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Full-Wave Analysis of MICs in Multilayer Dielectric
Media in a Rectangular Waveguide

Odilon M. C. Pereira Filho, Member, IEEE,and Tapan K. Sarkar, Fellow, IEEE

Abstract—A full-wave analysis of microwave integrated circuits
in multilayer dielectric media in a rectangular waveguide is
described. It combines spectral-domain approach with residue
theory and the contour integration method to accurately eval-
uate the impedance matrix of the method of moments. The

-parameters are obtained by exciting the circuit with a voltage
gap generator and applying the matrix pencil technique, or by
impressing traveling-wave currents. Modifications on the latter
are introduced. Both methods are compared from a physical
point-of-view, analytical complexity, and numerical efficiency.

Index Terms—Full wave, matrix pencil, MIC, multilayered
structure, waveguide.

I. INTRODUCTION

A LARGE number of techniques have been applied to
microwave integrated circuits (MICs), from quasi-static

analysis to full-wave procedures. A good overview of these
methods used to characterize frequency-dependent microstrip
components and discontinuities is given in [1]. Originally
these circuits were build over one dielectric layer [2], but
recently, additional layers have been included for improving the
performance of the devices or to reduce the complexity of the
circuits [3]–[9]. Furthermore, they provide alternate solutions
to circuit layout, new feeding structures, and even mechanical
protection as superstrates.

Although very accurate, application of full-wave techniques
using the method of moments (MoM) are often time consuming.
In space domain, this results from the multiple integrations (in
the testing region, source region, and from the representation
of the Green’s functions) to be performed for obtaining the ele-
ments of the impedance matrix of the MoM. In the spectral-do-
main approach, it is a consequence of the oscillatory behavior
of the transforms of the source and testing functions, together
with the slow decaying transform of the Green’s functions. Re-
cently, an effort has been made to overcome these difficulties,
allowing for such an analysis to be quickly performed on com-
puter-aided design (CAD) packages. For the open case in space
domain, the elements are often calculated by interpolation of
previously obtained Sommerfeld integrals [10]. Alternatively,
the quasi-static term and the surface waves can be extracted
from the original form of the element, and the remaining por-
tion of the Green’s function is expanded in a series of expo-
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nentials [11]. In the spectral domain, for the same open case,
the impedance matrix involves evaluation of doubly infinite in-
tegrations. It has been proposed in [12] and [13] that the inner
integration be numerically evaluated only up to a point where
the Green’s functions approach its asymptotic form, which con-
tains only algebraic functions. The remaining portion of the in-
tegral can be either evaluated in closed form or deformed to an
integral with an exponentially decaying integrand. For the case
of boxed MICs, the impedance matrix can be efficiently evalu-
ated through fast Fourier transform (FFT) algorithms [14]–[16].
The technique can be applied only to the cases in which the sur-
face of the circuit can be discretized into an uniform mesh. Even
when it is possible, the maximum segment length of the mesh, in
each direction, is the greatest common denominator of the cir-
cuit dimensions. In general, it may represent an unnecessarily
large number of basis functions. In [17], residue theory and the
contour integral method are used to transform one of the double
infinite summations into an integral around the branch cut. This
integral is lately replaced by a summation of two consecutive in-
tegrations of the modified Bessel function of zeroth-order.
Very recently [18], Poison’s summation formula together with
Sommerfeld’s identity was used to convert one of the summa-
tions in the Green’s functions into a summation of modified
Bessel functions and .

In this paper, we present a full-wave analysis of a planar
MIC in a multilayer dielectric media in a rectangular wave-
guide. It used the spectral-domain approach, and the elements of
the moment matrix are evaluated by subtracting a conveniently
modified asymptotic limit of its integrand. The integral of the
limit is obtained using residue theory and the contour integra-
tion method, resulting in a faster and more accurate procedure.
We also study and compare two excitation techniques often used
in the literature, i.e., the voltage gap generator, and the trav-
eling-wave impressed current [5], [13], [19]. Some modifica-
tions are introduced in the latter for both the basis and weighting
functions, which ensure the stability of the results. Our aim is
to evaluate the mathematical models from both the practical
point-of-view and numerical efficiency. The analysis will be
performed for a two-port network, although it can be easily ex-
tended to an arbitrary number of ports.

II. GREEN’S FUNCTIONS AND MOM

Consider a rectangular waveguide, whose cross section is
shown in Fig. 1. It has dimension in the -direction and is
filled with three layers of dielectric thickness , , and .
Each layer consists of a homogeneous, isotropic, and lossless
dielectric characterized by its permittivity () and permeability
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Fig. 1. Cross section of the waveguide.

( ). All metals are assumed to be perfect conductors, and a
time variation of is assumed and suppressed.

Suppose that an arbitrary surface current distribution exists at
the dielectric interfaces. The electromagnetic fields in each layer
can be expressed in terms of any two components of the vector
potentials. In the spectral-domain approach, it is common to
choose the components of the vector potentials in the direction
normal to the dielectric interfaces ( ), as the and the

components of the fields are decoupled [1], [4]. Further-
more, using the equivalent transmission-line model, additional
dielectric layers can be added without any major increase in the
complexity of the analysis [4]. From the boundary conditions at

and , we observe that , or can
be represented by a sine (cosine) Fourier series in the-direction
and by exponentials in the-direction. The Green’s functions
for the vector potentials are obtained by imposing the boundary
conditions at the dielectric interfaces, when an electric dipole is
present at one of them. Since we need to calculate the electric
field only in medium 2 for imposing the boundary condition at
the circuits, the Green’s functions will be shown only for this
layer. Specifically, the partial derivative of the Green’s function
for the magnetic vector potential in respect tois shown in-
stead of the function itself, as and depend directly on
this derivative.

For an -directed electric dipole at ,
, the Green’s functions for medium 2, obtained as

described before, are given by

(1)

(2)

where

(3)

(4)

(5)

(6)

When there are only three dielectric layers, the coefficients
and represent the reflection coefficients due to the con-

ductors at and . For a larger number of
layers, these coefficients represent the reflection coefficients of
decoupled and modes, obtained through the equiv-
alent transmission-line method [1], [4]. The indexes in
stand for sine transform of the Green’s function for due to
an -directed dipole in the interface. Similarly, for .

( ) is the transcendental equation for the
( ) modes that propagate in the structure without any

circuit in the dielectric interfaces. The total vector potential at
medium 2 due to some arbitrary-directed source distribution
at , and their transforms, are obtained by superposition.

For the case of a-directed electric dipole at ,
, the Green’s functions for medium 2 are

given by

(7)

(8)

where

(9)

(10)

Similar Green’s functions are obtained for the sources at
, and are omitted here for the sake of space. The integral

equation of the problem arises from the boundary conditions on
the surface of the circuit (), supposing the presence of either
an incident field , or an impressed current. Expanding the
current in a set of basis functions ( , ;

, ) and taking the inner product with
weighting functions ( ; , ,
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Fig. 2. Rooftop basis functions.

) the integral equation is transformed into a matrix
equation given by

(11)

The elements of the vector are the coefficients of the current
expansion in the set of basis functions. The vectorwill de-
pend on the excitation used, and the elements of the impedance
matrix are given by the reaction of the fields due to a basis
function , on a weighting function .

(12)

For example, for the case of a-directed basis and weighting
functions

(13)

where and are the sine transform of the basis and
weighting functions.

III. V OLTAGE GAP GENERATOR

The voltage gap generator assumes that an incident elec-
tromagnetic field has a delta-function distribution over a
dielectric interface [ at or ].
The elements of the excitation vector are given by

. Rooftop functions (Fig. 2) are used
as basis functions due to their simplicity and flexibility in
approximating the currents on a circuit of arbitrary shape. The
same set of functions are used as testing functions, resulting
in a Galerkin procedure, and in the symmetry of matrix.
The position of the excitation () is often chosen such that it
coincides with the edge of the discretization of the circuit that
is closest to the truncation of the input/output lines. As a con-
sequence, the only nonzero testing functions at the excitation
point are those centered in. The elements of the matrix
are simply given by

(14)
if

otherwise
(15)

where is the transversal discretization length of the-di-
rected currents.

A. Numerical Evaluation of the Impedance Matrix

In both the space or spectral domains, the elements of the
impedance matrix exhibit slow convergence. In this paper,
residue theory and the contour integral method are used, to-
gether with some modifications of the asymptotic limit of the
integrand that result in a much simpler analysis. The procedure
will be illustrated for the elements, with source at the
interface. From the parity of the integrand, we can write

(16)

where

(17)

The first numerical problem arises from the poles of the in-
tegrand, i.e., the real zeros of DTM and DTE that correspond
to the propagation constant of the and modes of
the rectangular waveguide above cutoff. The numerical problem
is overcome by subtracting the singularities from the integrand
and analytically evaluating the remaining singular integrals. For
waveguides with , the dominant wave-
guide mode is often the first mode with , and the
pole ( ) is the first zero of DTM, with . The term cor-
responding to is written as

(18)

where and .
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The second and more troublesome problem when evaluating
the elements of matrix is due to the slow convergence of the
summation and integrals, especially for the case when source
and testing functions are in the same interface. The evaluation
of the impedance matrix becomes computationally expensive,
and its accuracy is endangered by the oscillatory nature of the
integrands. To overcome this limitation, the limit of the inte-
grand, as goes to infinity, is added and subtracted to
the original integrand

(19)

where

(20)

and is the integrand of in (13), whose asymp-
totic limit is given by

(21)

where and are constants that depend on the permittivi-
ties and permeabilities of the three layers.

Now, the integral in (19) can be evaluated quickly
as the integrand converges asymptotically to zero. The conver-
gence problems of have been isolated in , which
will be evaluated analytically. A basic procedure for evaluating
integrals on the real axis is to close the contour with a semicircle
of infinite radius ( ) and to use the residue theorem. In our
case, the limit above has two branch cuts, with branch points at

, a second-order pole at , and first-order poles
at , as shown in Fig. 3. When applying the contour
integral method, it would be necessary to add a path around the
branch cut, as in [17], and to deal with a second-order pole in
the integration path. Geometrically, the limiting case represents
a multilayer media with the layers 1 and 3 extending to
and , respectively. Those branch cuts account for the corre-
sponding radiation in this now open structure. However, phys-
ically they have no meaning to the original problem. We have

Fig. 3. Singularities of the asymptotic limit in thek -plane.

analyzed different ways of expressing this limit that simplifies
the analytical evaluation of , avoiding the above prob-
lems. We are suggesting the following substitutions:

(22)

(23)

When applying the contour integral method and residue
theory, the integration around the branch cut is substituted by
a summation of residues, and the second-order pole at
is substituted by the first-order poles at . The
singularities of the modified asymptotic limit are shown in
Fig. 4. It should be stressed that these modifications do not
alter the limit, as the hyperbolic tangent converges rapidly to
1 and . After these changes, the limit of the integrand is
given by

(24)

is obtained by substituting (24) into (20), and is
written as a combination of the functionsand , given below,
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Fig. 4. Singularities of the modified asymptotic limit in thek -plane.

which are evaluated using contour integration and the residue
theorem

(25)

(26)

(27)

where

(28)

We should observe that the functionsand are given by
exponentially decaying summations, unless . In this case,
the summations need to be evaluated only once, and their results
stored for future reference. As a result, the integral of the asymp-

Fig. 5. Original integrand ofZmn and the resulting integrand after
subtracting the limit.

totic limit ( ), where the oscillatory and slow decaying
behavior of the integrand has been isolated, is now expressed by
an exponentially converging summation, which can be quickly
and accurately evaluated. A very similar procedure is used for
the elements of the submatrices and , where the substi-
tutions (22) and (23) are used, and integrals likeand are
defined and evaluated analytically.

An example of how the procedure described improves the nu-
merical evaluation of the elements of matrix is shown in
Fig. 5. It compares the original integrand of an element of the
impedance matrix and the resulting integrand after subtracting
the limit. For relatively small values of , the original integrand
has already approached the limit, while the first still oscillates.
The advantage of the procedure described is to limit the amount
of numerical integration performed by drastically improving the
behavior of the integrand. Furthermore, the limit of the inte-
grand is reached when goes to . This means that
as increases in evaluation of the elements of, the inte-
grand converge to the asymptotic limit for a smaller value of

. As a result, the numerical integration is performed over a de-
creasing interval length in as increases. The overall effect
is a combination of an increase in the accuracy of the elements
of the impedance matrix, and substantial savings in computa-
tional time spent to fill out the matrix .

B. Extraction of the -Parameters

Once the matrices and are known, the linear system
(11) is solved for the currents excited in the circuit. The-pa-
rameters can be obtained from the current distribution, either
from the network admittance matrix [20], application of ideal
transmission-line theory [9], [21], or using the matrix pencil
technique [22], [23]. The latter has been used as it presents two
advantages over the previous ones. For reciprocal networks, it
does not require the evaluation of the characteristic impedances
of the transmission lines in any of the ports of the circuit. Also,
it can be applied over a relatively small section of the circuit,
which means that a smaller number of basis functions and sub-
stantial savings in time to fill the MoM impedance matrix
are achieved.
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Fig. 6. Traveling-wave excitation.

IV. TRAVELING-WAVE EXCITATION

The second class of excitation uses impressed current gener-
ators. It has been shown [20] that when the same set of basis
functions are used, the impressed current excitation is equiva-
lent to the voltage gap generator. An interesting impressed cur-
rent model involves the use of traveling waves on both ports and
far from the circuits. The remaining portion of the circuit can
be expanded in subsectional basis functions. This mixed repre-
sentation of the currents is an attempt to numerically simulate
the matched connection between the input/output lines and the
coaxial cables. In [13] and [19], the sinusoids are truncated after
several cycles. It has been reported that the solutions are insen-
sitive for lengths greater than three or four wavelengths [19] or
five wavelengths [13]. The advantage of truncating the traveling
waves is to avoid the singularities in the spectral domain that re-
sult from its infinite extent. On the other hand, as the length of
the truncation is increased, the Fourier transform of the trav-
eling wave tries to describe an equivalent delta function and a
singular behavior using highly oscillatory functions, which is
numerically inefficient and nonconverging [24]. When semiin-
finite traveling waves are used [5], [24], the contributions due to
the singularities and delta functions are evaluated analytically.
The procedure shown below is a variation of those above, with
modifications on both the traveling-wave basis functions and the
corresponding extra weighting functions, which guarantees the
convergence.

Consider an arbitrary circuit, as shown in Fig. 6, where the
input and output lines extend to infinity. As we move away from
the circuit, the current distribution on the lines resemble those
of the respective infinite transmission lines. For example, if the
circuit is excited from the port 1, the current on both ports far
from the circuit can be approximated by

(29)

(30)

where is a piecewise constant approximation of
the transverse variation of the dominant mode at port 1 (2) with
propagation constant . These functions and’s are pre-
viously obtained by a two-dimensional analysis. The remaining
portion of the circuit is expanded in rooftop basis functions. The
traveling-wave functions in (29) and (30) are nonzero at
and , respectively, generating infinite charge distributions at
these points. To assure the continuity of the currents, a ramp
function is added to the end of the traveling-wave basis
functions, resulting in

(31)

(32)

(33)

where is the step function and the ramp function is given
by

elsewhere
(34)

and is the discretization length of the adjacent rooftop sec-
tion of the circuit. The current at ports 1 and 2 are now given by

(35)

(36)

Furthermore, this accelerates the convergence of the integrals
as the sine transform of the pure traveling waves in (29) and
(30) decay with , while with the addition of the ramp func-
tions, (35) and (36) decay with . This solution differs from
those in [5], [13], and [19], where the problem was overcome
by extending only the real part of the traveling wave for an extra
quarter-wavelength, and truncating the sinusoids after an integer
number of half-wavelengths [13], [19]. The boundary condition
at the conducting surface of the circuit, after expanding the cur-
rents in traveling waves and rooftop functions, is given by

(37)

where and are the rooftop basis functions. The
conditions above are tested with a set of weighting functions
that include all rooftop basis functions plus two extra functions
( ) centered at the interfaces between the trav-
eling-wave sections and rooftop sections (and ). The
extra weighting functions, which are shown in Fig. 7, have a
triangular -dependency given by

elsewhere
(38)

elsewhere
(39)

and the same -dependency as the traveling waves .
is the discretization length of the rooftop section

adjacent to port 1 (2), and is the length of the trav-
eling-wave section at port 1 (2) where the boundary conditions
are imposed. If the transmission line at portextends from
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Fig. 7. Extra weighting functions.

to and we use basis functions in the transverse
direction, then can be written as

(40)

where ’s are the coefficients of the current distribution across
the stripline obtained from the two-dimensional analysis and

.
can be seen as a combination of rooftop functions weighted by
the coefficients ’s

(41)

where . The
basic difference between these extra weighting functions and
those previously used is that in [5], [13], and [19] it was assumed
that the extra weighting functions were symmetric, i.e.,

, while in our case, they are not. Although it may look like a
small modification, it does have very important consequences.
In the symmetric case, the length of the extra weighting func-
tions ( ) diminish as we increase the number of basis func-
tions of the adjacent rooftop section. This leads to the situation
where the boundary conditions are imposed over a diminishing
portion of the traveling wave ( ) as we increase the number
of rooftop basis functions. In the limit, the boundary condi-
tions are no longer imposed over the traveling-wave sections.
In our case, the traveling-wave sections are always being tested
over a length , despite the number of basis functions used
in the adjacent rooftop portion. It was observed thatshould
be bigger than one-tenth of the wavelength of the quasi-TEM
mode at the given port. In the symmetric case, that would re-
quire the use of less than ten basis functions per wavelength in

the longitudinal direction, which is not enough to ensure con-
vergence. When is smaller than one-tenth of the wavelength,
the -parameters of the circuit are very sensitive to the value
of adopted. In our simulations, we have used values ofof
at least a quarter-wavelength. This will be illustrated later in an
example. After testing the boundary condition (37) with the set
of weighting functions, the resulting equations are arranged in
a matrix form

(42)

The submatrices , , , and represent the reac-
tion between two rooftop functions, as in the case of a voltage
gap generator. By reciprocity, these four submatrices form a
symmetric portion of matrix . In the row matrices, and

, the fields due to rooftop basis functions are
tested by the extra weighting functions . As these functions
are combination of rooftop functions (41), the elements of
and are obtained similarly for and , respectively.

and are column matrices where the fields due to the
scattered traveling wave in portare tested by rooftop weighting
functions in - and -directions, respectively,

(43)

(44)

(45)

(46)
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Fig. 8. Stripline coupling.

where and are the sine transforms of of (32) and
of (33) and are given by

(47)

(48)

(49)

In , , the fields due to the scattered traveling
wave in port are tested by the weighting functions . From
(41), these elements are obtained similarly to (46). The
elements of the independent vector of (42) are given by

(50)

(51)

(52)

(53)

where is the sine transforms of (31), and is given by

(54)

Similar to matrix , the two first rows of are obtained
as a combination of elements of the form . Once all the
elements of the linear system (42) are known, the coefficients
of the scattered traveling waves at ports 1 and 2 are obtained
directly from the numerical solution of the given system. When
the circuit is excited from port 2, the current distribution far from
it can be approximated by

(55)

(56)

where and are given, respectively, by (32) and (33),
and is equal to

(57)

After expanding the remaining portion of the circuit in
rooftop basis functions and imposing the boundary conditions,
we obtain a linear system given by

(58)

The matrix is the same as for the excitation from port
1, and the elements of the independent vectorare obtained
similarly to the previous case with substituted by the sine
transform of (57)

(59)

The elements of the auxiliary matrixare obtained directly
from the solution of the linear systems (42) and (58). The-pa-
rameters are obtained from the elements of matrixas

(60)

(61)

(62)

(63)

As we know that for reciprocal networks, then
from (61) and (62)

(64)

A. Numerical Evaluation of the Impedance Matrix

The elements of the linear systems (42) and (58) basically in-
volve two kinds of reactions. The first is between two rooftop
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functions, which has already been described. In the second, the
fields produced by a traveling-wave basis functions are tested
by a rooftop basis function. There are three sources of numer-
ical instabilities when evaluating these elements: the poles of the
Green’s functions, the oscillatory and slow decaying behavior of
the integrand, and the singularities of the traveling-wave basis
functions in spectral domain. The first two are common to the
reaction of two rooftop functions, and are solved following the
same procedure. The singularities of the traveling waves are
treated analytically, as illustrated for the case of . The sin-
gularities of the sine transform of of (47) include a delta
function and a first order pole at . It can be shown that
the contribution of the delta function is equal to , where

is the residue of the integrand at . The remaining
part should be integrated in the principal value sense. Removing
the pole from the integrand

(65)

where

(66)

(67)

As an alternative procedure we can use of (67) as the
sine transform of the reflected traveling wave at port 1 ()
and distort the integration path with a semicircle of infinites-
imal radius around the pole , in the third quadrant.
This would be similar to the approach used for the poles of the
Green’s functions, and both approaches yield the same result.

V. NUMERICAL EXAMPLES

As an example, consider a stripline coupling shown in Fig. 8.
The waveguide with dimensions mm, and mm
is filled with two dielectric layers of the same thickness

mm, and dielectric constants and
. A stripline of width mm at the

interface is coupled with another of width mm at the
interface. The stripline overlap is 1.5 mm. When using

a voltage gap generator, the striplines were truncated 32 mm
from the end, and for traveling-wave excitation, the rooftop sec-
tion extended for 8 mm from the end of the striplines. The con-
vergence of the magnitude of the reflection coefficient at port 1
( ) with the number of longitudinal basis functions is shown
in Fig. 9. Only one transverse basis function was used. For the
voltage gap generator, the convergence is reached with about
15 basis functions per wavelength of the dominant mode (),
while the traveling-wave generator required about 25 basis per
wavelength, for the same accuracy.

Fig. 9. Convergence of the magnitude ofS with the number of longitudinal
basis functions per wavelength.

Fig. 10. Magnitude ofS-parameters for a microstrip coupling.a = 10 mm,
b = 7:62 mm,h = 6:35 mm,h = h = 0:635 mm,� = 1, � = 10:2

and� = 2:2, w = 1:9 mm,w = 1 mm, andl = 1:5 mm.

Fig. 10 shows the amplitudes of the reflection and transmis-
sion coefficients as the frequency varies from 8–12 GHz, for
both excitation methods. The results are compared with those
of a parallel-plate waveguide with the same dielectric filling ob-
tained by Kahrizi [10] using space-domain analysis, and with
those for the case of infinite dielectric layers without top ground
plane by Yang [5] using the spectral-domain analysis. Despite
the differences of the structures, the-parameters present very
similar behavior, with a small discrepancy for the of [5] due
to radiation losses.

An interesting result is shown in Fig. 11. The magnitude of
is shown as we vary the length of the extra weighting

functions. This corresponds to the distance where the boundary
conditions are imposed on the traveling-wave section. From
Fig. 11, we observe two very distinct regions. One is for
smaller than one-tenth of the wavelength, where the magnitude
of varies rapidly, and worsens for smaller values of.
For greater than one-tenth of the wavelength, the reflection
coefficient has a smooth variation. We have adopted the value

equal to a quarter-wavelength as a convergence value, al-
though any value of in this second region will provide results
within the expected numerical error. In this case, we have used
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Fig. 11. Convergence of the magnitude ofS with the lengthl of the extra
weighting functions per wavelength.

30 basis longitudinal basis functions on the rooftop section,
which corresponds to a discretization length equal to 0.017
wavelengths. If we had used symmetrical extra weighting
functions, it would have led to an error of approximately 5%.

Consider now the microstrip stub shown in Fig. 12. The wave-
guide of dimensions mm and mm is filled
with a dielectric layer of constant and thickness

mm. The transmission line has width mm
and is placed at a distance mm from the closest ver-
tical wall. The stub has the same width as the line, and length

mm. Figs. 13 and 14 show, respectively, the magni-
tude and phase of the transmission coefficient as the frequency
varies from 7.5–12 GHz. Also shown are measurements and
theoretical results obtained by Jackson [2] for the unshielded
microstrip case. It is observed that the results closely matches
the quasi-static prediction of a phase jump of 180near the
resonance. This happens because at this frequency range, the
quasi-TEM dominant mode is the only one that propagates in
the structure. The open microstrip [2] case, on the other hand,
shows a reduced peak phase due to radiation or conductor losses
(measurement). A similar effect is also observed in Fig. 13 for
the magnitude of the transmission coefficient.

As a last example, consider the a microstrip gap with an
overlay half-wave resonator, as shown in Fig. 15. The wave-
guide has dimensions mm, and is filled with two
dielectric layers of the same dielectric constant and
thickness mm. The transmission line has width

mm, with a gap of mm. The parasitic resonator
is placed symmetrically over the gap, with the same width of
the transmission line, and length mm. The magnitude
of the reflection and transmission coefficients are shown in
Fig. 16, together with numerical results and measurements
obtained by Yeung [9] for the case of an open multilayered
structure. It is observed that the resonance frequency shifts
slightly toward 4 GHz.

VI. COMMENTS ON VOLTAGE GAP GENERATOR AND

TRAVELING-WAVE EXCITATION

One problem of the voltage gap generator is the condition
number of the impedance matrix of MoM close to reso-

Fig. 12. Microstrip stub.

Fig. 13. Magnitude ofS for the microstrip stub.a = 10 mm, b = 10:62

mm,h = 1:27 mm,e = 10:65, w = 1:40 mm, andL = 2:16 mm.

Fig. 14. Phase ofS for the microstrip stub.a = 10 mm, b = 10:62 mm,
h = 1:27 mm,e = 10:65,w = 1:40 mm, andL = 2:16 mm.

nances. It is a consequence of the finite extent of the circuit
resulting from the truncation. These points should be carefully
avoided to ensure the accuracy of the results. Our simulations
have shown that the condition number increases quickly as
we approach one of the resonant frequencies, but the system
is ill conditioned only within a very close proximity of those
points. When using traveling-wave excitation, this problem is
not present, due to the infinite extent of the circuit. Another
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Fig. 15. Microstrip gap with overlay half-wave resonator.

Fig. 16. Magnitude ofS and S for the microstrip gap with overlay
resonator.a = b = 20 mm, h = 0:8382 mm, e = 2:33, w = 2:3 mm,
g = 1:0 mm, andL = 27:3 mm.

advantage of the traveling waves is the control we have on
the incident wave on the circuit. For structures where the
dominant quasi-TEM is the only one that propagates, it really
does not make a difference, as all higher order modes are
evanescent. However, when more than one mode propagates at
a given physical port, the traveling-wave excitation provides
a way of separating the contributions due to each of them.
The traveling-wave excitation usually requires a small rooftop
section between the traveling wave and circuits. Typically, a
half-wavelength-long rooftop section is sufficient for getting
stable solutions. This results in a smaller MoM linear system
than for the case of voltage gap excitation, where sections of
one to two wavelengths are required. Although the system is
smaller, the computational time spent for the traveling-wave
excitation was found to be bigger than when using a voltage
gap generator. In fact, around 2.5 times longer for the same
density of basis functions. This is a consequence of extensive
use of symmetry in the impedance matrix when using
voltage gap generator. Two elements of are equal when the
basis and weighting functions corresponding to one are shifted
versions in -direction of the functions corresponding to the
other. For the traveling-wave excitation, the same happens in
the rooftop submatrices ( , , , and ). However,
no such redundancies are present for the reaction between the
traveling-wave basis functions and the rooftop testing func-
tions, and all the elements of the corresponding submatrices
have to be numerically evaluated. The-parameters are either
obtained directly from the solution of the linear system for the
traveling-wave excitation, or by the use of the matrix pencil
technique for the voltage gap generator. The apparent advantage

of the traveling-wave excitation diminishes as the matrix pencil
is a very quick and reliable procedure. As observed from the
numerical examples, the results from both excitation techniques
are very close and the same accuracy is obtained.

VII. CONCLUSIONS

This paper has presented a full-wave analysis of MICs in mul-
tilayer dielectric media in a rectangular waveguide. It shows a
procedure that permits an accurate and faster numerical evalu-
ation of the moment matrix, without the limitations of previous
FFT routines. Both voltage gap generator and traveling-wave
excitation have been used and compared. The use of asymmet-
rical weighting functions has been introduced in the latter, and
its importance for achieving convergence was discussed.

REFERENCES

[1] T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave Pas-
sive Structures. New York: Wiley, 1989.

[2] R. W. Jackson, “Full-wave finite-element analysis of irregular mi-
crostrip discontinuities,”IEEE Trans. Microwave Theory Tech., vol. 37,
pp. 81–89, Jan. 1989.

[3] M. Horno and F. Medina, “Multilayer planar structures for high direc-
tivity directional coupler design,”IEEE Microwave Theory Tech., vol.
MTT-34, pp. 1442–1449, Dec. 1986.

[4] N. K. Das and D. M. Pozar, “A generalized spectral-domain Green’s
function for multilayer dielectric substrates with application to multi-
layer transmission lines,”IEEE Trans. Microwave Theory Tech., vol.
MTT-35, pp. 326–335, Mar. 1987.

[5] H. Yang and N. G. Alexopoulos, “Basic blocks for high-frequency in-
terconnects: Theory and experiment,”IEEE Trans. Microwave Theory
Tech., vol. 36, pp. 1258–1264, Aug. 1988.

[6] W. P. Harokopus Jr. and P. B. Katehi, “Characterization of microstrip
discontinuities on multilayer dielectric substrates including radiation
losses,”IEEE Trans. Microwave Theory Tech., vol. 37, pp. 2058–2066,
Dec. 1989.

[7] J. Basterrechea and M. F. Catedra, “Computation of microstripS-param-
eters using a CG–FFT scheme,”IEEE Trans. Microwave Theory Tech.,
vol. 42, pp. 234–240, Feb. 1994.

[8] W. Schwab and W. Menzel, “On the design of planar microwave com-
ponents using multilayer structures,”IEEE Trans. Microwave Theory
Tech., vol. 40, pp. 67–71, Jan. 1992.

[9] E. K. L. Yeung, J. C. Beal, and Y. M. M. Antar, “Multilayer microstrip
structure analysis with matched load simulation,”IEEE Trans. Mi-
crowave Theory Tech., vol. 43, pp. 143–149, Jan. 1995.

[10] M. Kahrizi, “A three-dimensional space domain approach for the anal-
ysis of printed circuit problems,” Ph.D. dissertation, Dept. Elect. Eng.,
Syracuse Univ., Syracuse, NY, 1992.

[11] Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, “A closed-form
spatial Green’s function for the thick microstrip substrate,”IEEE Trans.
Microwave Theory Tech., vol. 39, pp. 588–592, Mar. 1991.

[12] H. Yang, A. Nakatani, and J. A. Castaneda, “Efficient evaluation of spec-
tral integrals in the moment method solution of microstrip antennas and
circuits,” IEEE Trans. Antennas Propagat., vol. 38, pp. 1127–1130, July
1990.

[13] U. V. Gothelf and A. Ostergaard, “Full-wave analysis of a two slot mi-
crostrip filter using a new algorithm for computation of the spectral inte-
grals,”IEEE Trans. Microwave Theory Tech., vol. 41, pp. 101–108, Jan.
1993.

[14] J. C. Rautio and R. F. Harrington, “An electromagnetic time-harmonic
analysis of shielded microstrip circuits,”IEEE Trans. Microwave Theory
Tech., vol. MTT-35, pp. 726–730, Aug. 1987.

[15] A. Hill and V. K. Tripathi, “An efficient algorithm for the three-dimen-
sional analysis of passive microstrip components and discontinuities for
microwave and millimeter-wave integrated circuits,”IEEE Trans. Mi-
crowave Theory Tech., vol. 39, pp. 83–91, Jan. 1991.

[16] C. J. Railton and S. A. Meade, “Fast rigorous analysis of shielded planar
filters,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 978–985,
May 1992.

[17] S. Hashemi-Yeganeh, “On the summation of double infinite series field
computations inside rectangular cavities,”IEEE Trans. Microwave
Theory Tech., vol. 43, pp. 641–646, Mar. 1995.



1622 IEEE TRANSACTIONS ON MICROWAVE: THEORY AND TECHNIQUES, VOL. 48, NO. 10, OCTOBER 2000

[18] G. V. Eleftheriades, J. R. Mosig, and M. Guglielmi, “A fast integral
equation technique for shielded planar circuits defined on nonuniform
meshes,”IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2293–2296,
Dec. 1996.

[19] R. W. Jackson and D. M. Pozar, “Full-wave analysis of microstrip
open-end and gap discontinuities,”IEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 1036–1042, Oct. 1985.

[20] G. V. Eleftheriades and J. R. Mosig, “On the network characterization
of planar passive circuits using the method of moments,”IEEE Trans.
Microwave Theory Tech., vol. 44, pp. 438–445, Mar. 1996.

[21] P. B. Katehi and N. G. Alexopoulos, “Frequency-dependent characteris-
tics of microstrip discontinuities in millimeter-wave integrated circuits,”
IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1029–1035,
Oct. 1985.

[22] Y. Hua, “On techniques for estimating parameters of exponentially
damped/undamped sinusoids in noise,” Ph.D. dissertation, Dept. Elect.
Eng., Syracuse Univ., Syracuse, NY, 1988.

[23] T. K. Sarkar and O. M. Pereira, “Using the matrix pencil method to esti-
mate the parameters of a sum of complex exponentials,”IEEE Antennas
Propagat. Mag., vol. 37, pp. 48–55, Feb. 1995.

[24] N. K. Das and D. M. Pozar, “Multiport scattering analysis of gen-
eral multilayered printed antennas fed by multiple feed ports: Part
I—Theory,” IEEE Trans. Antennas Propagat., vol. 40, pp. 469–481,
May 1992.

Odilon M. C. Pereira Filho (S’94–M’97) received
the B.S.E.E. degree from the Federal University of
Pernambuco (UFPE), Brazil, in 1987, the M.S.E.E.
degree from the Pontifical Catholic University of Rio
de Janeiro, Rio de Janeiro, Brazil, in 1991, and the
Ph.D. degree from Syracuse University, Syracuse,
NY, in 1997.

He was a Research Engineer at EM-
BRATEL—Brazilian Company of Telecom-
munications from 1988 to 1989, a Research
Associate at the UFPE from March to August 1992,

and a Research Engineer at IBM, Hopewell Junction, NY, from 1997 to 1998.
From August to December 1998 he was an Adjunct Professor at the University
of Pernambuco, and since then he has been a Visiting Professor. His main
interest is in numerical electromagnetics with applications in microwaves and
antennas.

Tapan K. Sarkar (S’69–M’76–SM’81–F’92) received the B.Tech. degree from
the Indian Institute of Technology, Kharagpur, India, in 1969, the M.Sc.E. de-
gree from the University of New Brunswick, Fredericton, NB, Canada, in 1971,
and the M.S. and Ph.D. degrees from Syracuse University; Syracuse, NY, in
1975.

From 1975 to 1976, he was with the TACO Division, General Instruments
Corporation. He was with the Rochester Institute of Technology, Rochester, NY,
from 1976 to 1985. He was a Research Fellow at the Gordon McKay Labora-
tory, Harvard University, Cambridge, MA, from 1977 to 1978. He is currently a
Professor in the Department of Electrical and Computer Engineering, Syracuse
University. His current research interests deal with numerical solutions of oper-
ator equations arising in electromagnetics and signal processing with applica-
tion to system design. He has authored or co-authored over 210 journal articles
and numerous conference papers, has written chapters in 28 books, and has au-
thored over ten books, includingIterative and Self Adaptive Finite-Elements in
Electromagnetic Modeling, (Norwood, MA: Artech House, 1998). He is on the
editorial board of theJournal of Electromagnetic Waves and Applications.

Dr. Sarkar is a member of Sigma Xi and International Union of Radio Science
Commissions A and B. He is a Registered Professional Engineer in the State of
New York. He received the 1979 Best Paper Award of the IEEE TRANSACTIONS

ON ELECTROMAGNETIC COMPATIBILITY and the 1997 Best Paper Award pre-
sented at the National Radar Conference. He received the 1996 College Engi-
neering Research Award and the Chancellor’s Citation for Excellence in Re-
search in 1998 presented by Syracuse University. He was an associate editor
for the IEEE Antennas and Propagation Society Newsletter, and the Technical
Program Chairman for the 1988 IEEE Antennas and Propagation Society Inter-
national Symposium and URSI Radio Science Meeting. He has been appointed
U.S. Research Council Representative to many URSI General Assemblies. He
was the chairman of the Intercommission Working Group of International URSI
on Time Domain Metrology (1990–1996). He received one of the “best so-
lution” awards in May 1977 presented at the Rome Air Development Center
(RADC) Spectral Estimation Workshop. He received the title of Docteur Hon-
oris Causa from Universite Blaise Pascal, Clermont Ferrand, France, in 1998.


