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Abstract—In this paper, we apply the theory of linear
time-varying differential systems of equations to defining an
extension of the standard scattering parameters. This extended
parameter ~ ( ) is a function of both time and frequency.
With this definition, we can accurately characterize rapidly time-
and frequency-varying linear lumped causal microwave devices,
in particular, photoconductive microwave switches. We discuss
the similarities between ~ ( ) and the standard -param-
eter approach and describe a measurement technique. We also
derive some important properties of the ~ ( )-parameters
and describe conditions under which microwave devices such as
photoconductive switches can be analyzed by this technique. To
demonstrate the usefulness of~ ( ), we derive the complete
transfer function of the time-varying lumped-element model
of a photoconductive switch. We also show the limitations of
conventional time-invariant assumptions (based on windowing or
apodization) to accurately model linear time-varying devices.

Index Terms—Ambiguity function, generalized projections,
linear frequency time varying, optoelectronic, phase retrieval,
photoconductive, -matrix scattering parameter, time–frequency
distribution, transient frequency response.

I. INTRODUCTION

A COMMON method of characterizing the frequency re-
sponse of microwave devices is to assume a linear time-in-

variant (LTI) microwave filter model and apply measurement
tools such as -parameters. If the device has significant tem-
poral response, the most convenient model is a linear-frequency
invariant (LFI) modulator model. Table I presents the canon-
ical transfer functions of the two ideal shift-invariant microwave
devices in each of the two domains—time and frequency—to
emphasize their complementary nature. All dependent variables
are complex; and are in seconds; and are in radians per
second; and are the conventional-parameter power
waves, and and are their respective Fourier trans-
forms; and are the LTI scattering parameter and its
Fourier transform (the impulse response); and are the
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TABLE I
COMPARISON OF THETRANSFERFUNCTIONS OFLTI FILTERS AND LFI

MODULATORS

LFI modulation parameter and its Fourier transform. The sub-
scripts refer to the ports of the device. We use analytic (com-
plex), not real signals. The route we will use to defineis mo-
tivated by the observation that, in the relationships for filters and
modulators presented in Table I, the roles of time and frequency
are complementary, i.e., the one-dimensional (1-D) characteri-
zation functions are along orthogonal axes in the complex plane.
Thus, we realize that a more general two-dimensional (2-D)
characterization is possible by considering the device’s response
over the entire plane.

To characterize devices in more complicated operating
regimes, various analysis and synthesis techniques—such as
complex frequency-hopping [1] and “transient”-param-
eters—have been developed. Their application extends the
concept of transfer functions to exponential transmission lines
[2], nonuniformly coupled transmission lines [3], transmission
lines with time-varying [4] or nonlinear loads [5], [6], or some
combination of these [7]–[9].

The functional form of the -parameter extension described
in this paper will be identified as and is distinct from
the above-mentioned methods because it allows complete char-
acterization of linear time-varying microwave devices. Linear
time-varying devices are those whose transmission and reflec-
tion are both time and frequency varying (i.e., not shift invariant
on either the time or frequency axis). The time variations (mod-
ulation) and frequency variations (filtering) are “rapid” (of the
order of the signal’s carrier cycle and spectral widths, respec-
tively). A linear device that is not shift invariant along either axis
can be considered a time-varying filter with different impulse
responses at each moment in time, or equivalently a modulator
with finite frequency response that modulates each frequency
differently.

Microwave devices whose properties are controlled by an op-
tical signal have been described in [10] and [11]. These de-
vices should be modeled as linear time-varying lumped- or dis-
tributed-element devices when the electrical and optical input
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signals are isolated, and charge–carrier population dynamics are
on the time scale of the electrical signal [12]–[15]. If the change
in the value of the time-varying element is rapid enough, con-
ventional (windowed) -parameter techniques will time- and/or
frequency-average the variations, producing an inaccurate result
that is dependent on the specifics of the windowing function.

Linear time-varying devices (filters) are well established
in the signal-processing [16], [17], communication [18], and
automatic-control [19] fields; however, in the microwave
regime, they have not been necessary since the variation of
microwave filter properties is typically caused either by slowly
varying (mechanical) effects or by rapid (nonlinear) transi-
tions between steady-state regimes (e.g., microwave diode
switches or mixers). For these types of devices, windowing
provides adequate solutions. The motivation of our analysis
is to introduce a characterization technique that is a superset
of the -parameters and is applicable to devices (such as
photoconductive microwave switches) that are linear filters
with rapid modulation of amplitude and/or phase. For such
devices, the use of conventional methods of linear microwave
circuit characterization (e.g., spectrum and network analyzers),
based on windowing and application of Fourier transforms and
the convolution integral, can lead to incorrect characterization
results.

Motivated by these limitations, we combine the comple-
mentary 1-D LTI and LFI transfer functions into a single 2-D
transfer (or system) function, calling it to suggest its
relationship to the conventional -parameters. The syn-
thesis of this 2-D -parameter requires more extensive signal
application and measurement than conventional-parameters,.
However, it is possible to simplify the measurement process
by using the theory of generalized projections, as used in
2-D phase retrieval, taking advantage of the 2-D nature of.
This allows for the reconstruction of the full vector (complex)
2-D transfer function from magnitude-only measurements.
This method applies to practical microwave devices where
the transfer function is zero outside some finite temporal and
spectral window, i.e., if it has known compact support along
both axes [20].

can be measured in either the “frequency domain” or
the “time domain.” In the frequency-domain approach, a single-
frequency input wave is applied to the device-under-test (DUT)
for the time duration of interest. The temporal evolution of the
output signal’s amplitude and phase versus a reference is then
recorded. To separate the device’s effect on signal amplitude
and phase, the analytic signal is measured by reapplying the
input wave, shifted by . This requires that the time-varying
device be deterministic and triggerable. By applying signals at
a range of frequencies over a given time span, a “map” of

is constructed of time slices at each successive frequency.
In the time-domain approach, a series of impulse functions is
applied at time intervals over the period of interest. The im-
pulse response of the system to each successive impulse is then
recorded. In this way, is constructed of frequency slices
at each time interval.

Although these measurement descriptions are intuitively
appealing, it may not be readily apparent how to extract an
input–output relationship such as from the measured

signals, create a device model, and apply it to the calculation
of output signals given an arbitrary input signal. In Section II,
we state the definition of the extended scattering parameter.
In Section III, we apply -parameters to device analysis by
considering a lumped-element example model. We synthesize
the device’s transfer function both from its-parameter
definition and directly from the differential equations. We then
compare output signals that result from applyingto those
obtained by windowing. By so doing, we demonstrate the
limitations of the windowing technique. Finally, in Section IV,
we present conclusions and link our model to the experimental
characterization of a photoconductive microwave device used
in an optoelectronic pulse-shaping system, which we will
present in detail in another paper.

II. M ATHEMATICAL FORMULATION

The time-domain differential equation describing a linear
lumped-element device with time-variable coefficients is

L (1)

where the coefficients are determined by the (time-varying)
dependencies between the nodes of the circuit (e.g., the lumped-
element models of resistance, capacitance, and inductance). The
ports of the device described by the circuit model are a subset
of the nodes of the circuit model. The signals and
in (1) are defined in Table I. Also, we have used the operator
notationL , where is the
differential operator [20]. Note that the derivation is being
done for a device with a finite number of nodes and, therefore, a
finite number of (time-varying) poles and zeros. A more-general
derivation can show that , like , is applicable to
distributed-element devices.

For an LTI model, there is no time variation in the coefficients
of (1); it, therefore, simplifies to

L (2)

Assuming complex exponentials for the basis function
solutions (which simplifies the differential operatorto ) and
converting to -parameter notation L , we derive
the frequency-domain filter transfer function of Table I. These
Fourier transforms are useful for microwave device character-
ization because they transform between a system of differen-
tial equations and a system of algebraic equations; i.e., they are
“compatible” integral transform operators [21]. Noncompatible
transforms result in relationships between the input and output
that are not generally algebraic. In contrast to modulators and
filters, a compatible integral transform operator for a general
linear device depends on the functional form of the variable co-
efficients in (1). This means that the basis functions that result
in algebraic relationships are not, in general, , but are de-
pendent on the particular form of modulation and frequency re-
sponse.

The key to the modeling technique described in this paper is
that to remain independent of the specifics of the temporal vari-
ations in device properties, we choose a noncompatible trans-
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form that will enable us to continue to use basis func-
tions. Several important implications of this choice will be men-
tioned during our derivation of the properties of the system func-
tion. To define the transfer function for a linear lumped- or dis-
tributed-element device, we will drop the assumptions of time
and frequency invariance. The resulting equation (in the time
domain) can be written as

(3)

which differs from the traditional -parameter definition in
that it is now a function of both time and frequency. From
(1), L , where the differential operator
simplifies to . Equation (3) states that the output signal
has time-varying amplitude and phase modulation for each
input sine wave (as with a modulator), but in addition,
this modulation is generally different for each frequency of

(as with a filter).
By virtue of the linearity of the device, superposition applies

and can be defined in terms of according to

(4)

where the limits of the integral have been set by assuming
causality and that the signal is zero at times before the trigger.
Equation (4) is a generalization of the time-invariant convolu-
tion in Table I with the impulse response function being now
the more-general Green’s function , i.e., it now depends
separately on impulse timeand observation and not merely
on the difference. From (3) and (4), is
the output of the device for an input , given that
the (variable) coefficients evolve deterministically from time

.
Substituting (4) into (3) results in a transform relationship

between the system functionand the new generalized impulse
response

(5)

The two transfer functions and are related by
a Fourier transform of the first axis. In addition to these two
transfer function definitions, two other definitions result from
transforming and in each of their second variables. The re-
sulting input–output relationships for these four system func-
tions are listed in Table II.

An important distinction exists between these 2-D transfer
functions and ambiguity functions (also called time–frequency
representations) that are found by windowing signals: 2-D
transfer functions represent device responses, while am-
biguity functions represent 1-D signals. The former may
have arbitrarily sharp features (peaks and valleys) on either
(independent) axis, whereas the windowed function has an
inverse relationship between the (dependent) axes. This inverse
relationship for windowed signals is due to the uncertainty
principle: a narrow windowing of a signal in time (to prevent
averaging the time fluctuations of the system) necessarily
implies a widening of the spectral window (which forces

TABLE II
INPUT–OUTPUT RELATIONSHIPS FORALL FOUR 2-D SYSTEM FUNCTIONS

averaging over spectral fluctuations) and vice versa [22]–[25].
Thus, windowing cannot measure sharply varying 2-D transfer
functions, as shown in Section I.

From (4), we get a relationship between input and output by
replacing with its transform , inverting
the order of integration and substituting from (5)

(6)

where the differential transform operator is similar to the
inverse Fourier transform, but with the variableheld as a con-
stant parameter. Equation (6) is analogous to the frequency-do-
main filter relation in Table I in that the signal is the transform
of the product of the scattering parameter and the input spectral
function. Unlike conventional Fourier transforms, however, (4)
is not a convolution, and the argument inside the brackets of (6)
is not the product of the two 1-D functions. This means that, in
general, as mentioned earlier, there is no algebraic relationship
between the input and output

(7)

The function cannot be found by taking a quotient
, as can be done for of LTI devices. For network

synthesis, where a model (differential equation) must be syn-
thesized from a given (measured) , this consequence of
noncompatible transforms has no major negative implications;
in fact, choosing the noncompatible (but Fourier-like) transform
allows the use of standard Fourier transform tables, making the
synthesis easier. On the other hand, for network analysis, where
the output is to be found in terms of , the significance
of (7) is that only simple linear time- and frequency-varying de-
vice models (which can be solved directly, with only first- or
second-order differential equations) can be created since signal
flow graphs and the combination of series and parallel devices
are no longer algebraic or even analytic.

For network analysis of microwave systems with time-
and frequency-varying elements, the network can be broken
down into block diagrams where the linear time- and fre-
quency-varying element is isolated from the rest of the LFI or
LTI components. This approach requires operational methods
of combining the general linear element with other compo-
nents, in cascade and parallel, to determine the overall system
function. All linear devices (shift-invariant or not) can be
combined in parallel by adding either their impulse response
functions or (equivalently) their transfer functions [26]. For
devices in series, however, determination of the combined
response is not trivial, unless the devices are shift invariant. For
example, the overall transfer function of LTI devices in series is
accomplished by multiplying the individual transfer functions
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Fig. 1. Example of a linear device with a time-varying capacitance and,
therefore, time-varying pole location (bandwidth). The time-varying frequency
response cannot be completely characterized by a filter or modulator model.

together, or equivalently convolving their impulse responses.
For LFI devices in series, the transfer (modulation) functions
are multiplied while the spectral transform of the modulation
is convolved.

To derive the transfer function of general linear devices in se-
ries, we begin with the repeated operation of the transfer func-
tion (in operational form)

(8)

where and are the transfer functions for the
first and second devices, respectively. operates on ,
giving the product , and then by the product rule,

operates on both and ; the result being

(9)

By simplifying (9), we find the transfer functional form of two
linear devices in series as

(10)

Therefore, by using the definition of (3), the combined transfer
function of two general linear devices in series does not reduce
to convolution or multiplication.

III. A NALYTICAL EXAMPLE

To demonstrate the application of the system function
to microwave device characterization, a simple lumped-element
time- and frequency-varying device model will be solved ana-
lytically. The model, which is shown in Fig. 1, is a single-pole
low-pass filter with a sinusoidally varying capacitive element

.
The differential equation for this device can be written in the

form of (1) as

(11)

From -parameter analysis, the for a conventional LTI
filter (where in Fig. 1) is given by

(12)

Fig. 2. Magnitude of the transfer functionS (!) of a low-pass single-pole
filter, which is equivalent to the circuit in Fig. 1, but with a constant
(unmodulated) capacitance.

Fig. 3. Magnitude of the transfer function~S (!; t) of a low-pass single-pole
filter with sinusoidally varying capacitance, plotted over one cycle of
modulation and 150% of the bandwidth.

Applying (10) to the cascaded elements of resistance and shunt
capacitance, we get

(13)

which also could have been found by the direct solution of the
differential equation in (11). The plot for the LTI ver-
sion of this device is shown in Fig. 2, and is shown
in the elevation plot of Fig. 3 for one cycle of modulation. Ob-
serve that, in both figures, the low-pass attenuation is along the
frequency axis. Also, Fig. 3 shows sinusoidal modulation of the
frequency response along the temporal axis that shifts in phase
for different frequencies.

Fig. 4 is a series of cross sections of Fig. 3 along the time
axis, showing the modulating aspect of our model device, which
is dependent on frequency. Fig. 5, a series of lineouts along the
frequency axis, shows that, in our case, the low-pass filter shape
depends on time. Although stability will not be considered in
this paper, notice in both plots that the instantaneous magnitude
of the transfer function can rise momentarily above unity, im-
plying the possibility of device oscillation.

Later we will show windowed signals with surface density
plots. Accordingly, for ease of comparison, here we will show
a surface density plot of in Fig. 6, plotted across sev-
eral cycles of modulation in the time domain (along the vertical)
and from in the frequency domain along the horizontal. For ref-
erence, Fig. 3, which is an elevation plot of over one
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Fig. 4. Series of cross sections through~S (!; t) along the time axis, showing
the change in the magnitude and phase of the modulation for different signal
frequencies.

Fig. 5. Series of cross sections through~S (!; t) along the frequency axis,
showing the change in instantaneous bandwidth for different times.

Fig. 6. Surface density plot ofj ~S (!; t)j with six cycles of modulation along
the time axis and demonstrating low-pass filtering along the frequency axis.

modulation cycle and a smaller frequency span, covers the lower
left-hand-side corner of this plot. Note that since we are mod-
eling a single-pole low-pass filter, a phase shift occurs in

in the vicinity of the 3-dB frequency (i.e., the pole). This
is seen in the surface density plot (Fig. 6) as a shift in the phase
of the modulation versus frequency that occurs in the vicinity of
the 3-dB frequency.

Using (6) and (13), we simulated the propagation of a sum
of two sine waves through our model device. The attenuation
and dispersion of each spectral component are demonstrated in
Fig. 7, where the low-pass aspect is readily apparent. The influ-
ence of the modulation can best be compared by looking at a plot

Fig. 7. Plot of input and output signals showing the DUTs low-pass filtering
effect. The dashed line is the input signal, while the solid line is the output signal.

Fig. 8. Magnitude-only plot of the output-signal spectrum, showing changes
in modulation characteristics for different frequencies.

of the spectral output in Fig. 8, where the sinusoidal modula-
tion adds differing sidebands to each input spectral component.
Since this device not only modulates each frequency differently,
but also filters the signals, standard network and spectrum anal-
ysis would not adequately characterize the device.

We will now attempt to use windowed signals to characterize
our time-varying model filter by conventional -parameter
analysis, and we compare the results to the general
approach. To plot the windowed signals, we will use time–fre-
quency distributions because they visually demonstrate the
fundamental constraint due to the uncertainty principle; a
narrow windowing in time necessarily leads to a broad fre-
quency window and vice versa. This windowing dependency
between the axes is easily observed on a time–frequency
representation by the phenomenon of “minimum area”: a
time–frequency distribution of a signal consists of areas (or
regions) where the signal exists at a localized time and fre-
quency. These areas cannot be smaller than a dimensionless
constant (the product of time and frequency) determined by
the uncertainty principle. This uncertainty is not a feature of
time–frequency distributions, but of windowed signals in gen-
eral; therefore, the choice of time–frequency distributions does
not detract from the general demonstration of the uncertainty
limitations of windowing.

To demonstrate the limitations of windowing, the particular
choice of algorithm to generate a time–frequency representation
is a matter of convenience. We will use

(14)

where is the time–frequency distribution of and
a semicolon is used between the time–frequency variables to
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Fig. 9. Time–frequency representation (ambiguity function) of a 2-GHz sine
wave that transitions abruptly to a 20-GHz sine wave. Due to window tradeoffs,
low frequencies are smeared vertically and high frequencies are smeared
horizontally. In addition, some wraparound from top to bottom is caused by
the FFT algorithm.

Fig. 10. Time–frequency representation of the output signal, after
multiplication of the input time–frequency distribution with the system
function ~S (!; t). The effect of the system function is shown by the
attenuation of the high-frequency signals and temporal ripple in the different
spectral components.

emphasize the dependence of the axes. This definition has the
virtues of showing all the essential features of time–frequency
distributions and being easily transformable back into the
Fourier transform of the signal by integration

(15)

Fig. 9 shows an example time–frequency representation of a
signal to be propagated through our model filter: low-frequency
sine wave that abruptly transitions (with broad-band noise) to a
higher-frequency sine wave. It is easy to see the smearing of the
signal in time (for the low frequencies) and frequency (for the
high frequencies) caused by fundamental windowing tradeoffs.
Although the fast Fourier transform (FFT) algorithm used to
generate the plot causes “leaking” across the boundary of the
plot, these artifacts have no impact on the results.

Fig. 11. Time-domain comparison of output signals using the technique
described in this paper (dashed line) and the windowing method (solid line).
Windowing can be applied successfully to the high-frequency segment of
the signal where the modulation is slow compared to the cycle; however, it
averages over the system function for the first segment.

By multiplying the input signal of Fig. 9 with the
system function of Fig. 6, the time–frequency represen-
tation of the output signal shown in Fig. 10 results. Important
features of the output signal are the low-pass filtering (shown
clearly in Fig. 10 in the spectral content of the transition noise)
and the differences in modulation of each spectral component,
both in amplitude and phase.

Converting back to the frequency domain using (15) and
then inverse Fourier transforming to the temporal signal,
we can compare the windowed output signal with the one
based on the technique. The windowed method is
represented by the thick line in Fig. 11, while theresult is the
thin line. It is evident that the windowing approach produced
acceptable results for the second half of the signal, when the
modulation was much slower than the signal (i.e., the slowly
varying envelope approximation was valid). For the first half,
the modulation was comparable to the signal frequency, and
the “window” effectively smeared the amplitude and phase
modulation in time. Choosing a narrower time window would
not solve the fundamental problem since doing so would
automatically broaden the spectral window, causing increased
smearing of the spectral response.

IV. CONCLUSIONS

When a linear microwave device, such as a photoconductive
switch, has rapid changes both in its temporal and spectral re-
sponses, and the temporal variations cannot be controlled inde-
pendently (i.e., cannot be made separable for the analysis pur-
poses), standard windowed-parameters cannot be applied ac-
curately. To allow characterization of such devices, we devel-
oped a linear system function . We presented the most
important properties of the -parameter and showed similari-
ties to the conventional-parameter analysis that preserve most
features of the Fourier transform tables. The transfer function
of a simple linear time-varying device was calculated and ana-
lyzed. Also, an example signal was propagated through the de-
vice, using our transfer function. To demonstrate the limita-
tions of windowing, we applied the windowed (time–frequency)
representation of an input signal to. Due to the uncertainty
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principle, which causes a tradeoff between temporal and spec-
tral window resolutions, the resulting output signal was unable
to follow both time and spectral variations in the device.

Photoconductive microwave semiconductor devices are an
example of practical devices that can operate in a regime that
requires the generalized transfer function for complete
characterization and optimization. The carrier dynamics of pho-
toconductive devices occur on the time scales of microwave and
millimeter-wave signals. Since the carrier population distribu-
tion can affect the microwave transmission of the device, the
scattering parameters can vary on the time scale of the applied
signal. To measure of a photoconductive microwave
switch, one could illuminate the switch and repeatedly apply
a series of single-frequency signals, then measure the instanta-
neous amplitude and phase of each output signal as it evolves
over time. A lumped-element model of the switch can then be
fitted to , and by relating physical switch properties such as
gap length, contact resistance, and capacitance to the lumped
elements, a suitable route to switch optimization can be deter-
mined. A detailed description of this optimization will be de-
scribed in a separate paper.
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