

Integrated Active Antenna Array Using Unidirectional Dielectric Radiators

Mekki Belaid, Jean-Jacques Laurin, *Senior Member, IEEE*, and Ke Wu, *Senior Member, IEEE*

Abstract—In this paper, design considerations and experimental investigations of an integrated active antenna for space power combining that makes use of unidirectional dielectric radiators (UDRs) are presented and discussed. Attractive electrical performance stemmed from properties of nonradiating dielectric waveguide structures is benefited to design a prototype at a frequency of 14 GHz. An UDR feed circuit is implemented by microstrip lines and aperture-coupling is studied experimentally for arrays of two, four, and eight radiators. Measurements show high coupling and radiation efficiencies of the proposed excitation method. A power-combining efficiency of 89% was measured and a gain of 23.1 dBi was achieved for an antenna with eight radiators and four amplifiers. It is also shown that such a circuit configuration allows the combination of planar Ku -band monolithic hybrid microwave integrated circuit and UDR components in flexible design of active array antennas.

I. INTRODUCTION

INTEGRATED active antenna elements and power-combining techniques have been developed in order to overcome the fundamental limitations on output power of semiconductor circuits at high frequencies, particularly in the millimeter-wave range and higher. Also, transmission lines suitable for integrated circuits become lossy at higher frequencies due to increased radiation loss and ohmic effect.

The active array is a highly suitable solution for the transmission of signals with distributed low-power solid-state sources. Although the power available from individual microwave semiconductor devices is much less than that from typical vacuum tubes, the power output from individual low-power sources associated singly with many array elements combines in space to form a high-power coherent beam, when the individual sources are synchronized in phase. The use of solid-state sources instead of vacuum tube brings many advantages. It makes possible an implementation of a relatively flat integrated assembly using miniature microwave-circuit techniques reducing the size and weight. The solid-state amplifiers use a low-power supply voltage, which eliminates problems associated with high-voltage breakdown. Another advantage of distributing the devices into an array is the lower RF losses between the output of the final amplifier and the radiating element due to the small distance between amplifier and radiator.

Quasi-optical power combining using either the active antenna or grid approaches has been an area of growing interest [1]–[9]. In most of these papers, the radiating elements are rectangular or

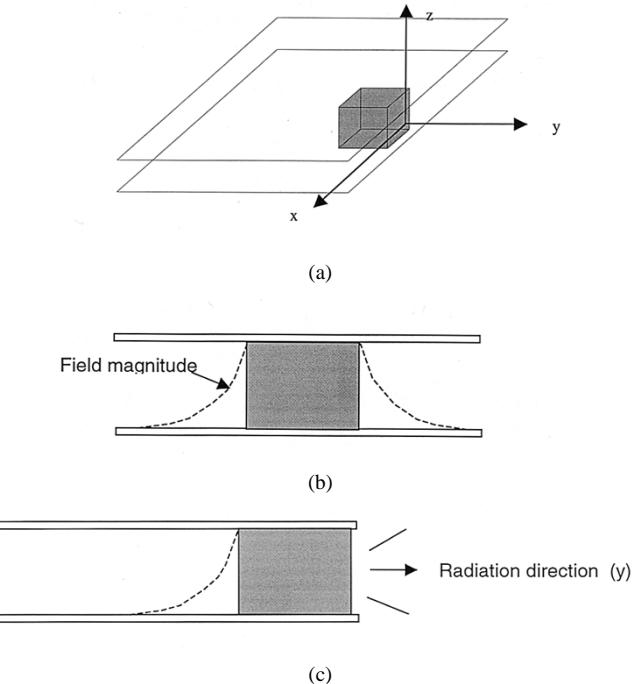


Fig. 1. (a) UDR. (b) Magnitude of the field in the air region. (c) Radiation condition.

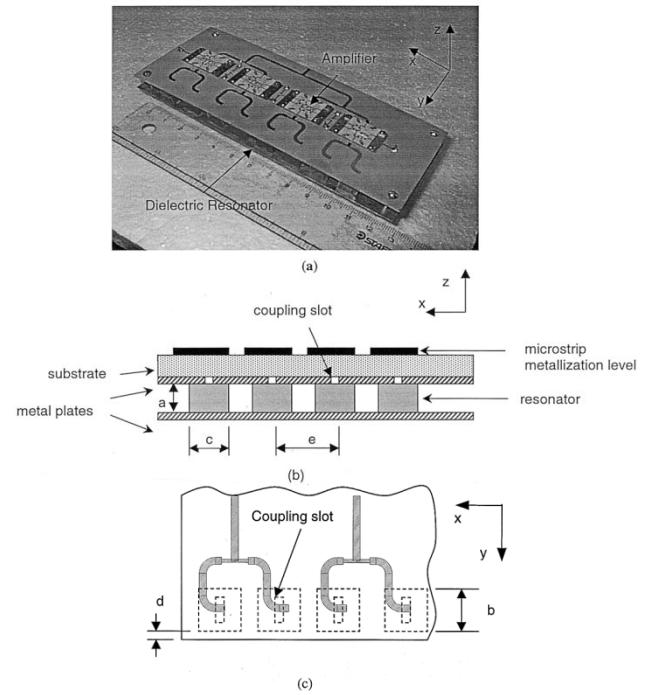


Fig. 2. UDRA structure. (a) UDRA with eight dielectric resonators and four amplifier cells. (b) Side view. (c) Top view.

Manuscript received April 6, 1999.

The authors are with the Centre Poly-GRAMES, Département de Génie Électrique et de Génie Informatique, École Polytechnique de Montréal, Montréal, PQ, Canada H3C 3A7.

Publisher Item Identifier S 0018-9480(00)08726-3.

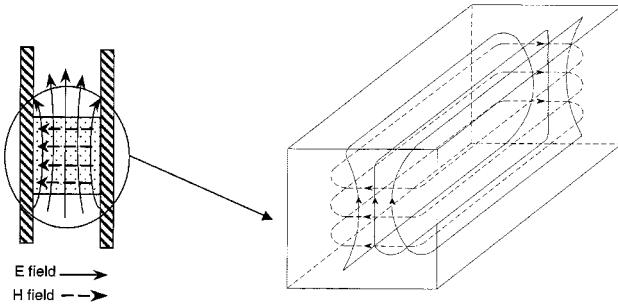
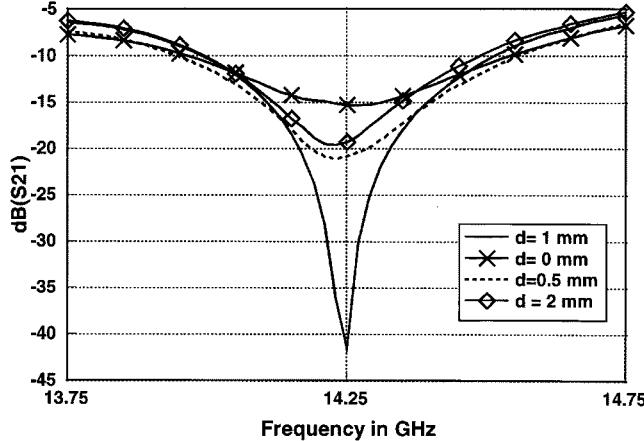



Fig. 3. LSM mode in the dielectric resonator.

Fig. 4. Measured return loss S_{11} for different values of d .

circular patch antennas, which, at high frequencies such as Ku -, Ka -, and millimeter-wave bands may become very lossy. Another approach is the design of active integrated antennas in multilayer structures, which is a current trend for practical applications [10], [11]. In this case, passive radiating elements and active circuitry are designed and optimized on different substrates. The coupling between active circuitry and radiators is made through apertures in the ground plane separating these two substrates. The active circuitry can be fabricated on semiconductor substrate monolithically, and the antenna elements can be fabricated on another substrate with a lower dielectric constant for greater radiation efficiency [10]. This type of integration is compatible with monolithic-microwave integrated-circuit (MMIC) technology. In those papers, the antennas are implemented with patches. This paper features another approach based on dielectric-resonator antennas, which requires a more complicated modeling of the junction between the active microstrip circuits and radiators. On the other hand, such dielectric antennas have low-loss characteristics that may become an advantage as the frequency is increased to the millimeter-wave range.

The nonradiative dielectric waveguide (NRD) [12] has been demonstrated to be a highly attractive alternative in millimeter-wave circuits because of its simplicity, ease of fabrication, and low-loss nature. A promising dielectric antenna, namely, the unidirectional dielectric radiator (UDR) was proposed in [13]. As shown in Fig. 1(a), it is basically a short section of rectangular dielectric cylinder, which retains all the merit of NRD guide and, therefore, has great potential for millimeter-wave applications. To understand better its operating principle, consider a dielectric

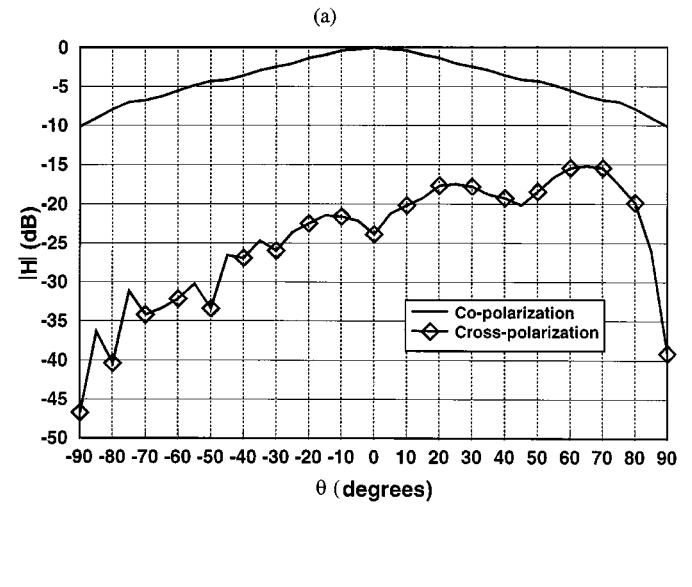
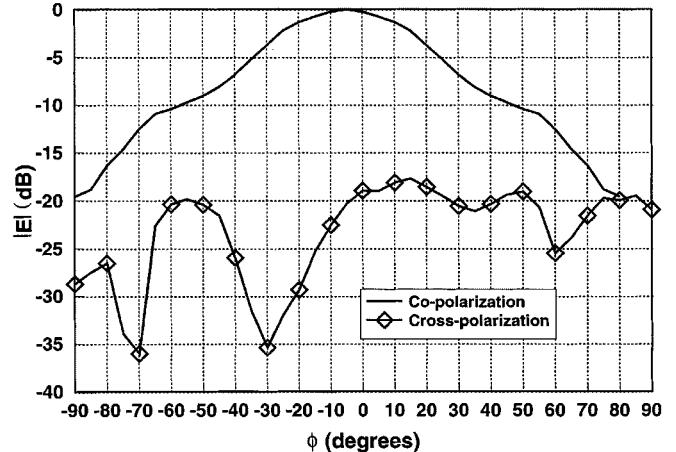
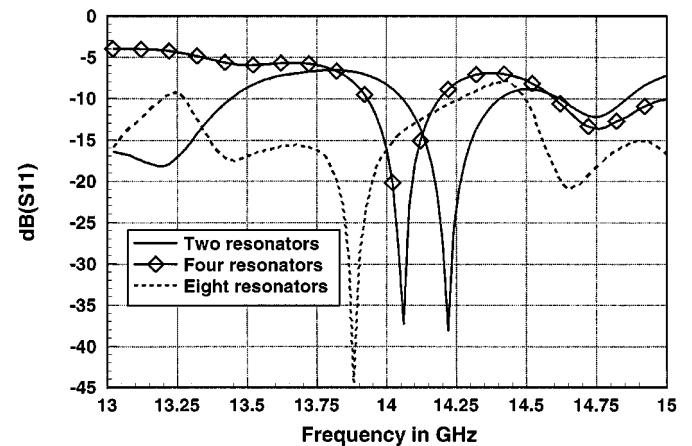



Fig. 5. Measured passive UDR antenna for one resonator. (a) E -plane. (b) H -plane.

Fig. 6. Frequency response of the array for two, four, and eight elements.

cube inserted between two infinitely extended metal plates, which effectively forms a dielectric resonator. As is well known, if two parallel metal plates are separated by a distance smaller than

TABLE I
MEASUREMENTS OF THE DIFFERENT UDR ANTENNAS

	Resonant frequency GHz	Gain of the antenna dBi	Beamwidth		Sidelobe level
			E-plane	H-plane	
One resonator	14.25	7.12	60°	120°	no
One resonator with amplifier	14.25	16.9	60°	120°	no
Two resonators ($e = \lambda/2$)	14.1	9.3	50°	120°	no
Two resonators with amplifiers	14.1	18.1	50°	120°	no
Four resonators ($e = 3\lambda/4$)	13.94	11.45	21°	120°	-12.76 dB
Four resonators with amplifiers	13.94	20.0	21°	120°	-12.76 dB
Eight resonators ($e = 3\lambda/4$)	13.8	13.91	9.5°	120°	-13.22 dB
Eight resonators with amplifiers	13.8	23.1	9.5°	120°	-13.22 dB

one-half of the free-space wavelength, electromagnetic waves with the electric field parallel to the plates cannot propagate between them because of the cutoff properties. This structure then becomes an NRD resonator, which was used as a high- Q resonator element in NRD filter design. The mode of interest in the NRD is a longitudinal section magnetic (LSM) mode. This mode has its fields concentrated in the dielectric region at the working frequency and its fields, in the air region, are decaying away from the dielectric region, as illustrated in Fig. 1(b). If the metal plates have finite extent and the dielectric resonator is located in close proximity of the plates edges, as shown in Fig. 1(c), the complete nonradiative condition is no longer satisfied and the electromagnetic energy begins to radiate toward the open space, mostly in the y -direction. The NRD is then called an UDR. A cavity model for radiation analysis of the UDR was proposed in [14], which yields good agreement between calculations and measurements. Microstrip line excitation of an aperture-coupled UDR was proposed in [15]–[17]. In this paper, realizations showing the good performances of the UDR antenna and its potential use in the design of active UDR array antenna are presented. The design of the antenna begins with the study and experimentation of a simple UDR antenna made with only one dielectric resonator. This step is followed by the integration of an amplifier mounted on miniature microstrips to make a hybrid system that benefits the advantages of the two schemes (active planar circuits and UDR). The results have proven that the passive UDR antenna can be used to make a very good directive antenna with low RF losses. The comparison between radiation pattern of active and passive UDR antennas shows that the gain of the antenna was significantly improved with the addition of the amplifier with only minor disturbances on the radiation pattern. This step was then followed by the integration of active UDRs into two-, four-, and eight-element arrays.

II. RADIATING ELEMENTS

The structure of the aperture-coupled URD is shown in Fig. 2. It consists of a number of identical dielectric resonators (dimensions $a \times b \times c$) located in close proximity (distance = d) to the edges of two large parallel metal plates. The resonators are separated by an equal distance e . The distance (a) between the two metal plates is smaller than the half-wavelength of the highest operating frequency. Therefore, all the guided modes between the plates are cutoff, except the TEM wave, which may appear as a parasite. However, it is possible to suppress this mode with vertical metal posts between the two plates without significantly affecting the antenna performance. The resonators are coupled to a feeding microstrip line through a small slot in the top plate, which also serves as one of the shielding planes of the UDR structure. The coupling longitudinal dimension of the slot is chosen to be perpendicular to the edge of the radiating aperture so as to excite the desired UDR LSM mode in the dielectric resonator (see Figs. 2(c) and 3). The energy leaks from the resonator into open space through the radiating aperture and it is suppressed in the other directions due to the cutoff properties of the metallic structure. According to the field distribution of the LSM mode, the antenna E -plane will be the xy -plane, and the H -plane will be plane yz .

III. PASSIVE AND ACTIVE ARRAY RESULTS

A. Passive Arrays

Prototypes of the proposed passive and active UDR antenna including one, two, four, and eight elements were built and tested. A corporative microstrip feed network using a Wilkinson

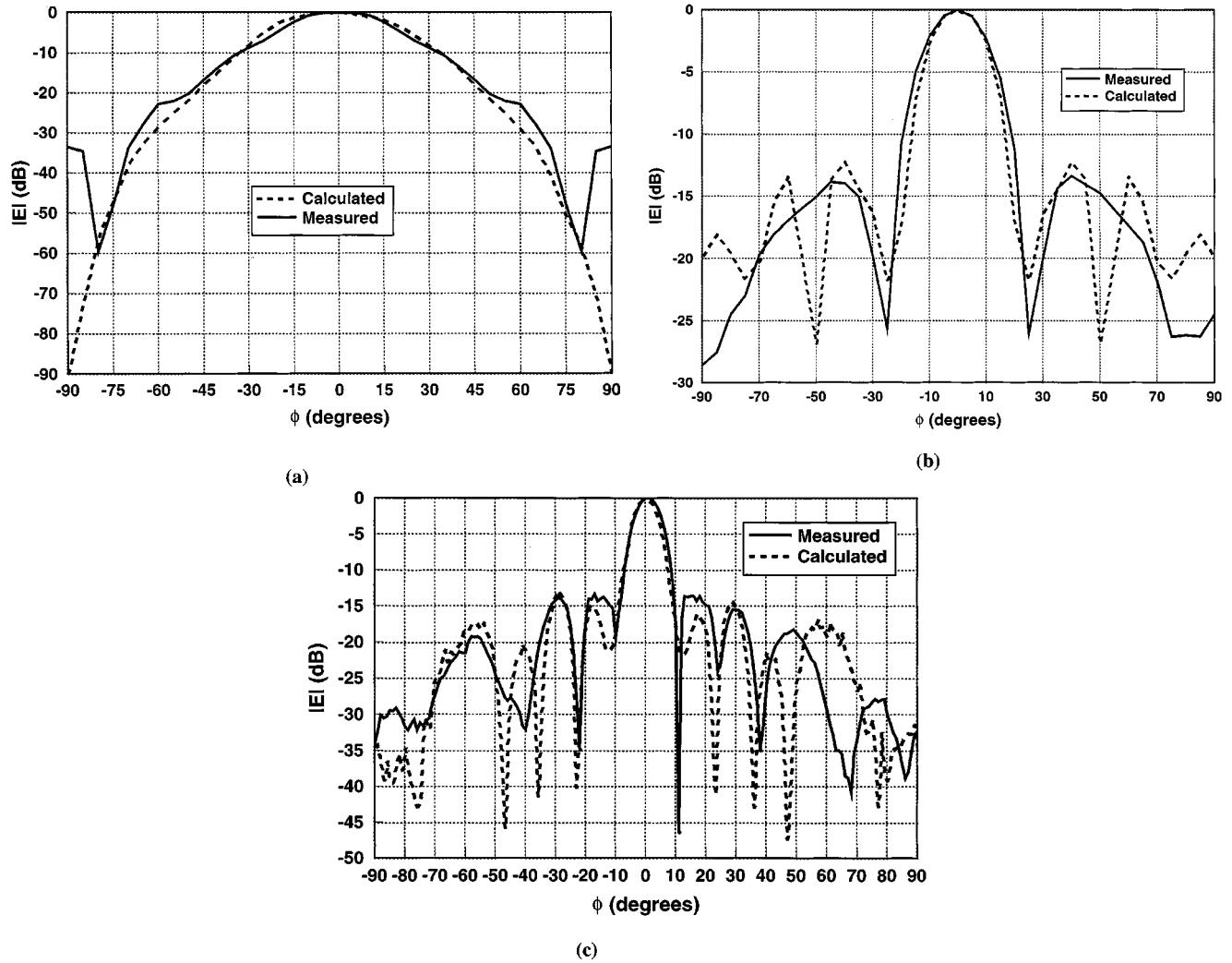


Fig. 7. Calculated and measured patterns of UDRA (E -plane). (a) Two elements. (b) Four elements. (c) Eight elements.

power divider and rectangular polystyrene ($\epsilon_r = 2.55$) dielectric resonators were used. As a first step, a single resonator was designed to have a resonant frequency of 14.25 GHz for fundamental UDR LSM mode. The dimensions $a = b = c = 9$ mm were determined by the numerical method described in [14], which assumes that the resonator is trapped between infinite metal plates, which is without edge radiation. The measured return loss of the microstrip-fed single UDR with finite ground plates versus frequency is shown in Fig. 4. It can be seen that the measured resonant frequency slightly varies as function of d . For $d = 0$ mm, 0.5 mm, 1 mm, and 2 mm, these frequencies are 14.24, 14.25, 14.25, and 14.26 GHz, respectively, which are very close to the predicted value of 14.25 GHz for an infinite d . High return-loss values are indicative that excellent coupling efficiency can be obtained. The radiation pattern measurements for a single-resonator antenna is illustrated in Fig. 5. The half-power beamwidth (120°) on the H -plane pattern is much larger than in the E -plane pattern (60°). The gain of the passive UDR is equal to 7.1 dBi. For UDR, due to mutual coupling between the resonators, the measured resonant frequencies differ significantly from that of the isolated resonator. Fig. 6 and Table I gives the frequency response of the arrays of

two, four, and eight elements and the measured resonant frequencies, respectively, at the input of the feeding network. The decrease of the resonant frequency, with an increasing number of resonators, can be justified by considering mutual coupling. With only one resonator, the field distribution decays abruptly in the x -direction outside the dielectric. When other resonators are added in close proximity, there is a slight spread of the field distribution in the x -direction around a resonator, which is a similar effect than an increase of the resonator width (c), also leading to a lower resonance frequency. This field spreading effect is further increased by an in-phase excitation of adjacent resonator, whereas the antiphase excitation confines the fields and, thus, increases the resonance frequency. Note that changing the mutual coupling and tuning of the resonant frequency can be achieved by adjusting the distance e between the dielectric resonators, but it will affect on the pattern of the array antenna.

A very important and special case for spatial power combining is that of an equally spaced linear and uniformly excited array. It is easy to calculate the pattern of the unidirectional dielectric-resonator arrays (UDRAs) for two, four, and eight elements. Taking the measured values plotted in Fig. 5 for the el-

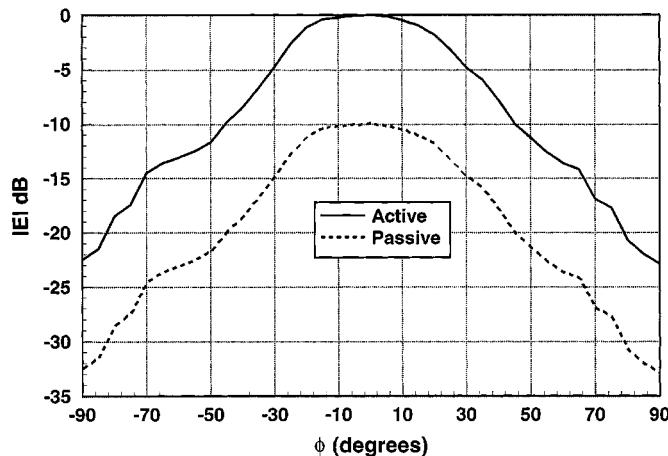


Fig. 8. Measured active passive UDR patterns for one resonator in the *E*-plane.

ement factor together with the theoretical array factor, we have calculated the expected patterns of the realized UDRAs. These patterns are compared to the measured ones in Fig. 7 for three UDRAs prototypes. For the three cases, the measured and calculated main beams are in very good agreement. There are some differences in the sidelobes, which might be due to diffraction on the finite metal plate edges or to a nonuniform excitation profile of the resonators attributable to mutual couplings and slight path length differences in the feed network.

In the first case (two resonators), the distance between the resonators is $c = \lambda/2$. For the two other cases, this distance was increased to $3\lambda/4$ to compensate for some of the resonant frequency offset depicted in Fig. 6. This is done to keep the resonant frequency in the *Ku*-band and as much as possible near the center of the amplifying cell band of operation.

B. Active Array

The gain of the active antenna is divided into two parts: the gain of the amplifier (G_T) and the gain of the passive antenna (G_r). Thus, assuming matched conditions, we have

$$(G_a)_{\text{dB}} = (G_T)_{\text{dB}} + (G_r)_{\text{dB}} \quad (1)$$

Gains of the passive and active UDR (for one resonator) are equal to 7.1 and 16.9 dBi, respectively. Fig. 8 compares the *E*-plane patterns of one-resonator active and passive prototypes. It can be seen that the integration of the amplifier with the UDR antenna does not disturb the shape of the radiation pattern of the UDR antenna significantly. Fig. 9 shows G_T versus frequency obtained by measurement and simulation with HP-MDS. According to this figure, a gain increase of 10.8 dB was expected for the active element, whereas an increase of 9.8 dB was achieved. The 1-dB loss may be attributed to a nonnegligible mismatch between the amplifying cell output and the slot-coupled resonator input. Fig. 10 shows the feeding network for the active UDR. This feeding network allows us to excite the resonators with uniform amplitude and phase. The input signal is divided in eight using Wilkinson power dividers. Only one amplifier was used for each pair of output.

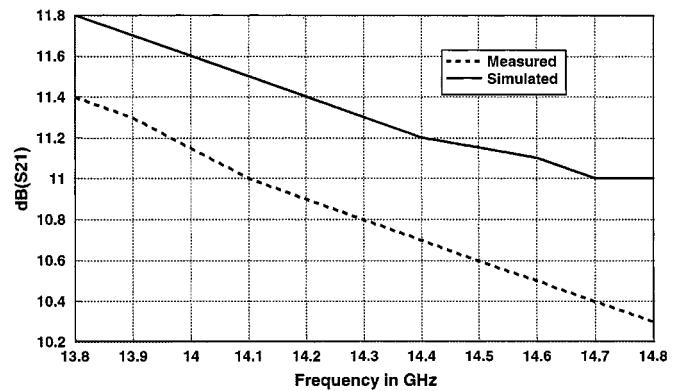


Fig. 9. Measured and simulated amplifier gain.

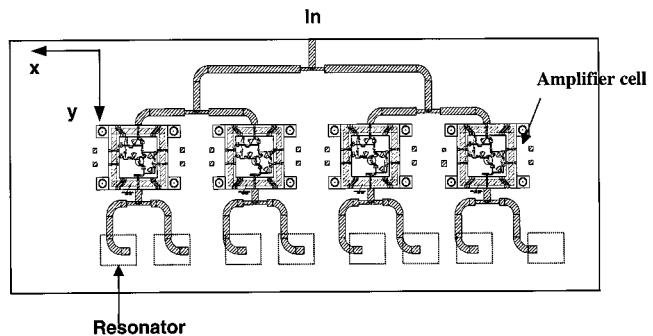


Fig. 10. Feeding network for active eight-element transmitting UDR (top plane).

Fig. 11 displays the measured *E*-plane pattern of four and eight resonators for active and passive configurations.

The measured gain of the four- and eight-element units are 20 and 23.1 dBi, respectively. Except for a constant gain offset, there are small differences between the active and passive patterns. These differences might come from the variation between the amplifiers, both in gain and phase. Another reason is that the active and passive antennas, due to the large number of resonators, have some mechanical differences.

For the eight-element antenna, the measured effective radio power (ERP) is 20.4 W and the dc input power to the UDR antenna is 360 mW. The power actually radiated from the antenna was calculated to be 100 mW, which gives a dc-to-RF conversion efficiency of 27.8%. Also, the power generated per device is 25 mW. This approximates the power expected from these devices (28 mW) biased at 3 V with a drain current of 30 mA. The combining efficiency is then 89%.

All measurements are relative with respect to a maximum level of 0 dB. They were all made under far-field conditions. Measurements were taken in the anechoic chamber and by using a horn antenna as a reference antenna. Measurements were made by using an automated measurement system. Finally, Table I summarizes all the measurement results of the active and passive UDRAs.

IV. CONCLUSION

Experimental and analytical results of active slot-coupled microstrip line-fed UDR arrays have been presented in this paper.

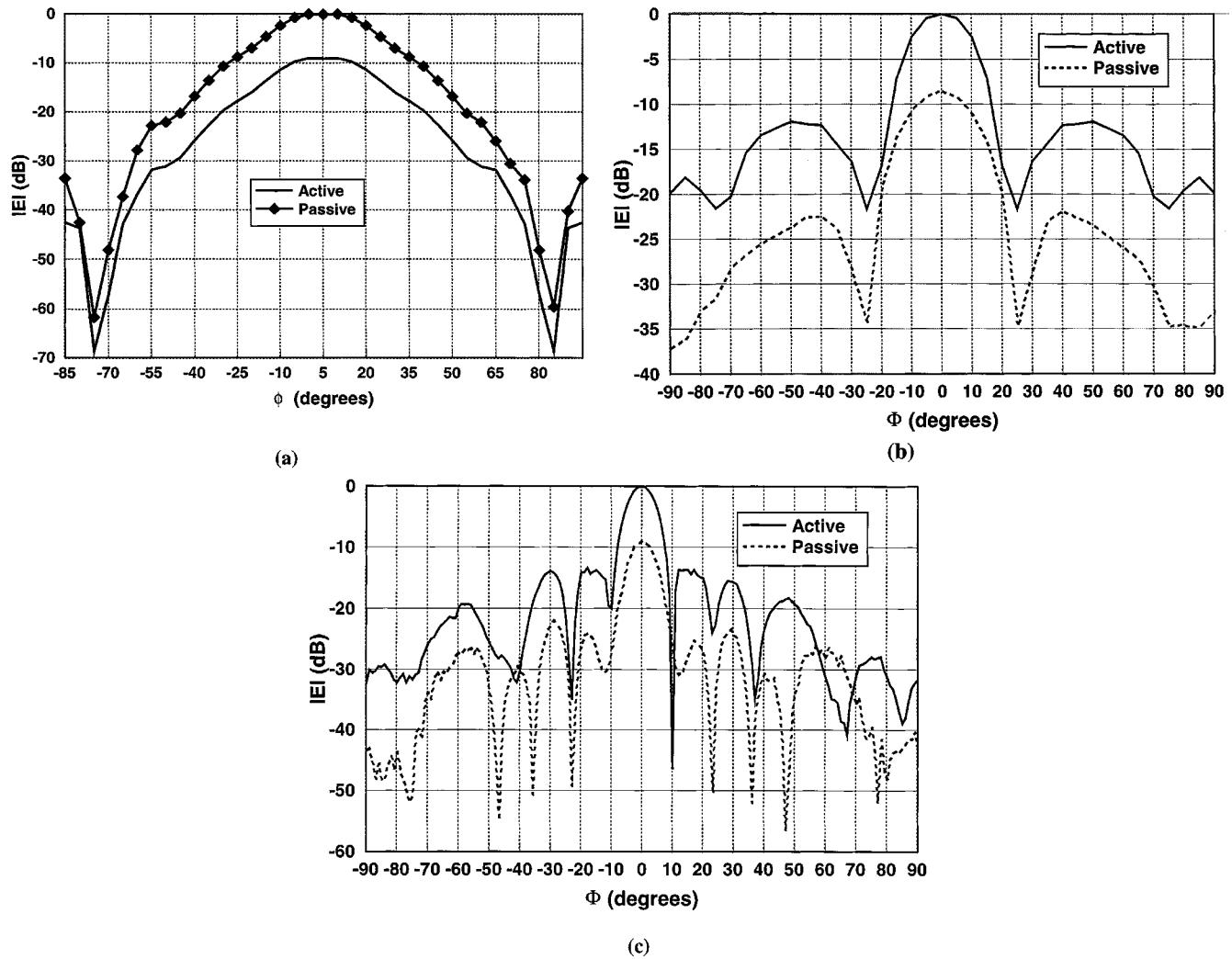


Fig. 11. Measured *E*-plane patterns using active feeding network. (a) Four resonators. (b) Eight resonators.

It is shown that combining UDR technology and planar circuits monolithic hybrid microwave integrated circuit (M(H)MIC) is possible, leading to good results, while advantages of each technology can be effectively combined.

It was experimentally found that coupling between adjacent resonators caused a nonnegligible negative shift of the antenna's resonance frequency. This effect can be somewhat compensated by increasing the distance between the array elements, but at the expense of an increase in the sidelobe level.

REFERENCES

- [1] J. Birkeland and T. Itoh, "Spatial power combining using push-pull FET oscillators with microstrip patch resonators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 3, 1990, pp. 1217–1220.
- [2] R. A. York and R. C. Compton, "Quasi-optical power combining using mutually synchronized oscillator arrays," *IEEE Trans. Microwave Theory Tech.*, vol. 39, pp. 1000–1009, June 1991.
- [3] J. Birkeland and T. Itoh, "A 16-element quasi-optical FET oscillator power-combining array with external injection locking," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 475–481, Mar. 1992.
- [4] S. Kawasaki and T. Itoh, "40-GHz quasi-optical second harmonic spatial power combiner using FET's and slots," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 3, June 1–5, 1992, pp. 1543–1546.
- [5] A. Mortazawi and B. C. DeLoach, "A nine-MESFET two dimensional power-combining array employing an extended resonance technique," *IEEE Microwave Guided Wave Lett.*, vol. 3, pp. 214–216, July 1993.
- [6] S. Kawasaki and T. Itoh, "Second harmonic uniplanar active integrated antenna array with strong coupling," in *Proc. 23rd European Microwave Conf.*, vol. 1, Sept. 1993, pp. 204–206.
- [7] ———, "Quasi-optical planar arrays with FET's and slots," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 1838–1844, Oct. 1993.
- [8] A. Balasubramanyan and A. Mortazawi, "Two-dimensional MESFET-based spatial power combiners," *IEEE Microwave Guided Wave Lett.*, vol. 3, pp. 366–368, Oct. 1993.
- [9] J. Lin and T. Itoh, "Two-dimensional quasi-optical power-combining arrays using strongly coupled oscillators," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 734–741, Apr. 1994.
- [10] H. Ohmine *et al.*, "An MMIC aperture-coupled microstrip antenna in the 40 GHz band," in *Proc. ISAP*, 1992, pp. 1105–1108.
- [11] J. Lin and T. Itoh, "A 4×4 spatial power-combining array with strongly coupled oscillators in multilayer structure," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 2, Atlanta, GA, June 14–18, 1993, pp. 607–610.
- [12] T. Yoneyama and S. Nishida, "Nonradiative dielectric waveguide for millimeter-wave integrated circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 1188–1192, Nov. 1981.
- [13] K. Wu, J. Li, and R. G. Bosisio, "A low-loss unidirectional dielectric radiator (UDR) for antenna and space power combining circuits," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 339–341, Feb. 1994.
- [14] K. Wu, "A combined efficient approach for analysis of nonradiative dielectric (NRD) waveguide components," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 672–677, Apr. 1994.

- [15] L. Han, K. Wu, and R. G. Bosisio, "An integrated transition of microstrip to nonradiative dielectric waveguide for microwave and millimeter-wave circuits," *IEEE Trans. Microwave Theory Tech.*, vol. 44, pp. 1091–1096, July 1996.
- [16] H. An, K. Wu, and R. G. Bosisio, "Microstrip line excitation of unidirectional dielectric radiator (UDR) with aperture coupling," in *Proc. Asia-Pacific Microwave Conf.*, Tokyo, Dec. 6–9, 1994, pp. 79–82.
- [17] —, "Analytical and experimental investigations of aperture coupled unidirectional dielectric radiator arrays (UDRA)," *IEEE Trans. Antennas Propagat.*, vol. 44, pp. 1201–1207, Sept. 1996.

Mekki Belaid received the B.Eng. degree in electrical engineering and M.A.Sc. degree from the École Polytechnique, Montréal, PQ, Quebec, Canada, in 1996 and 1998, respectively, and is currently working toward the Ph.D. degree at the École Polytechnique of Montréal.

Jean-Jacques Laurin (S'87–M'91–SM'98) received the B.Eng. degree in engineering physics from the École Polytechnique, Montréal, PQ, Canada, in 1983, and the M.A.Sc. and Ph.D. degrees in electrical engineering from the University of Toronto, Toronto, ON, Canada, in 1986 and 1991 respectively.

In 1991, he joined the Department of Electrical and Computer Engineering, École Polytechnique de Montréal, where he is currently an Associate Professor and Director of the Poly-Grames Research Centre. From 1998 to 1999, he was an Invited Professor at the École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. His research interests are in the areas of antennas, microwave imaging and electromagnetic compatibility.

Dr. Laurin is a member of the Ordre des Ingénieurs du Québec. He was active in the Steering Committees of the ANTEM'96 and the 1997 IEEE Antennas and Propagation Society (IEEE AP-S)-URSI Symposium. He is currently the technical papers chairman of the 2001 IEEE Electromagnetic Capability (EMC) Symposium.

Ke Wu (M'87–SM'92) was born in Liyang, Jiangsu Province, China. He received the B.Sc. degree (with distinction) in radio engineering from the Nanjing Institute of Technology (now Southeast University), Nanjing, China, in 1982, and the D.E.A. and Ph.D. degrees (with distinction) in optics, optoelectronics, and microwave engineering from the Institut National Polytechnique de Grenoble (INPG), Grenoble, France, in 1984 and 1987, respectively.

He conducted research in the Laboratoire d'Electromagnétisme, Microondes et Optoelectronics (LEMO), Grenoble, France, prior to joining the Department of Electrical and Computer Engineering, University of Victoria, BC, Canada. He subsequently joined the Department of Electrical and Computer Engineering, École Polytechnique de Montréal (Faculty of Engineering at the University of Montréal), Montréal, PQ, Canada, as an Assistant Professor, and is currently a Full Professor. He has held visiting or guest professorships at Telecom-Paris and INP-Grenoble, Grenoble, France, the City University of Hong Kong, Hong Kong, the Swiss Federal Institute of Technology (ETH-Zurich), Zurich, Switzerland, the National University of Singapore, Singapore, as well as several short-term Visiting Professorships in other universities. He also holds an Honorary Visiting Professorship at the Southeast University, China. He is currently a Visiting Professor at the University of Ulm, Ulm, Germany. He has been the Head of the FCAR Research Group of Quebec on RF and millimeter-wave electronics and the Acting Director of the Poly-Grames Research Center. He has authored or co-authored over 250 referred journal and conference papers, and also several book chapters. His current research interests involve three-dimensional hybrid/monolithic planar and nonplanar integration techniques, active and passive circuits, antenna arrays, advanced field-theory-based computer-aided design (CAD) and modeling techniques, and development of low-cost RF and millimeter-wave transceivers. He is also interested in the modeling and design of microwave photonic circuits and systems. He was chairperson of the 1996 ANTEM's Publicity Committee and vice-chairperson of the Technical Program Committee (TPC) for the 1997 Asia-Pacific Microwave Conference (APMC'97). He has served on the FCAR Grant Selection Committee (1993–1996 and 1998–1999), and the Technical Program Committee (TPC) for the TELSIKS and ISRAMT. He has also served on the ISRAMT International Advisory Committee. He was the General Co-Chair of the 1999 SPIE International Symposium on Terahertz and Gigahertz Photonics, Denver, CO. He has served on the editorial board of *Microwave and Optical Technology Letters*.

Dr. Wu is a member of Electromagnetics Academy. He was the recipient of a URSI Young Scientist Award, the Institution of Electrical Engineers (IEE), U.K., Oliver Lodge Premium Award, the Asia-Pacific Microwave Prize Award, the University Research Award "PRIX POLY 1873 POUR L'EXCELLENCE EN RECHERCHE" presented by the École Polytechnique de Montréal on the occasion of its 125th anniversary, and the Urgel–Archambault Prize (the highest honor) in the field of physical sciences, mathematics and engineering presented by the French–Canadian Association for the Advancement of Science (ACFAS). He has also served on the editorial or review boards of various publications, including the *IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES*, the *IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION*, and the *IEEE MICROWAVE AND GUIDED WAVE LETTERS*. He has served on the 1996 IEEE Admission and Advancement (A&A) Committee and the Steering Committee for the 1997 joint IEEE Antennas and Propagation Society (IEEE AP-S)/URSI International Symposium. He has also served as a Technical Program Committee (TPC) member for the IEEE MTT-S International Microwave Symposium.