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Abstract—It is well known that the generalized scattering matrix
(GSM) of a microwave network, which includes one or more ports
supporting evanescent modes, is nonunitary. This has hindered the
formation of equivalent circuits since it has not been evident how
to form the impedance or admittance matrix. This paper describes
how the problem has been overcome, resulting in a method for
the formation of simple equivalent circuits of interacting closely
spaced discontinuities in a waveguide. The -port immittance ma-
trix corresponding to the nonunitary GSM is formed by normal-
izing the immittance matrix to real or imaginary portal imped-
ances. As an example, an equivalent circuit for the even mode of
a waveguide short-slot coupler is presented, and the effect of the
evanescentTE30 mode in the coupling region is clearly expressed
by an evanescent-mode waveguide in parallel with one supporting
the dominant propagating mode. The method should find wide ap-
plications to problems involving interactions in waveguides.

Index Terms—Equivalent circuits, hybrids, scattering matrices,
transmission-line discontinuities, waveguide analysis, waveguide
discontinuities.

I. INTRODUCTION

A RECENT paper [1] describes methods for forming equiv-
alent circuits of waveguide obstacles and multiport junc-

tions. These are similar to those given in [2], but are based on
numerical information derived from field theory analysis pro-
grams. Using these techniques, older results may be checked
and improved if necessary, and equivalent circuits may be de-
rived for previously unconsidered problems. The methods de-
scribed in [1] apply to noninteracting obstacles or discontinu-
ities, and the purpose here is to extend these to situations where
interactions are important. The technique is applicable to scat-
tering matrices derived byany field theory method, not simply
numerical.

Considerable work on interacting discontinuities has been
carried out, e.g., [3]–[8]. The older techniques [3], [4, Fig. 9]
using mode matching presented results for the interaction effects
as “proximity factors.” The results have proven to be very useful
in some instances, but are incomplete in many respects, e.g., are
uncertain when applied to pairs of closely spaced discontinu-
ities having dissimilar dimensions. Later, authors [5]–[8] form
the generalized scattering matrix (GSM) with results expressed
typically as truncated infinite series of transcendental functions.
Although accurate, these previous theories are much more com-
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Fig. 1. Cascaded discontinuities defined by GSMs.

plicated when compared to the simple equivalent circuit formu-
lation presented here.

II. GSM

Modern numerical field analysis programs such as HFSS
(available from Ansoft, Pittsburgh, PA, or Hewlett-Packard,
Santa Rosa, CA), mode matching, or those based on the
finite-difference time-domain (FDTD) method, are capable of
deriving the GSM for microwave discontinuities. However, in
addition to the propagating modes, it is necessary to specify the
accessiblemodes, i.e., those which, although evanescent (i.e.,
below cutoff), propagate sufficiently to result in significant
interaction effects. Other higher order modes are termed as
localizedand need not be specified as separate ports [6]. This
does not mean that they are ignored since the field analysis
program carries out an accurate calculation of the discontinuity.
A separate port for an evanescent mode is specified only if it
is required to characterize its interaction effect on a nearby
discontinuity.

The situation is illustrated in Fig. 1, which shows disconti-
nuities represented by networks and having GSMs
and . Three waveguides connecting and are shown in
this example. Typically, there could be one propagating mode
and two evanescent modes for cascaded two-port networks. Fre-
quently, only one evanescent mode need be considered, and then
there will be just two waveguides connecting and , one
propagating and one evanescent, as in the example given in Sec-
tion III. It is also possible to have a condition where all of the
connecting waveguides are evanescent, e.g., when analyzing an
evanescent-mode filter.

One of the problems associated with the conventional GSM
is that it is a nonunitary matrix [9], [10] i.e.,

(1)

where is the unit matrix.

0018–9480/00$10.00 © 2000 IEEE



LEVY: SIMPLE EQUIVALENT CIRCUITS OF INTERACTING DISCONTINUITIES IN WAVEGUIDES OR TRANSMISSION LINES 1713

This makes the formation of equivalent circuits unclear since
it is far from obvious that the conventional equations relating the
normal scattering matrix (having ports with propagating modes
only) to the impedance or admittance matrices, e.g., [1, eq. (1)],
are applicable. However, it is well established that the GSM may
be used to analyze complex circuits consisting of cascaded dis-
continuities by combining the GSMs of each discontinuity as
described in numerous papers, e.g., [7], [8]. This suggests the
possibility of the existence of asimple equivalent-circuit rep-
resentation. Other properties of the GSM have been described
in [9], while the formation of an alternate GSM, which is uni-
tary, has been given in [10]. In the latter case, changes to existing
well-established and entrenched software packages would be re-
quired for implementation.

The problem with the conventional GSM arises in the defini-
tion of the matrix for a length of evanescent waveguide as

(2)

which is nonunitary [10].
In the case of discontinuities, which are of zero thickness

or length in the direction of propagation, the GSM will not
contain any submatrices such as (2). The following theory has
been tested only for such cases, and is probably inapplicable to
more general thick discontinuities including evanescent lengths
of waveguide, which will require further investigation. Here, the
modified GSM suggested by Morini and Rozzi [10] may be re-
quired to give a solution. However the complex normalization
process described below would still be required.

The GSM may be converted into an impedance matrix if it
exists (i.e., if it is nonsingular) using the formula [1, eq. (1)],
i.e.,

(3)

where is the diagonal matrix of the-port impedances, i.e.,

(4)

Now, of course, the problem here is that, in the case of evanes-
cent modes, is imaginary [2, pp. 27–28], but it has now been
established that (3) is still valid in such cases. We merely set

(5)

and

(6)

where is real for the th nonpropagating port. The validity
of this result is entirely reasonable since assuming that an equiv-
alent circuit with network functions expressible in terms of the
complex frequency variable exists, the impedance matrix is a
real function of such a variable. Therefore, it is subject to the ap-
propriate theorems relating to the complex plane, including that

Fig. 2. Waveguide narrow-wall short-slot coupler.

of analytic continuation. Hence, the formulas involving a wave-
guide below cutoff are essentially the same as those above cutoff
when expressed in terms of the complex frequency variable.
The result is also reinforced by examples wherein all impedance
matrices derived from the above theory have been found to be
purely imaginary, a necessary condition that (3) represents the
impedance matrix of the multiport circuit.

Having formed this matrix (3), it may be used to derive an
equivalent circuit using techniques described in [1]. In rare in-
stances, the impedance matrix may be singular, in which case
the admittance matrix may exist. Note that the impedance ma-
trix is appropriate for representation of a parallel connection of
ports, and the admittance matrix for a series connection [2]. In
the unlikely event that both and matrices are singular, then
the network probably consists mainly of ideal transformers, and
a multiport transfer matrix, which always exists, would be de-
rived.

An example for the case of a short-slot coupler is given here,
with further details presented in [11].

III. EXAMPLE: SHORT-SLOT WAVEGUIDE COUPLER

(EVEN-MODE CIRCUIT)

Here, a simple form of the short-slot coupler will be treated,
one having no end transitions to standard waveguide dimen-
sions, and having no central matching element, as indicated in
Fig. 2. It turns out that the matching element is not required for
couplings in the 4.5–7-dB range. The common wall is removed
entirely in the coupling slot region, and the results are indepen-
dent of the waveguide narrow dimension.

The coupler may be analyzed by forming the even- and
odd-mode circuits. In the example shown in Fig. 2, the
odd-mode circuit is simply a length of waveguide with small
(almost insignificant) steps at the ends of the coupling region,
which is easily analyzed. Hence, the coupler problem reduces
mainly to the formation of the equivalent circuit of the even
mode. This is assumed to support appropriate modes
in the terminating waveguides and in the coupling region, but
also the mode as an accessible nonpropagating mode
in the coupling region. The mode is very significant
since the wide waveguide formed by the coupling region has
a width selected to locate the mode cutoff frequency
slightly above the operating frequency band. Other higher order
modes, such as , appear to have negligible effect, and are
localized modes.
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Fig. 3. (a) Even-mode junction discontinuity. (b) GSM representation of the
junction discontinuity.

It should be noted that the mode corresponds to the
odd-mode network and the magnetic wall of the even-mode cir-
cuit ensures that it is not supported in that mode.

The particular equivalent circuit to be formed is for
a three-port circuit formed by the junction of an input
waveguide and the even mode of the short-slot coupling
region (supporting the and evanescent modes
each considered as distinct waveguides), as shown in Fig. 3.
The coupler considered here is intended to operate at a
center frequency of 19.95 GHz and was analyzed over the
18.98–20.95-GHz band. The GSM was formed at a number
of frequencies using both Ansoft and Hewlett-Packard
versions of HFSS. The Hewlett-Packard version gave a
GSM having a normal reciprocal GSM with .
The Ansoft version differed from Hewlett-Packard by phase
factors of , for those terms for which or
denote an evanescent mode (except for ). This does not
represent an error in one sense since normal operations using
the GSM matrices, such as combining cascaded circuits to
form an overall matrix, are unaffected, the phase differences
canceling out to give identical results in both Ansoft and
Hewlett-Packard versions of HFSS. However, it is important
to have a reciprocal matrix when forming the impedance
matrix, and it was simple to make the necessary corrections
to the GSM formed by Ansoft. For example, considering a
three-port circuit with ports 1 and 2 propagating and port 3
evanescent, it was necessary to add to the phase of
and and to subtract from the phases of and

. This gave exact agreement with Hewlett-Packard.

Fig. 4. Simplified three-port equivalent circuit.

In the case of the coupler of Fig. 2 having in and
in, i.e., a common wall thickness of 0.010 in, the

following GSM was found at 19.95 GHz:

(7)

where the arguments of the exponents are in degrees. We note
that while the entire matrix is nonunitary, the 22 matrix of the
propagating modes (i.e., the above matrix with row and column
3 deleted) is unitary. Actually, the reduced matrix represents the
discontinuity ignoring the effect of the mode.

It is instructive to retrace the operations that led to the formu-
lation of the theory. Initially, it was decided to form the normal-
ized impedance matrix given by the formula

(8)

Using , given by (7), the normalized impedance matrix be-
comes (9), shown at the bottom of this page. Now the impedance
matrix of a lossless network must be purely imaginary, which
clearly (9) is not. An immediate simplification is to change the
arguments, which are almost 0, 90 , and 225 to those exact
values. The deviations represent roundoff errors in the data since
only four or five significant digits were used.

It was immediately noted that the and terms could
be made imaginary if modified by a phase of 45and that
should be modified by a phase factor of 90. This led to the
conclusion that the matrix had to be normalized with respect
to the complex characteristic impedance of the nonpropagating
port 3, and that one should use (3) where here the square root of
the diagonal matrix (4) is

(10)

(9)
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Fig. 5. Equivalent circuit of the even-mode circuit for the coupler, consisting of the two junctions spaced by waveguides of length`.

the resulting normalized impedance matrix becomes

(11)

which is purely imaginary, as required.
The validity of this impedance matrix was shown by applying

it to the analysis of the even-mode circuit and comparing the
results to those computed by well-known procedures using the
GSM, e.g., [7], [8], and also by direct HFSS analysis, giving
identical results, as described below in more detail.

Having derived the impedance matrix of the three-port, it is
desirable to find an equivalent-circuit representation. This has
been described in [1], and the relevant parts of the procedure
will be reproduced here for completeness.

The direct representation of the three-port impedance matrix
as given in [2, Fig. 3.3] is very complicated and not really of
direct use. It was shown in [1] that a simple equivalent circuit
results if the port impedances are scaled to give

(12)

The scaling is carried out mathematically by an operation sim-
ilar to that implied by (3), i.e., matrix (11) is pre- and post-mul-
tiplied by the square root of diagonal matrices

(13)

The result is that the elements of the original matrix (11) denoted
by become

(14)

Note that, at this stage, may be a real number since the imag-
inary normalization has already been carried out by the opera-
tion given by matrix (10), leading to (11).

It is convenient to take without loss of generality.
Conditions (12) are then satisfied if we take

and (15)

The equivalent circuit now takes the simple form given in Fig. 4.
In the case of matrix (11), we find

(16)

and this impedance matrix becomes

(17)

The element values of Fig. 4 for the case of matrix (17) are

(18)

and the susceptance to ground is, where
.

We can now form the equivalent circuit of the entire even
mode of the slot coupler, shown in Fig. 5, and consisting of
two equivalent circuits, as in Fig. 4, with ports 2 and 3 of each
such equivalent circuit connected by appropriate transmission
lines having the derived characteristic impedances (16). The
connecting lines have characteristic impedances(real) and

, and the propagation constants are those of the mode
for line 2 and for the mode for line 3, the latter being given
by the real attenuation coefficient. Hence, the transfer matrix
of line 3 of length is

(19)

and the analysis of the circuit is quite straightforward. As stated
previously, this analysis gives results identical to those obtained
from an HFSS analysis of the entire even-mode circuit.

The effect of the mode is now clearly delineated. For
example, its effect is less important for long slots or widely sep-
arated discontinuities because of the increased attenuation of the
line connecting ports 3 and 3with increasing slot length. In this
example, it has been found that the elements of the equivalent
circuit have smooth monotonic variations with frequency over
the 18.95–20.95-GHz band. Further discussion of the short-slot
coupler is given in [11].

One of the advantages of obtaining the equivalent circuit is a
reduction by a factor of two of the number of variables compared
with the scattering matrix, where there are six complex numbers
rather than six single-valued numbers. Theoretically, the scat-
tering matrix also has only six independent variables since the
complex variables are constrained by certain conditions on the
GSM [9], [10], but such conditions are not always expressible in
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simple terms. Also, the scattering matrix gives little information
relating to an equivalent circuit—generation of an immittance
matrix is required.

The theory has wide implications since it may be applied to
any problem where interaction between neighboring obstacles
is important. As previously stated, the theory is also applicable
to problems having more than one interacting accessible evanes-
cent mode.

IV. CONCLUSION

GSMs derived from numerical field analysis programs such
as HFSS may be used to generate equivalent circuits when the
GSM is correctly normalized to the real and reactive (or imag-
inary) port impedances. The equivalent circuits are expected to
give much clearer physical insight into the form of interaction
between neighboring discontinuities. Compared with the scat-
tering matrix, the circuit effectively reduces by a factor of two
the number of variables used to characterize the circuit.

The method was applied to characterize the even-mode circuit
of a waveguide slot coupler, giving results identical to those
derived by direct numerical analysis.
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