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3-D ADI-FDTD Method—Unconditionally Stable
Time-Domain Algorithm for Solving Full
Vector Maxwell’'s Equations

Takefumi Namikj Member, IEEE

Abstract—We previously introduced the alternating direction ADI FDTD method for a 3-D full vector wave and demonstrate
implicit finite-difference time-domain (ADI-FDTD) method fora  some numerical examples.
two-dimensional TE wave. We analytically and numerically veri-
fied that the algorithm of the method is unconditionally stable and
free from the Courant—Friedrich—Levy condition restraint. In this 1. NUMERICAL FORMULATIONS OF THE 3-D
paper, we extend this approach to a full three-dimensional (3-D) ’
wave. Numerical formulations of the 3-D ADI-FDTD method are ADI-FDTD METHOD

presented and simulation results are compared to those using the . .
conventional 3-D finite-difference time-domian (FDTD) method. The numerical formulation of the ADI-FDTD method for a

We numerically verify that the 3-D ADI-FDTD method is also un-  full 3-D wave is presented in (1)—(12). The electromagnetic-

conditionally stable and it is more efficient than the conventional field components are arranged on the cells in the same way as

3-D FDTD method in terms of the central processing unit time if  that using the conventional FDTD method. These formulations

the size of the local minimum cell in the computational domainis 5.a gvailable for inhomogeneous lossy medium and for using

much smaller than the other cells and the wavelength. . - - . .
nonuniform cells. The calculation for one discrete time step is

Index Terms—ADI-FDTD method, CFL condition, FDTD  performed using two procedures. The first procedure is based

method. on (1)—(6) and the second procedure is based on (7)—(12) as

follows:

|. INTRODUCTION (First procedurg

HE finite-difference time-domain (FDTD) method [1], [2]

is widely used for solving problems related to eIectromangch‘ifl//Q2 "
netism. As the traditional FDTD method is based on an explicit _ """ p.n A Cbos
finite-difference algorithm, the Courant—Friedrich-Levy (CFL) (e+1/2.5.5) (H1/2:3:k) (3+1/2.5.%)

condition [2] must be satisfied when this method is used. There- - [{Hz?m/mﬂ/?,k) _HZELH.l/QJ_l/Q k) }/ Ay(s)
fore, a maximum time-step size is limited by minimum cell size el )2 el )2
in a computational domain, which means that if an object of - {Hy(i-l—l/Q,j,k-l—l/Q)_Hy(z-l—l/Q,J k—l/?)}/Az(k)}
analysis has fine scale dimensions compared with wavelength, Q)
a small time-step size creates a significant increase in calculivyrﬂ/?
tion time. (E,7HL/2,k)

We previously introduced the alternating direction implicitfi- Cag i 2.0) EYG, /2,00 T Cb /2,8
nite-difference time-domain (ADI-FDTD) method for solving L HL _Ha™ . Az(k
the two-dimensional TE wave [3]. The method is based on the { (/214 /2) /2, ’H/Q)}/ (&)
alternating direction implicit (ADI) method [4] and is applied to {HZ?:Q//QQJH/Q k) H?Zﬁ/g FHL/2,k) }/ Aai(i)}
Yee's staggered cell [1] to solve Maxwell's equations. We an- )

alytically demonstrated that the growth factor of the algorithm /2

is always unity, i.e., this scheme is unconditionally stable and i Z(i,g,041/2)

not dissipative. Therefore, the time-step size can be arbitrarily = Cai jr1/2) - £26 /2y T CbG g1 /2)

set when this method is used. The limitation of the maximum HH no CHu }/Aaz(i)
time-step size of the method does not depend on the CFL con- Yo/ /n ™ 2 Y1/2,50041/2)

dition, but rather on numerical errors. R _ Hy/? Ay(j)
We extended this approach to a full three-dimensional (3-D) { (@ /2,41/2) (51/2,41/2) }/ L
wave and introduced the 3-D ADI-FDTD method [5]. In this 12 ®)

paper, we explain the details of numerical formulations of the?%(; /1 /2 141/2)
= Haig 0 w172 DbG s /2,00/2)
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Fig. 1. Monopole antenna near a thin dielectric wall. (a) Bird's eye view. (b) Horizontal view. (c) Vertical view.
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The coefficients are defined in the same way as in the converumber of simultaneous linear equations and also mgatis

tional FDTD method and they are as follows: rectional scan of thé’,, components.
g 9 _ g 9 e+l 1 4l
Culisgo k) = 2200 K) —oli, 0. k) A — 2Bl sy OB o 500 =12 BT 2 11 00
ATWE 25(i7j7 k)—|—O'(L,J, /%) At — o ntl/2
Coli. . 1) 2A¢ RS CEVERAD)
(L, L, R) = T T nHl/2 ntl/2 p
26(2;,/6) +o(i, 4, k) At —|—{Hz(m/27j+l/27k)—Hz(m/Qyjfl/Q?k)}/Ay(J)
7 4 kY = n—|—1/2 n—|—1/2 X
Diirisk) = 7= (B sy HUG s sas ) ] B2 (R)

None of these equations can be used for direct numerical cal-  +g {Ey?i{f_l/m) —Eygf}_/f/m) }/ {Az(i)Ay(i)}
culation because they include the components defined as syn- il )2 )2 . .
chronous variables on both the left- and right-hand side, thus, ~"2 {Ey(i-l—l,j+1/2,k)_Ey(i,j+1/2,k)}/{Ax(Z)Ay(j)}
modified equations are derived from the original equations. @)

In the first procedure, thé’,, component on the left-hand
side and thed,, components on the right-hand side are defingtfhere
as synchronous variables in (1), thus, a modifieq {ar the
E, component is derived from (1) and (5) by eliminating the
H 2 components. In the suffik, (') indicatesk maximum

vy = Dbigiy2,5-1/2.0 ) Bu(d)?
B2 =1/Cbiit1ya5) + a2+ 72

number of simultaneous linear equations and also medtis Y2 = Db(i+1/2,j+1/2,k)/Ay(i)2
rectional scan of thé’,, components as follows: po = Ca(i+1/27jyk)/ Chiiv1/2,5,k)
/2 /2 /2 q2 = Db, 12k
—O Bz ey BT 0 T BT ) (/2720

n ro = Db i 7 AN
= 1B 50 2 (i4+1/2,+1/2,%)

) In the same way, the modified equation for tﬁg*l com-
HZ Ly oot rpar—H 2 o 4}/A , € way, . :
+{ AL /2,54 20) T AEHL/2,5-1/2%) v ponent, which indicates maximum number of simultaneous
_{Hyzlzi-f—l/Q,j,k-i—l/Q)_HyFﬁl/Q,j,kfl/Q)}/Az(k) linear equations and also meanslirectional scan of thez,

components, is derived from (8) and (10). Also, the modified
+q1 {Ez?m,j,k_l/z)—Ez?é,j,k_l/z)}/{Ax(i)AZ(k)} equation for the&”+1 component, which indicatésnaximum
) number of simultaneous linear equations and also meatis
- {Ez&kl,j,kﬂ/?)_Ez?i,j,k+1/2)}/{Ax(Z)AZ(k)} rectional scan of thé. components, is derived from (9) and
(1) (11). By solving their simultaneous linear equations, we can get
the values of the electric-field components at the time of1.
where Thereafter, we can get the values of the magnetic-field compo-
. 2 nents at the time of + 1 directly from (10)—(12).

o1 = Dbz, k-1/2)/ AE) Since the simultaneous linear equations such s (7)
Pr=1/Cbgiyry2,50) +a1+m can be written in a tridiagonal matrix form, and their coefficients
Y1 = Dbig1/2,,141/2)/ Dz (k)? on the left-hand side satisf$| > |«| + ||, the computational
costs to solve the equations are not very significant [6].

We note that there is no necessity to scanfheE,, andE,
components in the-, y-, andz-directions, respectively, because
1= Dbgit1/2,5,x+1/2)- an electromagnetic wave is a transverse wave.

pL = Ca(7‘,+1/Q,j,k)/Cb(i+1/2’j’k)
@1 = Dbiiy1/2,5,k-1/2)

In the same way, the modified equation for g/ compo-
nent, which indicatesmaximum number of simultaneous linear
equations and also meansdirectional scan of thes, com- In order to demonstrate the above 3-D ADI-FDTD method,
ponents, is derived from (2) and (6). Also, the modified equéwo examples are presented. Numerical simulations were car-
tion for the Engl/2 component, which indicates maximum ried out using both the 3-D ADI-FDTD method and the con-
number of simultaneous linear equations and also meatis ventional 3-D FDTD method for comparison.

rectional scan of th&. components, is derived from (3) and (4). . .

By solving their simultaneous linear equations, we can get the Monopole Antenna Near a Thin Dielectric Wall

I1l. NUMERICAL EXAMPLE

values of the electric-field components at the time.of 1/2. Fig. 1 shows numerical model of a/4 monopole an-
Thereafter, we can get the values of the magnetic-field comgenna mounted near a thin dielectric wall. The 160-mm-long
nents at the time af + 1/2 directly from (4)—(6). monopole antenna was mounted near the 1-mm-thick

In the second procedure, t#. component on the left-hand 640-mm-wide 176-mm-high dielectric wall on an infinite
side and thegZ. components on the right-hand side are definegtound plane. The distance between the antenna and the wall
as synchronous variables in (7), thus, a modifieq {@r the surface was 127 mm. Observation poimtsand B were at
E,, component is derived from (7) and (12) by eliminating tha 25.6 and 26.0 mm distance from the antenna, respectively.
H"*! components. In the suffiy, (7) indicatesj maximum Mur’s first-order absorbing boundary condition [7] was set
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(b) Fig. 3 Normalized electric field when the electric characteristics of the wall

. . L . L were setas,. = 4.0, u,. = 1.0, ande = 4.0 S/m. (a) At pointA. (b) At point
Fig. 2 Normalized electric field when the electric characteristics of the waf (so|id line: conventional FDTD. Dashed line: ADI-FDTD.)

were setas,. = 4.0, u,- = 1.0, ando = 0.0 S/m. (a) At pointA4. (b) At point
B. (Solid line: conventional FDTD. Dashed line: ADI-FDTD.)

The £, components at observation point&nd B were output.

on the outer surfaces, except the bottom ground plane. T¥e calculated twice for different electric characteristics of the
perfect-electric-conductor boundary condition was set at tHélectric wall. The outpuf’. components at pointd and B
antenna and ground plane. normalized by the value of the excited amplitude, when the elec-

We used nonuniform cells so as to treat the thin dielectric wafic characteristics of the wall were setgs= 4.0, u,. = 1.0,
and relatively wide computational domain. The detail of the cédndo = 0.0 S/m are shown in Fig. 2(a) and (b), respectively.
size was as follows: The output®, components, when the electric characteristics of
the wall were setas. = 4.0, y1,, = 1.0, = 4.0 S/m, are shown

64 mm 1<4<21 dx(%) : constant o . )
9 _ 39 mm E22_<L i< 223) dig?—i- 1) = due(i)/2 in Fig. 3(a) and (b), respectively. The results in the ADI-FDTD
dr(i) = { 1mm (2721‘234) dx(i) : constant case and conventional FDTD case were in good agreement.
32— 2 mm (3521'239) da(s + 1)/2 = da(s) Next, a Gaussian pulse was excited at #yecomponent of
64 mm (4021‘258) dx(i) : constant the bottom cell of the antenna, and the component at ob-
_ Loy A ] servation pointz was output. Numerical simulations were per-
() = 648mm (1S1‘1<Sk42)22 dy("(g .Zor.lstantt ¢ formed twice, with and without the wall that had the electric
16mnr1nm Ek— 23) ) dzgkg ’ gggztgzt characteristics of, = 4.0, 1, = 1.0, ande = 4.0 S/m.
c = 2UK) . . . .
2(k) = By applying a Fourier transformation to each output field, the
dz(k) 32mm (k=24) dz(k) : constant y 8ppying P

. shielding effectiveness values were calculated. The normalized
64mm (25<k<42) dz(k): constant. E. components versus time are shown in Fig. 4 and the shielding
The size of cells at the air region was set at 64 mm, which wafectiveness values versus frequency are shown in Fig. 5. The
about\/10. The minimum size of cells, which was set at arouncesults in the ADI-FDTD case and conventional FDTD case
the wall, was 1x 8 x 64 mn? in this model, thus, the CFL were also in good agreement.
condition wasAt < 3.3071954 ps. The time-step size was set These simulations were performed on an Ultra SPARC I
as 3.307 ps for the conventional FDTD and 66.140 ps for t360-MHz workstation. The CPU time and required memory size
ADI-FDTD. of these simulations are shown in Table |, with the time-step size
First, a continuous sinusoidal wave, the frequency and waad total time steps. In the case of the ADI-FDTD, the time-step
length of which were 460 MHz and 652 mm, respectively, wasgze can be set 20 times as large as the conventional FDTD, and
excited at they, component of the bottom cell of the antennatotal time steps can be reduced by a factor of 20. The CPU time
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TABLE |

INFORMATION ON THE MONOPOLEANTENNA SIMULATION Fig. 7. Normalized output voltage at observation point. (Solid line:

conventional FDTD. Dashed line: ADI-FDTDM = 1.0410 ps).)

At Steps | CPU Time | Memory . . .
and ground planes. A Gaussian pulse was excited at the excita-
FDTD 3.307ps | 6600 2214 6.8 Mb tion area and thé&’,, components at the observation point were
output.
ADLFDTD | 66.14ps | 330 532s 13.1 Mb We used nonuniform cells so as to treat the narrow gap and

long strip line. The detail of the cell size was as follows:
dx (i)

is also reduced to 24%. Required memory size, which is about 0.4 mm (1<i<6) dz(:) : constant

1.9 times, is increased because of the necessity for extra angay;)

storage. =0.2mm (1<5<54) dy(y) : constant
B. Stripline with a Narrow Gap dz(k)

Fig. 6 shows numerical models of a stripline with a narrow 0.4 mm . (1 §<kk§<31) ZZ(]I:') : co_nsctlanl'i
gap. The ground planes were separated by 2.4 mm. The strip in 0'2_0'912‘) mm (332 k236) dZ(k+~1) = dz(k)/2
the center of them was 1.2-mm wide and the electric character- 0'0063‘) mm (Z e 39) dZ(k) : consiacr;t I
istics of the medium between them were= 4.0, u, = 1.0, 0.0125-0.2 mm E 1 O; #(k+1)/2 = dz(k)

ando = 0.0 S/m. The 25zm gap was in the center of the strip 0.4 mm dz(k) : constant.

and four cells were applied there. Mur’s first-order absorbirbhe minimum cell size was 0.4 0.2 x 0.0625 mm in the
boundary condition was set atdirectional terminals. The per- dielectric medium of,. = 4.0 in this model, thus, the CFL con-
fect-electric-conductor boundary condition was set at the stiition wasAt¢ < 0.0416412 ps. The time-step size was set as
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method is unconditionally stable, thus, the limitation of the

0 maximum time-step size does not depend on the CFL condi-
& -2r . tion, but rather on numerical errors. What limits the maximum
% time-step size depends on what kinds of problems or models
8 -4r 1 are calculated. If the size of the local minimum cell in the
5 ; computational domain is much smaller than the wavelength,
L BF ——— FDTD (At=0.04164ps) - . . . P .
g i e ADLFDTD (A0520555) as in the examples shown in this paper, the error limitation is
2 g I D ADLEDTD (A=t 0410ps | much larger than the CFL limitation and the 3-D ADI-FDTD
| ADMFDTD (At=2 0820ps) method is more efficient than the conventional FDTD method.
-10 Li
0 5 10 15
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