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Computation of Nonorthogonal Interconnect
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Abstract—In this paper we apply the domain decomposition
approach in conjunction with the finite difference (FD) method
to compute efficiently the capacitance matrixes of crossovers and
via type of interconnect structures, formed by traces that are
nonorthogonal in general. In the past we have applied the FD
method, in conjunction with the perfectly matched layer (PML)
and the impedance boundary condition for FD mesh truncation,
to compute the capacitances of orthogonal interconnect configura-
tions. In this work we extend the above approach to apply to more
general geometries, e.g., vias and crossovers with arbitrary angles.
The paper presents some representative numerical results and
examines the convergence and efficiency issues of the proposed
algorithm.

Index Terms—Capacitance, domain decomposition, finite-differ-
ence method, interconnects, nonorthogonal configurations.

I. INTRODUCTION

A CCURATE evaluation of the self and mutual capacitances
of off-chip and on-chip interconnect configurations is very

important in high-speed digital design. In the deep-submicron
range, complexities of these interconnect structures lead to com-
putation times that can be prohibitively large. One practical ap-
proach to rendering a large problem manageable is to use the
“divide and conquer” approach, realized by a domain decom-
position scheme. Classical domain decomposition algorithms,
such as the Schwartz or Schur complement methods [1], [2],
have been developed for discrete approximations in the context
of finite element (FE) or finite difference (FD) methods. In prin-
ciple, the domain decomposition schemes can be applied in con-
junction with any number of different solvers for the Poisson’s
equation with associated boundary conditions to compute the
capacitance. The FD method, applied in the various sub-do-
mains, appears to be the preferred choice when used in conjunc-
tion with iteration algorithms, because it enables us to compute
the values of the electric potential at all of the mesh points in
the sub-domain—including the overlap region.

The problems caused by the volume discretization, of the type
considered in this paper, do not arise in approaches based on
the boundary element method (BEM). As a general rule, the
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BEMs are numerically more efficient than the other techniques
provided the environment of the interconnect is homogeneous,
which, however, is seldom ever the case in real-world intercon-
nect structures. A considerable improvement in the computa-
tional efficiency of the BEM has been achieved by using the fast
multipole method (FMM); however, there is a time penalty to be
paid in using this method when the interconnect is embedded in
a multilayer dielectric. Though the latter problem is very conve-
niently and efficiently handled by using the closed-form Green’s
function, it is not well suited for analyzing nonplanar or con-
formal dielectrics. If the mesh truncation problem can be ad-
dressed in a convenient manner, the FD or FE schemes offer the
best avenues for efficient solution of the capacitance problem
involving dense interconnect configurations embedded in an in-
homogeneous dielectric environment.

General-purpose field solvers based on the FD and FE
schemes have been incorporated in many software packages.
Methods based on the FD scheme have proven to be flexible and
efficient for a wide class of practical configurations. However,
the volume discretization employed in these methods often lead
to large matrixes. In addition, one must successfully deal with
two other issues when using the FD method for the capacitance
computation of realistic interconnect structures. The first of
these pertains to the truncation of the FD mesh when solving
open region problems. In previous works, the authors have
shown [3]–[5] how the perfectly matched layer (PML) can be
used in conjunction with the impedance boundary condition
and mesh refinement scheme for accurate mesh truncation.

In this work we focus on addressing the second difficulty that
arises when one attempts to use the FD scheme to analyze inter-
connects whose geometries do not conform to a single Cartesian
system of coordinates. While a simple staircasing approach may
be used to handle this problem, the mesh descretization needed
to maintain the accuracy of the calculation such that it is 3%
or better is typically very fine in the staircase region. This, in
turn, often translates to large computation times and CPU re-
quirements for many realistic interconnect structures, especially
in the deep-submicron range. To overcome this difficulty, we
propose a novel approach based on the domain decomposition
scheme and illustrate its application to the problem of capac-
itance calculation of crossovers formed by traces at different
levels that are parallel to the ground plane, but not necessarily
parallel to each other. Not only do we avoid the staircasing in
this scheme, but we also maintain the number of unknowns at
the same level as in case of corresponding parallel or orthogonal
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traces. Furthermore, the proposed scheme is well suited for par-
allel processing, which also helps reduce the computation time
substantially, if utilized.

II. FORMULATION OF THE PROBLEM

Interconnect structures of the type considered in this paper
are a set of rectangular parallelepiped conductors and dielectric
rods embedded in a layered dielectric medium. The capacitance
of an -conductor geometry can be described by an
capacitance matrix . The diagonal entries of , repre-
senting the self-capacitance of conductor, are positive, while
the nondiagonal entries , representing the coupling capaci-
tance between conductorsand , are negative. To determine
the th row of the capacitance matrix, we need only solve for
the surface charges induced on each conductor, after setting the
potential of the conductor to a unity, while grounding the rest
of the conductors. Then is numerically equal to the charge
on the conductor; this procedure is repeated times to com-
pute all rows of the matrix .

The potential function must satisfy
the following:

1) Laplace’s equation;
2) Dirichlet’s boundary condition at the conductor surfaces;
3) continuity conditions at the dielectric interfaces.
To determine the entries in theth row of the capacitance ma-

trix, the potential of the th line is set to 1 V, while the potentials
of the other conductors and of the ground planes are set to 0 V.
We then solve the following boundary value problem:

where are the surfaces of the conducting lines and
is the surface of the ground plane.

Let us assume that the edges of conductors and dielectric
rods are parallel to the axes of a single Cartesian system of co-
ordinates. Although this assumption is necessary to solve the
problem using the conventional FD method, we will show later
how one can relax this restriction and use a generalized version
of the FD algorithm which is valid for geometries described by
multiple systems of Cartesian coordinates.

Following the usual procedure for the FD method, we first set
up a mesh to describe the geometry of the interconnect structure.
The mesh is devised such that the nodes are placed on the sur-
faces of the metal traces as well as on the ground planes, and this
enables us to generate a single mesh for the entire structure. As
a result, the mesh is nonuniform in general, i.e., the, , and
dimensions of the cells can be different. After the mesh has been
generated, we write the Laplace’s equation in the corresponding
FD form for all the nodes of the mesh. The equations for the in-
ternal nodes at the interfaces between dielectrics can be derived

from the integral equation that corresponds to the Gauss’s law,
as follows:

where is the electric flux density, is the outward normal to
the surface , and represents the charges located inside the
volume . If a volume does not contain the metal lines and the
conductivity of the dielectrics inside the volume in negligibly
small, we can assume that .

III. D OMAIN DECOMPOSITIONAPPROACH

Domain decomposition schemes are based on the concept of
dividing the initial computational domain, containing all metal
traces, into a system of subdomains. These subdomains are de-
fined, with or without overlap regions, by taking the geometry of
the interconnect structure into account in a systematic manner.
Since the original boundary value problem is formulated in an
unbounded domain, its decomposition into sub-domains does
not help us circumvent the problem of mesh truncation. An ap-
proach that reduces the influence of the artificial boundary of
the subdomain, and yet keeps the number of mesh points re-
alistic for follow-up calculations, was considered in [3]–[5]. To
reduce the number of the mesh nodes, i.e., the number of the FD
equations, we use the static PMLs and impedance condition on

at the artificial boundary . The material properties
of this medium in the static PMLs are described by a diagonal
tensor , with corresponding tensor elements that are less then
1.0. Such tensor elements introduce a “stretching” of the dis-
tance between the mesh nodes, and thereby decrease the influ-
ence of the artificial boundary on the computed potential values
in the interior region. A mixed or impedance condition, viz.,

, is imposed on the potential
function at the outermost boundary . The coefficient is a
function of the coordinates (see [3] for details) and this function
is determined by iterative recalculations. This boundary condi-
tion, when used in conjunction with the PMLs, enables us to
obtain accurate results with only a single iterative refinement of

. Moreover, the -technique offers considerable time saving if
the interconnect structure is very long.

We consider an -layer structure, shown in Fig. 1, where the
traces in the different layers are either parallel or perpendicular
to the local -coordinate, and may form arbitrary angles with
respect to each other. Within each level of this multilayer con-
figuration, the interconnecting lines can be described in local
system of Cartesian coordinates. For the sake of simplicity, we
assume that these coordinate systems share a commonaxis.
We divide the computational domain into a multitude of subdo-
mains at each level, with overlap regions in thedirection, and
use the PML in conjunction with the technique [3] to reduce
the truncation errors introduced by the artificial boundaries (see
Fig. 1).

The first step in the domain decomposition scheme is to de-
fine the key subdomains (at least one) to initiate the iteration
process. It is essential that the key subdomain contain a metal
line (or part of this line) with a nonzero potential. Our next step
is to follow an iterative scheme as described below:
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Fig. 1. Division of the computational domain into subdomains in vertical direction and rotation of the subdomains around the axis which is perpendicular to the
ground plane.

Step 1) Calculate the electric potential in the key subdomain,
say subdomain-1. To eliminate the influence of the
artificial boundary, use PML and/orboundary con-
dition (for details, see [3]).

Step 2) During the first pass, use the results of the first step to
compute the potential in the neighboring subdomain
in a sequential manner. Use interpolation to obtain
the potential values in the neighboring domains to
handle the coordinate rotation.

Step 3) Follow a reverse path, once the first pass has been
completed, and retrace the steps 1 and 2. Start with
the farthest subdomains and progress toward the key
subdomain, viz., subdomain-1.

Step 4) Repeat steps 1 and 2, moving forward once again,
starting from the key subdomain and going to the
most remote ones.

The situation considered above corresponds to the case where
we only need in a single Cartesian system of coordinates to set
up the FD mesh at each level, as is typically the case. In more
general situation, where we may have nonparallel conductors
at the same level, the domain decomposition scheme should be
modified. Schematically, the iteration algorithm of calculation
in two subdomains with nonparallel boundaries is depicted in
Fig. 2. The boundaries marked by thick solid lines are artificial
ones and require the applications of the PMLs in conjunction
with the impedance boundary condition.

IV. TEST CASES

In this section, we present the two numerical results for two
test cases to illustrate the application of the FD/PML approach
and to compare the results of simulation with those derived
by other simulation techniques. A variety of geometries have
been analyzed by using this method to illustrate its versatility.
The first test case we analyze is a simple case of a two-by-two
crossover between two ground planes (see Fig. 3). The capaci-
tance matrix of the crossover obtained by the dimension reduc-
tion technique and by Ansoft’s SPICELINK can be found in [6].

Fig. 2. Iterative scheme for the case of nonorthogonal interconnects located at
the same level. The thick solid line indicates the artificial boundaries with PMLs
and impedance boundary condition. The shaded area is the subdomain in which
the potential is calculated at the iteration step.

The width, thickness, and length of each line are 1, 1, and 8m,
respectively. The distances between the parallel lines, between
the lines at the lower and upper levels, and from the ground
planes to the lines all equal 1m. The dielectric constant of
the medium is . It takes 25.8 s on a Pentium PC 500 to
compute all of the elements of the capacitance matrix, which is
given below.

fF

The results obtained by the dimension reduction technique
[6] are as follows:

fF
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The computation time is 87 s with a SUN SPARC 20. The cor-
responding capacitance matrix, derived by using SPICELINK
from Ansoft (as described in [6]) is

fF

and the computation time is 881 s.
The second test case considered was a crossover formed by

two lines, an example of which appears in the Raphael Refer-
ence Manual RA 4.1 [7]. The width, thickness, and length of the
conductors are 2, 0.5, and 30m, respectively. The lower con-
ductor is located at a height of 4m above the ground plane and
the upper conductor is 12m above the ground. The crossover
is embedded in a two-layer of dielectric, and the thicknesses of
the layers are 4 and 8m, while their relative dielectric con-
stants are 4.3 and 3.9, respectively.

The capacitance matrix we obtained for this structure is

fF

Since realistic interconnect structures are seldom totally sym-
metric, we chose to consider the entire computational domain
that contained the crossover without invoking any symmetries
that would have, if imposed, reduced its size by a factor of four.
It took 70 s of CPU time on a Pentium PC 500 to derive this
matrix.

For the sake of comparison, we then solved the same problem
by using the Raphael software to obtain

fF

This latter computation required 80.3 s, even when we took ad-
vantage of the symmetry of the structure to reduce the size of
the problem domain by a factor of four.

Next, to demonstrate the efficiency of the proposed approach
when applied to the case of nonorthogonal crossovers, we di-
vided the entire computational domain into two subdomains
with an overlapping region, which ranged from the lower side
of the lower line to the upper side of the upper line. We began
by using the same FD mesh in the subdomains as we employed
for the case of the orthogonal crossover.

To calculate the first row of the capacitance matrix, we set
the potential of the lower line (line 1) to 1.0 V and grounded the
upper line (line 2). As a first step of the iteration process, we
solved the problem in subdomain-1 (see Fig. 4). Next, we went
on to solve the problem in the companion domain, i.e., subdo-
main-2, while utilizing the values of the electric potential at the
mesh points in Plane-1. If the crossover is not orthogonal, i.e.,
if the upper and lower lines form an anglethat is neither 90
or 0 , we rotate the coordinate system of the mesh in subdo-
main-2 with respect to the corresponding coordinate system of
subdomain-1. Consequently, it is necessary to use an interpola-
tion scheme to obtain the values of the potentials at the mesh
points on the lower side of the subdomain-2 (Plane-1 in Fig. 4).

Fig. 3. Test example-1. (a) Two-by-two line crossover above a ground plane.
(b) Top view of the crossover.

TABLE I
CAPACITANCE VALUES FORDIFFERENTCROSSOVERANGLES�

At the third step we resolved the problem in subdomain-1, by
utilizing the values of the electric potential at the mesh points in
Plane-2 and employing the interpolation scheme, if necessary.

The above iteration algorithm, which is based on the domain
decomposition scheme, enables us to deal with crossovers with
varying angles ranging from the limiting case of an orthogonal
crossover (90) to the other limit of two parallel lines (0). The
results of calculations of the capacitance versus the angle are
presented in Table I.

The accuracy realized was better than 1%, and was achieved
in just two to three iteration steps for all values of the orientation
angle .

V. ADDITIONAL NUMERICAL EXAMPLES

In this section, we present a few representative problems as-
sociated with realistic interconnect structures. For the first ex-
ample we consider a test structure formed by four lines, whose
widths and thicknesses are identical, viz., 0.5m and 0.25 m,
respectively (see Fig. 5). The two lines at the lower level are lo-
cated at a height of 0.75m above the ground plane. The length
of the straight line (line-1) is 6.0 m. The distance between
bends in the omega-shaped line is 3.0m. The lines at the upper
level are located at a height of 1.5m above the ground plane.
The structure is embedded in two dielectric layers. The first of
these, just above the ground plane, is 0.75m thick, while the
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Fig. 4. Test example-2: crossover above the ground plane. Domain decomposition and the iterative scheme for the case of nonorthogonal interconnects.

Fig. 5. (a) Four-line structure embedded in two dielectric layers above the ground plane (layers and the ground plane are not shown). (b) Top view of themodified
structure. The upper lines are rotated by angle
 about thez axis, which is normal to the ground plane. (c) Capacitances of the four-line structure as functions of
the iteration steps and as functions of the orientation angle
.

second layer on its top is located between the heights of 0.75m
and 1.75 m.

If the angle of rotation 90 , and a 1-V potential is applied
to line-3 while all the other lines are grounded, the computed
capacitance values derived by using a single computational do-
main turn out to be

. The results of the domain decompo-
sition approach, employing two subdomains with overlapping

regions, are presented in Fig. 5(c). Note that the convergence of
the iteration procedure is quite rapid.

For the next example, we analyze a via formed by two lines
(width 0.5 m and thickness 0.25m) with pads as shown in
Fig. 6. The line at the lower level is located at a height of 0.75m
above the ground plane. The lengths of the straight-line sections
are 2.5 m each. The patch width is 1.5m. The line at the upper
level is located at a height of 1.5m above the ground plane.



VEREMEY AND MITTRA: CAPACITANCE COMPUTATION OF NONORTHOGONAL INTERCONNECT STRUCTURES 1433

Fig. 6. (a) Via embedded in two dielectric layers above a ground plane
(dielectric layers and the ground plane are not shown). (b) Top view of the via
structure. The upper line is rotated about thez axis that is normal to the ground
plane.

Fig. 7. Capacitance of the via, shown in Fig. 4(a) as a function of the
orientation angle
.

Fig. 8. (a) Three-by-three crossover embedded in two dielectric layers above
the ground plane (layers and the ground plane are not depicted). (b) Top view
of the crossover. The upper lines are turned around the axis that is normal to the
ground plane.

Fig. 9. Three-element interconnect structure. Two upper lines are rotated with
respect to the lower traces. The structure is located above the ground plane and
embedded in three dielectric layers, with" = 3:9 (0.0 to 0.5�m height)" = 5:7

up a height of 1.4�m, and" = 4:0 to a height of 2.5�m. The ground plane
and dielectric layers are not shown in the figure.

The structure is embedded in the same two dielectric layers as
those in the previous example.

The results of application of the domain decomposition with
two subdomains and an overlapping region between them are
presented in Fig. 7. Once again, rapid convergence is realized.

Next, we move on to a crossover formed by three-by-
three lines (width 0.5 m and thickness 0.25m), as shown in
Fig. 8. The lines at the lower level are located at a height of
0.75 m above the ground plane, and they are both 6.5m long.
The line at the upper level is located at a height of 1.5m above
the ground plane. The structure is embedded in the same two
dielectric layers as in the previous two examples.
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If , we set the line-1 to a potential of 1 V, and ground
all the other lines. For this case, we obtain the following values
for the capacitances:

.
The convergence of the iteration algorithm is again found to be
swift.

For the last case example, we consider an interconnect struc-
ture formed by a set of connected lines (Net-1) at the lower level
(0.5 m above the ground plane) and two nets at the upper level
(from 1.1 m to 2.0 m). The general view of the structure is
shown in Fig. 9. Potential of Net-1 is set to 1 V and all traces
from the Net-2 and Net-3 are grounded. For , we obtain
the capacitance values

, and for , the corresponding values are
. These results agree

well with the direct calculations that can be carried out without
resorting to domain decomposition.

VI. CONCLUSION

This paper has presented a novel approach, based on the FD
method and the domain decomposition scheme, for modeling
interconnect structures that do not conform to a single Carte-
sian coordinate system, and are usually dealt with by using stair-
casing. We have shown that the approach can be efficiently ap-
plied to the problem of capacitance calculation of crossovers
formed by traces at different levels that are parallel to the ground
plane, but not necessarily parallel to each other. The proposed
approach is efficient because it maintains the number of un-
knowns at the same level as in the simpler cases of parallel or
orthogonal traces.

The domain decomposition scheme, presented herein, not
only renders the problem manageable on a computer with a
single CPU unit, but is also well suited for parallel processing.
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