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3-D ADI–FDTD Method—Unconditionally Stable
Time-Domain Algorithm for Solving Full

Vector Maxwell’s Equations
Takefumi Namiki, Member, IEEE

Abstract—We previously introduced the alternating direction
implicit finite-difference time-domain (ADI–FDTD) method for a
two-dimensional TE wave. We analytically and numerically veri-
fied that the algorithm of the method is unconditionally stable and
free from the Courant–Friedrich–Levy condition restraint. In this
paper, we extend this approach to a full three-dimensional (3-D)
wave. Numerical formulations of the 3-D ADI–FDTD method are
presented and simulation results are compared to those using the
conventional 3-D finite-difference time-domian (FDTD) method.
We numerically verify that the 3-D ADI–FDTD method is also un-
conditionally stable and it is more efficient than the conventional
3-D FDTD method in terms of the central processing unit time if
the size of the local minimum cell in the computational domain is
much smaller than the other cells and the wavelength.

Index Terms—ADI–FDTD method, CFL condition, FDTD
method.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1], [2]
is widely used for solving problems related to electromag-

netism. As the traditional FDTD method is based on an explicit
finite-difference algorithm, the Courant–Friedrich–Levy (CFL)
condition [2] must be satisfied when this method is used. There-
fore, a maximum time-step size is limited by minimum cell size
in a computational domain, which means that if an object of
analysis has fine scale dimensions compared with wavelength,
a small time-step size creates a significant increase in calcula-
tion time.

We previously introduced the alternating direction implicit fi-
nite-difference time-domain (ADI–FDTD) method for solving
the two-dimensional TE wave [3]. The method is based on the
alternating direction implicit (ADI) method [4] and is applied to
Yee’s staggered cell [1] to solve Maxwell’s equations. We an-
alytically demonstrated that the growth factor of the algorithm
is always unity, i.e., this scheme is unconditionally stable and is
not dissipative. Therefore, the time-step size can be arbitrarily
set when this method is used. The limitation of the maximum
time-step size of the method does not depend on the CFL con-
dition, but rather on numerical errors.

We extended this approach to a full three-dimensional (3-D)
wave and introduced the 3-D ADI–FDTD method [5]. In this
paper, we explain the details of numerical formulations of the
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ADI FDTD method for a 3-D full vector wave and demonstrate
some numerical examples.

II. NUMERICAL FORMULATIONS OF THE 3-D
ADI–FDTD METHOD

The numerical formulation of the ADI–FDTD method for a
full 3-D wave is presented in (1)–(12). The electromagnetic-
field components are arranged on the cells in the same way as
that using the conventional FDTD method. These formulations
are available for inhomogeneous lossy medium and for using
nonuniform cells. The calculation for one discrete time step is
performed using two procedures. The first procedure is based
on (1)–(6) and the second procedure is based on (7)–(12) as
follows:

First procedure

(1)

(2)

(3)

(4)
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Fig. 1. Monopole antenna near a thin dielectric wall. (a) Bird’s eye view. (b) Horizontal view. (c) Vertical view.
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Second procedure
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The coefficients are defined in the same way as in the conven-
tional FDTD method and they are as follows:

None of these equations can be used for direct numerical cal-
culation because they include the components defined as syn-
chronous variables on both the left- and right-hand side, thus,
modified equations are derived from the original equations.

In the first procedure, the component on the left-hand
side and the components on the right-hand side are defined
as synchronous variables in (1), thus, a modified (1′) for the

component is derived from (1) and (5) by eliminating the
components. In the suffix, (1′) indicates maximum

number of simultaneous linear equations and also means-di-
rectional scan of the components as follows:

(1 )

where

In the same way, the modified equation for the compo-
nent, which indicatesmaximum number of simultaneous linear
equations and also means-directional scan of the com-
ponents, is derived from (2) and (6). Also, the modified equa-
tion for the component, which indicates maximum
number of simultaneous linear equations and also means-di-
rectional scan of the components, is derived from (3) and (4).
By solving their simultaneous linear equations, we can get the
values of the electric-field components at the time of .
Thereafter, we can get the values of the magnetic-field compo-
nents at the time of directly from (4)–(6).

In the second procedure, the component on the left-hand
side and the components on the right-hand side are defined
as synchronous variables in (7), thus, a modified (7′) for the

component is derived from (7) and (12) by eliminating the
components. In the suffix, (7′) indicates maximum

number of simultaneous linear equations and also means-di-
rectional scan of the components.

(7 )

where

In the same way, the modified equation for the com-
ponent, which indicates maximum number of simultaneous
linear equations and also means-directional scan of the
components, is derived from (8) and (10). Also, the modified
equation for the component, which indicatesmaximum
number of simultaneous linear equations and also means-di-
rectional scan of the components, is derived from (9) and
(11). By solving their simultaneous linear equations, we can get
the values of the electric-field components at the time of .
Thereafter, we can get the values of the magnetic-field compo-
nents at the time of directly from (10)–(12).

Since the simultaneous linear equations such as (1′) and (7′)
can be written in a tridiagonal matrix form, and their coefficients
on the left-hand side satisfy , the computational
costs to solve the equations are not very significant [6].

We note that there is no necessity to scan the, , and
components in the-, -, and -directions, respectively, because
an electromagnetic wave is a transverse wave.

III. N UMERICAL EXAMPLE

In order to demonstrate the above 3-D ADI–FDTD method,
two examples are presented. Numerical simulations were car-
ried out using both the 3-D ADI–FDTD method and the con-
ventional 3-D FDTD method for comparison.

A. Monopole Antenna Near a Thin Dielectric Wall

Fig. 1 shows numerical model of a monopole an-
tenna mounted near a thin dielectric wall. The 160-mm-long
monopole antenna was mounted near the 1-mm-thick
640-mm-wide 176-mm-high dielectric wall on an infinite
ground plane. The distance between the antenna and the wall
surface was 127 mm. Observation pointsand were at
a 25.6 and 26.0 mm distance from the antenna, respectively.
Mur’s first-order absorbing boundary condition [7] was set
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(a)

(b)

Fig. 2 Normalized electric field when the electric characteristics of the wall
were set as" = 4:0,� = 1:0, and� = 0:0 S/m. (a) At pointA. (b) At point
B. (Solid line: conventional FDTD. Dashed line: ADI–FDTD.)

on the outer surfaces, except the bottom ground plane. The
perfect-electric-conductor boundary condition was set at the
antenna and ground plane.

We used nonuniform cells so as to treat the thin dielectric wall
and relatively wide computational domain. The detail of the cell
size was as follows:

mm constant
mm

mm constant
mm

mm constant
mm constant

mm constant
mm constant
mm constant
mm constant.

The size of cells at the air region was set at 64 mm, which was
about . The minimum size of cells, which was set at around
the wall, was 1 8 64 mm in this model, thus, the CFL
condition was ps. The time-step size was set
as 3.307 ps for the conventional FDTD and 66.140 ps for the
ADI–FDTD.

First, a continuous sinusoidal wave, the frequency and wave-
length of which were 460 MHz and 652 mm, respectively, was
excited at the component of the bottom cell of the antenna.

(a)

(b)

Fig. 3 Normalized electric field when the electric characteristics of the wall
were set as" = 4:0,� = 1:0, and� = 4:0 S/m. (a) At pointA. (b) At point
B. (Solid line: conventional FDTD. Dashed line: ADI–FDTD.)

The components at observation pointsand were output.
We calculated twice for different electric characteristics of the
dielectric wall. The output components at points and
normalized by the value of the excited amplitude, when the elec-
tric characteristics of the wall were set as , ,
and S/m are shown in Fig. 2(a) and (b), respectively.
The output components, when the electric characteristics of
the wall were set as , , S/m, are shown
in Fig. 3(a) and (b), respectively. The results in the ADI–FDTD
case and conventional FDTD case were in good agreement.

Next, a Gaussian pulse was excited at thecomponent of
the bottom cell of the antenna, and the component at ob-
servation point was output. Numerical simulations were per-
formed twice, with and without the wall that had the electric
characteristics of , , and S/m.
By applying a Fourier transformation to each output field, the
shielding effectiveness values were calculated. The normalized

components versus time are shown in Fig. 4 and the shielding
effectiveness values versus frequency are shown in Fig. 5. The
results in the ADI–FDTD case and conventional FDTD case
were also in good agreement.

These simulations were performed on an Ultra SPARC II
360-MHz workstation. The CPU time and required memory size
of these simulations are shown in Table I, with the time-step size
and total time steps. In the case of the ADI–FDTD, the time-step
size can be set 20 times as large as the conventional FDTD, and
total time steps can be reduced by a factor of 20. The CPU time
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Fig. 4. Normalized electric field at pointB when a Gaussian pulse was
excited. (Solid line: conventional FDTD. Dashed line: ADI–FDTD.)

Fig. 5. Shielding effectiveness versus frequency. (Solid line: conventional
FDTD. Dashed line: ADI–FDTD.)

TABLE I
INFORMATION ON THE MONOPOLEANTENNA SIMULATION

is also reduced to 24%. Required memory size, which is about
1.9 times, is increased because of the necessity for extra array
storage.

B. Stripline with a Narrow Gap

Fig. 6 shows numerical models of a stripline with a narrow
gap. The ground planes were separated by 2.4 mm. The strip in
the center of them was 1.2-mm wide and the electric character-
istics of the medium between them were , ,
and S/m. The 25-m gap was in the center of the strip
and four cells were applied there. Mur’s first-order absorbing
boundary condition was set at-directional terminals. The per-
fect-electric-conductor boundary condition was set at the strip

(a)

(b)

Fig. 6 Stripline structure (a) Vertical view. (b) Horizontal view.

Fig. 7. Normalized output voltage at observation point. (Solid line:
conventional FDTD. Dashed line: ADI–FDTD (�t = 1:0410 ps).)

and ground planes. A Gaussian pulse was excited at the excita-
tion area and the components at the observation point were
output.

We used nonuniform cells so as to treat the narrow gap and
long strip line. The detail of the cell size was as follows:

mm constant

mm constant

mm constant
mm

mm constant
mm

mm constant.

The minimum cell size was 0.4 0.2 0.0625 mm in the
dielectric medium of in this model, thus, the CFL con-
dition was ps. The time-step size was set as
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Fig. 8. Insertion loss versus frequency.

TABLE II
INFORMATION ON THE STRIPLINE SIMULATION

0.04164 ps for the conventional FDTD and 0.5205, 1.0410, and
2.0820 ps for the ADI–FDTD. The normalized output voltages
at observation points versus time are shown in Fig. 7. The re-
sults in the ADI–FDTD case and conventional FDTD case are
in good agreement. By applying the Fourier transformation of
the excited pulse and output signal, the insertion loss was cal-
culated. The results are shown in Fig. 8. As is clearly shown,
an increase in the time-step size resulted in numerical error [8].
However, the results of the ADI–FDTD with ps,
and ps almost agree with the results of the conven-
tional FDTD. Table II provides information on this simulation.
For the ADI–FDTD, if the time-step size is set 25 times as large
as that of the conventional FDTD, total time steps can be re-
duced by a factor of 25. The CPU time is also reduced to 22%.

IV. CONCLUSION

This paper introduces the 3-D ADI–FDTD method for
solving full vector Maxwell’s equations. The algorithm of the

method is unconditionally stable, thus, the limitation of the
maximum time-step size does not depend on the CFL condi-
tion, but rather on numerical errors. What limits the maximum
time-step size depends on what kinds of problems or models
are calculated. If the size of the local minimum cell in the
computational domain is much smaller than the wavelength,
as in the examples shown in this paper, the error limitation is
much larger than the CFL limitation and the 3-D ADI–FDTD
method is more efficient than the conventional FDTD method.
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