
ence method, interconnects, nonorthogonal configurations. best avenues for efficient solution of the capacitance problem
involving dense interconnect configurations embedded in an in-
homogeneous dielectric environment.

General-purpose field solvers based on the FD and FE
CCURATE evaluation of the self and mutual capacitanc&shemes have been incorporated in many software packages.
of off-chip and on-chip interconnect configurations is veriMethods based on the FD scheme have proven to be flexible and

important in high-speed digital design. In the deep-submicrefficient for a wide class of practical configurations. However,
range, complexities of these interconnect structures lead to cdhe volume discretization employed in these methods often lead
putation times that can be prohibitively large. One practical afp large matrixes. In addition, one must successfully deal with
proach to rendering a large problem manageable is to use te other issues when using the FD method for the capacitance
“divide and conquer” approach, realized by a domain deco®emputation of realistic interconnect structures. The first of
position scheme. Classical domain decomposition algorithnigse pertains to the truncation of the FD mesh when solving
such as the Schwartz or Schur complement methods [1], [2Ren region problems. In previous works, the authors have
have been developed for discrete approximations in the contekown [3]-[5] how the perfectly matched layer (PML) can be
of finite element (FE) or finite difference (FD) methods. In prinused in conjunction with the impedance boundary condition
ciple, the domain decomposition schemes can be applied in cand mesh refinement scheme for accurate mesh truncation.
junction with any number of different solvers for the Poisson’s In this work we focus on addressing the second difficulty that
equation with associated boundary conditions to compute théses when one attempts to use the FD scheme to analyze inter-
capacitance. The FD method, applied in the various sub-dmnnects whose geometries do not conform to a single Cartesian
mains, appears to be the preferred choice when used in conjusystem of coordinates. While a simple staircasing approach may
tion with iteration algorithms, because it enables us to compute used to handle this problem, the mesh descretization needed
the values of the electric potential at all of the mesh points ta maintain the accuracy of the calculation such that it is 3%
the sub-domain—including the overlap region. or better is typically very fine in the staircase region. This, in

The problems caused by the volume discretization, of the typ#n, often translates to large computation times and CPU re-
considered in this paper, do not arise in approaches basedjpitements for many realistic interconnect structures, especially
the boundary element method (BEM). As a general rule, tfire the deep-submicron range. To overcome this difficulty, we

propose a novel approach based on the domain decomposition
. . scheme and illustrate its application to the problem of capac-
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traces. Furthermore, the proposed scheme is well suited for gapm the integral equation that corresponds to the Gauss's law,
allel processing, which also helps reduce the computation tirag follows:

substantially, if utilized. .
f/D(f’)ﬁdA:///pdv
A v

Il. FORMULATION OF THE PROBLEM whereD is the electric flux density7 is the outward normal to
) o the surfaced, andp represents the charges located inside the
Interconnect structures of the type considered in this paR@flumeV . If a volume does not contain the metal lines and the

are a set of rectangular parallelepiped conductors and dielecinductivity of the dielectrics inside the volume in negligibly
rods embedded in a layered dielectric medium. The capacitarggall, we can assume thati”) = 0|

of an N-conductor geometry can be described by N
capacitance matrifC]. The diagonal entrie€’;; of [C], repre- ll. DOMAIN DECOMPOSITIONAPPROACH

senting the self-capacitance of conductoare positive, while ) .
the nondiagonal entrieS; ;, representing the coupling capaci- Domain decomposition schemes are based on the concept of

tance between conductorsand j, are negative. To determinedividing the initial computational domain, containing all metal
the jth row of the capacitance matrix, we need only solve fdfaces, into a system of subdomains. These subdomains are de-
the surface charges induced on each conductor, after setting/tAgd: With or without overlap regions, by taking the geometry of

potential of the conductoito a unity, while grounding the restth_e interconrje_ct structure into account in a_systematic manner.
of the conductors. The€;; is numerically equal to the charges'”ce the original boundary value problem is formulated in an
on the conductor; this procedure is repeated times to com- unbounded domain, its decomposition into sub-domains does

FeV .

pute all rows of the matrifC]. not herip r1113 cirfjumven;th.e fﬁ)roblem cf>f hmesh .tfru.nclzition.fn ap]:
The potential functiono(7)(E(7) = — V(7)) must satisfy proach that reduces the influence of the artificial boundary o
- the subdomain, and yet keeps the number of mesh points re-
the following: g i : .
, ) alistic for follow-up calculations, was considered in [3]—[5]. To
1) Laplace S equation; N reduce the number of the mesh nodes, i.e., the number of the FD
2) Dirichlet's boundary condition at the conductor surfacegqyations, we use the static PMLs and impedance condition on
3) continuity conditions at the dielectric interfaces. U = (7) atthe artificial boundary .. The material properties

To determine the entries in thgh row of the capacitance ma- of this medium in the static PMLs are described by a diagonal
trix, the potential of thexth line is setto 1V, while the potentialstensorz, with corresponding tensor elements that are less then
of the other conductors and of the ground planes are set to 01\g. Such tensor elements introduce a “stretching” of the dis-
We then solve the following boundary value problem: tance between the mesh nodes, and thereby decrease the influ-
ence of the artificial boundary on the computed potential values
in the interior region. A mixed or impedance condition, viz.,

2
Vig=0 {8/0nU(p) + a(P)U(P) }pcr = 0, is imposed on the potential
¢(7) = 1.0lz¢s, functionl/ at the outermost boundal,. The coefficientris a
o() =00|zcs,, m=1,...Nym#n function of the coordinates (see [3] for details) and this function
o(7) = 0.0]scs, is determined by iterative recalculations. This boundary condi-

tion, when used in conjunction with the PMLSs, enables us to

obtain accurate results with only a single iterative refinement of
where{S,}_, are the surfaces of the conducting lines &)d «. Moreover, thev-technique offers considerable time saving if
is the surface of the ground plane. the interconnect structure is very long.

Let us assume that the edges of conductors and dielectri®Ve consider aV-layer structure, shown in Fig. 1, where the
rods are parallel to the axes of a single Cartesian system of taces in the different layers are either parallel or perpendicular
ordinates. Although this assumption is necessary to solve tethe localz-coordinate, and may form arbitrary angles with
problem using the conventional FD method, we will show lateespect to each other. Within each level of this multilayer con-
how one can relax this restriction and use a generalized versfiguration, the interconnecting lines can be described in local
of the FD algorithm which is valid for geometries described bgystem of Cartesian coordinates. For the sake of simplicity, we
multiple systems of Cartesian coordinates. assume that these coordinate systems share a commaxis.

Following the usual procedure for the FD method, we first s&¥e divide the computational domain into a multitude of subdo-
up amesh to describe the geometry of the interconnect structunains at each level, with overlap regions in théirection, and
The mesh is devised such that the nodes are placed on the sge-the PML in conjunction with the technique [3] to reduce
faces of the metal traces as well as on the ground planes, andtihéstruncation errors introduced by the artificial boundaries (see
enables us to generate a single mesh for the entire structure Fis 1).

a result, the mesh is nonuniform in general, i.e.,ihg, andz The first step in the domain decomposition scheme is to de-
dimensions of the cells can be different. After the mesh has bd@ere the key subdomains (at least one) to initiate the iteration
generated, we write the Laplace’s equation in the correspondprgcess. It is essential that the key subdomain contain a metal
FD form for all the nodes of the mesh. The equations for the itine (or part of this line) with a nonzero potential. Our next step
ternal nodes at the interfaces between dielectrics can be deriigetb follow an iterative scheme as described below:
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{ subdomain 3
‘—:—

[ . | - subdomain 2

< i _subdomain 1

Fig. 1. Division of the computational domain into subdomains in vertical direction and rotation of the subdomains around the axis which is |earfetidicu
ground plane.

Step 1) Calculate the electric potential in the key subdomain
say subdomain-1. To eliminate the influence of the
artificial boundary, use PML and/aerboundary con-
dition (for details, see [3]).

Step 2) During the first pass, use the results of the first step t«
compute the potential in the neighboring subdomain
in a sequential manner. Use interpolation to obtain
the potential values in the neighboring domains to
handle the coordinate rotation.

Step 3) Follow a reverse path, once the first pass has bee
completed, and retrace the steps 1 and 2. Start witt
the farthest subdomains and progress toward the ke
subdomain, viz., subdomain-1.

Step 4) Repeat steps 1 and 2, moving forward once agair

starting from the key subdomain and going to the
most remote ones. Fig. 2. Iterative scheme for the case of nonorthogonal interconnects located at
the same level. The thick solid line indicates the artificial boundaries with PMLs
The situation considered above corresponds to the case wh@rdgmpedance boundary condition. The shaded area is the subdomain in which

we only need in a single Cartesian system of coordinates to &§tPotential is calculated at the iteration step.

up the FD mesh at each level, as is typically the case. In more

general situation, where we may have nonparallel conductqrge width, thickness, and length of each line are 1, 1, amh8

at the same level, the domain decomposition scheme should&spectively. The distances between the parallel lines, between
modified. Schematically, the iteration algorithm of calculatiothe lines at the lower and upper levels, and from the ground
in two subdomains with nonparallel boundaries is depicted filanes to the lines all equal Am. The dielectric constant of
Fig. 2. The boundaries marked by thick solid lines are artificighe medium i = 3.9. It takes 25.8 s on a Pentium PC 500 to

ones and require the applications of the PMLs in conjunctigympute all of the elements of the capacitance matrix, which is
with the impedance boundary condition. given below.

1.486 —0.387 —0.185 —-0.185
—0.387 148 —0.185 —-0.185
IV. TEST CASES [€1=1 _01s5 —01s5 1486 —o3s7| ™
—0.185 —0.185 —0.387  1.486
In this section, we present the two numerical results for two
test cases to illustrate the application of the FD/PML approach ) ) ) _ )
and to compare the results of simulation with those derived The results obtained by the dimension reduction technique
by other simulation techniques. A variety of geometries hal@l are as follows:
been analyzed by using this method to illustrate its versatility.
The first test case we analyze is a simple case of a two-by-two 1.536 —0.407 —=0.173 —=0.173
crossover between two ground planes (see Fig. 3). The capaci- —0407 1536 —0.173 —0.173
tance matrix of the crossover obtained by the dimension reduc- (€= ~0.173 —0.173 1.536 —0.407 fF.
tion technique and by Ansoft’s SPICELINK can be found in [6]. —0.173 —0.173 —=0.407 1.536
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The computation time is 87 s witha SUN SPARC 20. The cor-
responding capacitance matrix, derived by using SPICELINK
from Ansoft (as described in [6]) is

1.53 —-0.398 —-0.188 —0.196
—-0.398 1.52 —0.187 —-0.195
[€1= —0.188 —0.187 147 —-0.373 F

—-0.196 -0.195 -0.373 1.51

and the computation time is 881 s.

The second test case considered was a crossover formed by
two lines, an example of which appears in the Raphael Refer-
ence Manual RA 4.1 [7]. The width, thickness, and length of the
conductors are 2, 0.5, and 3n, respectively. The lower con-
ductor is located at a height ofidn above the ground plane and
the upper conductor is 12m above the ground. The crossover
is embedded in a two-layer of dielectric, and the thicknesses of
the layers are 4 and Bm, while their relative dielectric con-
stants are 4.3 and 3.9, respectively.

The capacitance matrix we obtained for this structure is

3207 —0.358
[C1=1 0373 15376 | ™ (b)

Since realistic interconnect structures are seldom totally syfig. 3. Test example-1. (a) Two-by-two line crossover above a ground plane.
- : : : éﬁ)ﬁ Top view of the crossover.
metric, we chose to consider the entire computational dom
that contained the crossover without invoking any symmetries TABLE |
that WOU|d have, |f ImpOSGd, reduced |tS SIZE by a faCtOf Of fOUI‘ CAPACITANCE VALUES FORDIFFERENT CROSSOVERANGLES o
It took 70 s of CPU time on a Pentium PC 500 to derive ik

matrix. 0=90° | a=75° |o=60° |a=45° |o=30° |a=15° |a=0°
i Cu 3.20 3.18 3.237 3.2426 3.26 3.265 3.288
For the sake of comparison, we then solved the same probl o 355 o Lo o5 Toasis o Tosst

by using the Raphael software to obtain

[C] = 3.2197 = —0.4183 fF. At the third step we resolved the problem in subdomain-1, by

—0.3872 16514 utilizing the values of the electric potential at the mesh points in

This latter computation required 80.3 s, even when we took a%l_ane-z and employing the interpolation scheme, if necessary.

vantage of the symmetry of the structure to reduce the size dpr he aboxg |terart]|on algorltglm, Wh'tChd'S blas?[rc]i on the domau:h
the problem domain by a factor of four. ecomposition scheme, enables us to deal with crossovers wi

Next, to demonstrate the efficiency of the proposed approa\é&r"lrying angles ranging ”O”.‘ the limiting case c_>f an orthogonal
when applied to the case of nonorthogonal crossovers, we giossover (99 to the other limit of two parallel lines (). The

vided the entire computational domain into two subdomaiﬁgsuns of calculations of the capacitance versus the angle are
resented in Table I.

with an overlapping region, which ranged from the lower sid® . .
of the lower line to the upper side of the upper line. We beganThe accuracy realized was better than 1%, and was achieved

by using the same FD mesh in the subdomains as we emmog&{#&?t two to three iteration steps for all values of the orientation
for the case of the orthogonal crossover. ngleor.

To calculate the first row of the capacitance matrix, we set
the potential of the lower line (line 1) to 1.0 V and grounded the
upper line (line 2). As a first step of the iteration process, we In this section, we present a few representative problems as-
solved the problem in subdomain-1 (see Fig. 4). Next, we westciated with realistic interconnect structures. For the first ex-
on to solve the problem in the companion domain, i.e., subdample we consider a test structure formed by four lines, whose
main-2, while utilizing the values of the electric potential at thevidths and thicknesses are identical, viz., @b and 0.25:m,
mesh points in Plane-1. If the crossover is not orthogonal, i.eespectively (see Fig. 5). The two lines at the lower level are lo-
if the upper and lower lines form an anglethat is neither 99 cated at a height of 0.76m above the ground plane. The length
or 0°, we rotate the coordinate system of the mesh in subdaf-the straight line (line-1) is 6.@m. The distance between
main-2 with respect to the corresponding coordinate systemh#nds in the omega-shaped line is @r0. The lines at the upper
subdomain-1. Consequently, it is necessary to use an interpddael are located at a height of 1,.5n above the ground plane.
tion scheme to obtain the values of the potentials at the meHfe structure is embedded in two dielectric layers. The first of
points on the lower side of the subdomain-2 (Plane-1 in Fig. 4hese, just above the ground plane, is Qun% thick, while the

V. ADDITIONAL NUMERICAL EXAMPLES
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Fig. 4. Test example-2: crossover above the ground plane. Domain decomposition and the iterative scheme for the case of nonorthogonal interconnects

(a) (b)
z s - 8
; —=—(C33
—.—C33 1 —e—om
o —e—C3 —a—C31
iy —a—C31 o
|’ L —_——
< —y—C2 < v—c%2
2 g
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8 g 4
Q —
8 ‘ O A 2 v
A A A
1 AL\‘\
& 1 K
[ 1 2 3 4 5 0 20 40 60 80 100
lteration step ©) Orientation angle (degrees)

Fig. 5. (a) Four-line structure embedded in two dielectric layers above the ground plane (layers and the ground plane are not shown). (b) Topnoelifiedthe
structure. The upper lines are rotated by angkbout the: axis, which is normal to the ground plane. (c) Capacitances of the four-line structure as functions of
the iteration steps and as functions of the orientation angle

second layer on its top is located between the heights ofih¥5 regions, are presented in Fig. 5(c). Note that the convergence of
and 1.75um. the iteration procedure is quite rapid.

Ifthe angle of rotationy = 90°, and a 1-V potential is applied  For the next example, we analyze a via formed by two lines
to line-3 while all the other lines are grounded, the computddidth 0.5 m and thickness 0.2am) with pads as shown in
capacitance values derived by using a single computational ¢dg. 6. The line atthe lower level is located at a height of Q.itb
main turn out to beC3; = 1.6462,C3y = —0.2242,C3, = above the ground plane. The lengths of the straight-line sections
—1.0437, C3; = —0.0738. The results of the domain decompo-are 2.5:m each. The patch width is 1.6n. The line at the upper
sition approach, employing two subdomains with overlappirigvel is located at a height of 1/am above the ground plane.
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(a)

(b)

Fig. 6. (a) Via embedded in two dielectric layers above a ground plane

(dielectric layers and the ground plane are not shown). (b) Top view of the via

structure. The upper line is rotated about theis that is normal to the ground

plane. Fig. 8. (a) Three-by-three crossover embedded in two dielectric layers above
the ground plane (layers and the ground plane are not depicted). (b) Top view
of the crossover. The upper lines are turned around the axis that is normal to the
ground plane.

13
12 \ —o—C y=90° |
€ \ oo QL,,/V
s o
8 11 A\
c
8 j J
§_ 10 \ — LJ )
8 \ —_— = | '\_'
09
0.8 \T\T . . . .
’ 0 1 2 3 4 5 Fig. 9. Three-elementinterconnect structure. Two upper lines are rotated with
Iteration step respect to the lower traces. The structure is located above the ground plane and
008 embedded in three dielectric layers, witk= 3.9 (0.0to 0.5¢m height): = 5.7
up a height of 1.4:m, ands = 4.0 to a height of 2.5.m. The ground plane
056 — e and dielectric layers are not shown in the figure.
094 "
< /] The structure is embedded in the same two dielectric layers as
g °% % those in the previous example.
c . . . o .
£ 0w The results of application of the domain decomposition with
g / two subdomains and an overlapping region between them are
O oes presented in Fig. 7. Once again, rapid convergence is realized.
088 Next, we move on to 8 x 3 crossover formed by three-by-
three lines (width 0.%:m and thickness 0.2bm), as shown in
T 20 w0 P % 100 Fig. 8. The lines at the lower level are located at a height of
Orientation angle (degrees) y 0.75.:m above the ground plane, and they are both®#8ong.

The line at the upper level is located at a height ofjinbabove
Fig. 7. Capacitance of the via, shown in Fig. 4(a) as a function of tH@"e gfoPnd plane. The structu_re is embedded in the same two
orientation angley . dielectric layers as in the previous two examples.
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If v = 25°, we set the line-1 to a potential of 1 V, and grounc’ Vladimir V. Veremey (M'98) received the M.Sc.
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