2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 10, October 2000

Table of Contents for this issue

Complete paper in PDF format

Impact of Light Illumination and Passivation Layer on Silicon Finite-Ground Coplanar-Waveguide Transmission-Line Properties

Solon J. Spiegel, Associate Member, IEEE and Asher Madjar Fellow, IEEE

Page 1673.

Abstract:

Modeling of silicon finite-ground coplanar-waveguide (FGCPW) transmission lines is presented in this paper. It is shown that the effective substrate conductivity increases in the presence of illumination and in the presence of a passivation layer in the slot regions independently. As a result,the losses of trenched FGCPW are lower than conventional FGCPW transmission lines. The strong dependence of the substrate conductivity on illumination suggests that optically controlled attenuators can be implemented with FGCPW transmission lines exhibiting practically no phase change between the different attenuation states. A new contrast ratio for optically controlled transmission lines is derived.

References

  1. H. Tserng et al., "Embedded transmission line (ETL) MMIC for low-cost, high-density wireless communication applications", in IEEE Radio Freq. Integrated Circuits Symp. Dig., Denver, CO, June 1997, pp.  41-44. 
  2. B. Agarwal et al., "80-GHz distributed amplifiers with transferred-substrate heterojunction bipolar transistors", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2302-2307, Dec.  1998 .
  3. C. L. Goldsmith et al., "Performance of low-loss RF MEMS capacitive switches", IEEE Microwave Guided Wave Lett., vol. 8, pp.  269-271,  Aug.  1998.
  4. E. R. Brown, "RF-MEMS switches for reconfigurable integrated circuits", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1868-1880, Nov.  1998.
  5. T. A. Midford et al., "The evolution of packages for monolithic microwave and millimeter-wave circuits", IEEE Trans. Antennas Propagat., vol. 43, pp.  983-991, Sept.  1995.
  6. K. J. Herrick et al., "Microtechnology in the development of three-dimensional circuits", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1832-1844, Nov.  1998.
  7. M. I. Herman et al., "Novel techniques for millimeter-wave packages", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  1516-1523, July  1995.
  8. R. F. Drayton et al., "Development of self-packaged high frequency circuits using micromachining techniques", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2073-2080, Sept.  1995.
  9. S. Ramam et al., "A high-performance W-band uniplanar subharmonicmixer", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  955-962, June  1997.
  10. H. Sakai et al., "A novel millimeter-wave IC on Si substrate using flip-chip bonding technology", IEICE Trans. Electron., vol. E78-C, no. 8, pp.  971-978, Aug.  1995.
  11. S. E. Saddow et al., "An optoelectronic attenuator for the control of microwave circuits", IEEE Microwave Guided Wave Lett., vol. 3, pp.  361-362, Oct.  1993.
  12. S. E. Saddow and C. H. Lee, "Scattering parameter measurements on an optoelectronic attenuator", in IEEE MTT-S Int. Microwave Symp. Dig., San Diego, CA, 1994, pp.  1383-1386. 
  13. S. E. Saddow and C. H. Lee, "Optical control of microwave integrated circuits using high-speed GaAs and Si photoconductive switches", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2414-2420, Sept.  1995.
  14. S. J. Spiegel and A. Madjar, "Light dependence of silicon FGCPW transmission lines", in IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, 1999, pp.  1801-1804. 
  15. M. Y. Frankel et al., "Terahertz attenuation and dispersion characteristics of coplanar transmission lines", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  910-916, June  1991.
  16. M. Riaziat et al., "Propagation modes and dispersion characteristics of coplanar waveguides", IEEE Trans. Microwave Theory Tech., vol. 38, pp.  2543-2554, Mar.  1990.
  17. G. Hasnain et al., "Dispersion of picosecond pulses in coplanar transmission lines", IEEE Trans. Microwave Theory Tech., vol. 34, pp.  738-741, June  1996.
  18. H. Cheng et al., "Terahertz-bandwidth characterization of coplanar transmission lines on low permittivity substrates", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2399-2406, June  1994 .
  19. S. Yang et al., "Characteristics of trenched coplanar waveguide for high-resistivity Si MMIC applications", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  623-631, May  1998.
  20. K. T. Herrick et al., "W -band micromachined finite ground coplanar (FGC) line circuit elements", in IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, 1997, pp.  269-272. 
  21. W.-T. Lo et al., "Resonant phenomena in conductor-backed coplanar waveguide (CBCPW)", in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp.  1199-1202. 
  22. A. Reichelt and I. Wolff, "New coplanar-like transmission lines for applications in monolithic integrated millimeter-wave and submillimeter-wave circuits", in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, 1998, pp.  99-102. 
  23. G. E. Ponchak et al., "High frequency interconnects on silicon substrates", in IEEE Radio Freq. Integrated Circuit Symp. Dig., Denver, CO, 1997, pp.  101-104. 
  24. A. C. Reyes et al., "Theoretical and experimental investigation of bias and temperature effects on high resistivity silicon substrates for RF applications", in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, 1998, pp.  1069-1072. 
  25. J. Zheng et al., "CAD-oriented equivalent circuit modeling of on-chip interconnects in CMOS technology", in 7th Topical Meeting Elect. Performance Electron. Packag., West Point, NY, Oct. 1998, pp.  227-230. 
  26. J. Wee et al., "Modeling the substrate effect in interconnect line characteristics of high-speed VLSI circuits", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1436-1443, Oct.  1998.
  27. R. E. Collins, Foundations for Microwave Engineering, New York: McGraw-Hill, 1992.