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Integrated Active Antenna Array Using Unidirectional
Dielectric Radiators

Mekki Belaid, Jean-Jacques Laur®enior Member, IEEEand Ke Wy Senior Member, IEEE

Abstract—In this paper, design considerations and experi-
mental investigations of an integrated active antenna for space
power combining that makes use of unidirectional dielectric
radiators (UDRs) are presented and discussed. Attractive elec-
trical performance stemmed from proprieties of nonradiating
dielectric waveguide structures is benefited to design a prototype
at a frequency of 14 GHz. An UDR feed circuit is implemented by
microstrip lines and aperture-coupling is studied experimentally
for arrays of two, four, and eight radiators. Measurements show
high coupling and radiation efficiencies of the proposed excitation
method. A power-combining efficiency of 89% was measured
and a gain of 23.1 dBi was achieved for an antenna with eight
radiators and four amplifiers. It is also shown that such a circuit
configuration allows the combination of planar K«-band mono-
lithic hybrid microwave integrated circuit and UDR components
in flexible design of active array antennas.

|. INTRODUCTION (b)

NTEGRATED active antenna elements and power-com®
bining techniques have been developed in order to overcon ’
the fundamental limitations on output power of semiconducto
circuits at high frequencies, particularly in the millimeter-wave
range and higher. Also, transmission lines suitable for in-

tegrated circuits become lossy at higher frequencies due to ©

increased radiation loss and ohmic effect Fig. 1. (a) UDR. (b) Magnitude of the field in the air region. (c) Radiation
. . . . ;. .condition.
The active array is a highly suitable solution for the transmis-

sion of signals with distributed low-power solid-state sources.
Although the power available from individual microwave semi-
conductor devices is much less than that from typical vacuurr
tubes, the power output from individual low-power sources as-
sociated singly with many array elements combines in space t
form a high-power coherent beam, when the individual sources
are synchronized in phase. The use of solid-state source
instead of vacuum tube brings many advantages. It makes po:
sible an implementation of a relatively flat integrated assembly
using miniature microwave-circuit techniques reducing the
size and weight. The solid-state amplifiers use a low-power
supply voltage, which eliminates problems associated with
high-voltage breakdown. Another advantage of distributing the —
devices into an array is the lower RF losses between the outpt ~— el .
of the final amplifier and the radiating element due to the small
distance between amplifier and radiator.

Quasi-optical power combining using either the active antenna
or grid approaches has been an area of growing interest [1]-[9].
In most of these papers, the radiating elements are rectangular or
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Fig. 3. LSM mode in the dielectric resonator.
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circular patch antennas, which, at high frequencies suéhas 30 0 80 70 50 50 -40 .30 .20 -0 0 10 20 30 40 50 60 70 80 90
Ka-,andmillimeter-wave bands maybecome verylossy. Anoth 0 (degrees)

approach is the design of active integrated antennas in multilar
structures, whichis a currenttrend for practical applications [1(
[11]. In this case, passive radiating elements and active circui
are designed and optimized on different substrates. The coupl...y
between active circuitry and radiators is made through apertug?gs_ 5. Measured passive UDR antenna for one resonatof-aane. (b)
in the ground plane separating these two substrates. The actiVgane.

circuitry can be fabricated on semiconductor substrate mono-

(b

lithically, and the antenna elements can be fabricated on anot 0
substrate with a lower dielectric constant for greater radiatic R o
efficiency[10]. Thistype of integration is compatible with mono- N TS
lithic-microwave integrated-circuit(MMIC) technology. Inthose 10 / W / N ’e/é’
papers, the antennas are implemented with patches. This pe -15 \_/ N - / ~ FodaE
featuresanotherapproachbasedondielectric-resonatoranten® .o | Nnnd Nt
which requires a more complicated modeling of the junctio% 25| v T \
between the active microstrip circuits and radiators. On the ot @ | [— Two resonators |} ; \ \
hand, such dielectric antennas have low-loss characteristics t 30 |- :f“':t'f:;“:;gfs i \
may become an advantage as the frequency is increased to 35 | 9 '
millimeter-wave range. .

The nonradiative dielectric waveguide (NRD) [12] has :
been demonstrated to be a highly attractive alternative in m ) 513 1325 135 1375 14 1425 145 1475 15
limeter-wave circuits because ofits simplicity, ease of fabricatio Frequency in GHz

and low-loss nature. A promising dielectric antenna, namely, the

unidirectional dielectric radiator (UDR) was proposed in [13fig. 6. Frequency response of the array for two, four, and eight elements.

As showninFig. 1(a), itis basically a short section of rectangular

dielectric cylinder, which retains all the merit of NRD guide and;ube inserted betweentwo infinitely extended metal plates, which
therefore, has great potential for millimeter-wave applicationsffectively forms a dielectric resonator. As is well known, if two
To understand better its operating principle, consider a dielectparallel metal plates are separated by a distance smaller than



1630 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 10, OCTOBER 2000

TABLE |
MEASUREMENTS OF THEDIFFERENT UDR ANTENNAS

Resonant Gain of the antenna Beamwidth Sidelobe level

frequency dBi

GHz E-plane H-plane
One resonator | 14.25 7.12 60° 120° no
One resonator | 14.25 16.9 60° 120° no
with amplifier
Two 14.1 9.3 50° 120° no
resonators
(e =A2)
Two 14.1 18.1 50° 120° no
resonators
with
amplifiers
Four 13.94 11.45 21° 120° -12.76 dB
resonators
(e = 3M/4)
Four 13.94 20.0 21° 120° -12.76 dB
resonators
with
amplifiers
Eight 13.8 13.91 9.5° 120° -13.22 dB
resonators
(e = 3A/4)
Eight 13.8 23.1 9.5° 120° -13.22 dB
resonators
with
amplifiers

one-half of the free-space wavelength, electromagnetic waves Il. RADIATING ELEMENTS

with the electric field parallel to the plates cannot propagate , o
between them because of the cutoff properties. This structure N Structure of the aperture-coupled URD is show in Fig. 2.
then becomes an NRD resonator, which was used as a@,igﬂt__conssts ofanumber_of identical d_lel_ectrlq resonators (dimen-
resonatorelementin NRD filter design. The mode ofinterestin tf¥nSe X b x ¢) located in close proximity (distance d) to the

NRD is a longitudinal section magnetic (LSM) mode. This modedges of two large pf_;lrallel metal plates. The resonators are sep-
has its fields concentrated in the dielectric region at the workifjated by an equal distaneeThe distancga) between the two
frequency and its fields, in the air region, are decaying awayfor'meta| plates is smaller than the half—wave!ength of the highest
the dielectric region, asillustrated in Fig. 1(b). If the metal platg¥erating frequency. Therefore, all the guided modes between
have finite extent and the dielectric resonator is located in clodi§ Plates are cutoff, except the TEM wave, which may appear
proximity of the plates edges, as shown in Fig. 1(c), the compleigé & parasite. However, it is possible to suppress this mode with
nonradiative condition is no longer satisfied and the electromat'tical metal posts between the two plates without significantly
netic energy begins to radiate toward the open space, mosthpIfcting the antenna performance. The resonators are coupled
they-direction. The NRD is then called an UDR. A cavity modef® @ féeding microstrip line through a small slotin the top plate,
for radiation analysis of the UDR was proposed in [14], whichich also serves as one of the shielding planes of the UDR
yields good agreement between calculations and measuremetjfgcture. The coupling longitudinal dimension of the slot is
Microstrip line excitation of an aperture-coupled UDR was prd:Nosen to be perpendicular to the edge of the radiating aper-
posed in [15]-[17]. In this paper, realizations showing the goéHre soasto exu.te the desired UDR LSM mode in the dielectric
performances of the UDR antenna and its potential use in ffgSOnator (see Figs. 2(c) and 3). The energy leaks from the res-
design of active UDR array antenna are presented. The desigRB#{0r into open space through the radiating aperture and it is
the antennabegins with the study and experimentation of asimpiPPressed in the other directions due to the cutoff properties of
UDR antennamade with only one dielectric resonator. This ste fie metallic structure. According t_o the field distribution of the
followed by the integration of an amplifier mounted on miniatureSM mode, the antenn&-plane will be thery-plane, and the
microstrips to make a hybrid system that benefits the advantagég'ane will be planeyz.

of the two schemes (active planar circuits and UDR). The results

have proven that the passive UDR antenna can be used to make a

very good directive antenna with low RF losses. The comparison lll. PASSIVE AND ACTIVE ARRAY RESULTS

between radiation pattern of active and passive UDR anten 8Spassive Arrays
showsthatthe gain ofthe antennawas significantly improved witfi

the addition of the amplifier with only minor disturbances on the Prototypes of the proposed passive and active UDR antenna
radiation pattern. This stepwasthenfollowed by the integrationiotluding one, two, four, and eight elements were built and
active UDRsintotwo-, four-, and eight-elementarrays. tested. A corporative microstrip feed network using a Wilkinson
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Fig. 7. Calculated and measured patterns of UDRAplane). (a) Two elements. (b) Four elements. (c) Eight elements.

power divider and rectangular polystyrefse = 2.55) dielec- two, four, and eight elements and the measured resonant
tric resonators were used. As a first step, a single resonator r@gsjuencies, respectively, at the input of the feeding network.
designed to have a resonant frequency of 14.25 GHz for fundde decrease of the resonant frequency, with an increasing
mental UDR LSM mode. The dimensions= b = ¢ = 9 mm number of resonators, can be justified by considering mutual
were determined by the numerical method described in [14pupling. With only one resonator, the field distribution decays
which assumes that the resonator is trapped between infirateruptly in thez-direction outside the dielectric. When other
metal plates, which is without edge radiation. The measuressonators are added in close proximity, there is a slight spread
return loss of the microstrip-fed single UDR with finite groundf the field distribution in ther-direction around a resonator,
plates versus frequency is shown in Fig. 4. It can seen that thibich is a similar effect than an increase of the resonator width
measured resonant frequency slightly varies as functiosh of (¢), also leading to a lower resonance frequency. This field
Ford = 0 mm, 0.5 mm, 1 mm, and2 mm, these frequenciesspreading effect is further increased by an in-phase excitation
are 14.24, 14.25, 14.25, and 14.26 GHz, respectively, which arfeadjacent resonator, whereas the antiphase excitation confines
very close to the predicted value of 14.25 GHz for an infinitthe fields and, thus, increases the resonance frequency. Note
d. High return-loss values are indicative that excellent couplirtbat changing the mutual coupling and tuning of the resonant
efficiency can be obtained. The radiation pattern measuremeinégjuency can be achieved by adjusting the distarioetween

for a single-resonator antenna is illustrated in Fig. 5. Thhe dielectric resonators, but it will affect on the pattern of the
half-power beamwidth (120 on the H-plane pattern is much array antenna.

larger than in thez-plane pattern (69. The gain of the passive A very important and special case for spatial power com-
UDR is equal to 7.1 dBi. For UDR, due to mutual couplingpining is that of an equally spaced linear and uniformly excited
between the resonators, the measured resonant frequenaiesy. It is easy to calculate the pattern of the unidirectional di-
differ significantly from that of the isolated resonator. Fig. @lectric-resonator arrays (UDRAS) for two, four, and eight ele-
and Table | gives the frequency response of the arrays ments. Taking the measured values plotted in Fig. 5 for the el-
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Amplifier cell

ement factor together with the theoretical array factor, we hay
calculated the expected patterns of the realized UDRAs. The
patterns are compared to the measured ones in Fig. 7 for thi
UDRA prototypes. For the three cases, the measured and cal
lated main beams are in very good agreement. There are so
differences in the sidelobes, which might be due to diffractio
on the finite metal plate edges or to a nonuniform excitation prc
file of the resonators attributable to mutual couplings and sligt ..
path Iength differences in the feed network_. Fig. 10. Feeding network for active eight-element transmitting UDRA (top
In the first case (two resonators), the distance between g;%]e),
resonators ig = A/2. For the two other cases, this distance

was increased t8A/4 to compensate for some of the resonarEig_ 11 displays the measurédiplane pattern of four and eight

frequency offset depicted in Fig. 6. This is done to keep tr}gsonators for active and passive configurations.

resonant frequency in ti€u-band and as much as possible near Th d gain of the f d eight-el t unit
the center of the amplifying cell band of operation. € rmeasured gain of the four- and eight-element units are
20 and 23.1 dBi, respectively. Except for a constant gain offset,
there are small differences between the active and passive pat-
terns. These differences might come from the variation between
The gain of the active antenna is divided into two parts: the amplifiers, both in gain and phase. Another reason is that
gain of the amplifief(Gr) and the gain of the passive antennghe active and passive antennas, due to the large number of res-

Resonator

B. Active Array

(G,). Thus, assuming matched conditions, we have onators, have some mechanical differences.
For the eight-element antenna, the measured effective radio
(Go)as = (Gr)ap + (Gr)an (1) power (ERP)is 20.4 W and the dc input power to the UDR an-

tenna is 360 mW. The power actually radiated from the antenna

Gains of the passive and active UDR (for one resonator) are> calculated to be 100 mW, which gives a dc-to-RF conver-

. o .
equal to 7.1 and 16.9 dBi, respectively. Fig. 8 compares tﬁ'é)n efficiency of 27.8%. Also, the power generated per device

E-plane patterns of one-resonator active and passive ro'tsog5 mW. This approximates the power expected from these de-
P P . ) PassIve Projcas (28 mW) biased at 3 V with a drain current of 30 mA. The
types. It can be seen that the integration of the amplifier wit

N - . 0
the UDR antenna does not disturb the shape of the radiat%%mbmmg efficiency is then 89%.

pattern of the UDR antenna significantly. Fig. 9 shos All measurements are relative with respect to a maximum

. . level of 0 dB. They were all made under far-field conditions.
versus frequency obtained by measurement and simulatign

. . 7 L easurements were taken in the anechoic chamber and by usin
with HP-MDS. According to this figure, a gain increase of 10. y 9
a horn antenna as areference antenna. Measurements were made

dB was expected for the active element, whereas an incregse . :
%y using an automated measurement system. Finally, Table |
S

of 9.8 dB was ach|eved. The 1-dB loss may b_e attributed mmarizes all the measurement results of the active and passive
a nonnegligible mismatch between the amplifying cell outp DRAS

and the slot-coupled resonator input. Fig. 10 shows the feeding
network for the active UDRA. This feeding network allows
us to excite the resonators with uniform amplitude and phase.
The input signal is divided in eight using Wilkinson power Experimental and analytical results of active slot-coupled mi-
dividers. Only one amplifier was used for each pair of outputrostrip line-fed URD arrays have been presented in this paper.

IV. CONCLUSION
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Fig. 11. Measured-plane patterns using active feeding network. (a) Four resonators. (b) Eight resonators.
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