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Periodic Waveguide Structures with Long Cells

Jan VotrubaMember, IEEE

Abstract—In this paper, a class of periodic waveguide structures cylindrical subregions and expanding the fields into an infinite

with stepwise constant circular cross section is analyzed by meansset of normal modes. The recent formulation of modal analysis
of Hahn's method of modal field matching along transverse planes. is given by Esteban and Rebollar [8].

It allows one to resolve algebraically the implicit determinant re- Th . fficients in th dal Vi det
lation between the phase shift per cell and frequency and to ob- € expansion coefiicients In the modal analysis are aeter-

tain an explicit formula. Dispersion diagrams and field distribu- Mined from an infinite system of linear homogeneous equations,
tions are also calculated and plotted and convergence properties of which are derived by matching the solutions on the boundary

the method are tested. between the individual subregions. The condition required for
Index Terms—Bandpass filters, communication channels, the system to have a nontrivial solution is that the determinant
dispersion diagrams, periodic structures, waveguide theory. of the system be equal to zero. This equation is an implicit dis-

persion relation between the frequency and phase shift per cell
of the structure. The determination of this relation is the central
problem of slow-wave structures.

WAVEGUIDE with periodically stepwise constant cir- |n this paper, it is shown that, for a special class of struc-

cular cross section, i.e., the disk loaded or iris loadegres with dimensions and a frequency satisfying certain condi-
waveguide, is an example of a slow-wave structure [1]. Sug@ns, the determinant dispersion relation can be resolved alge-
structures find applications in accelerator physics as accelgfajcally and an explicit formula can be obtained for the phase
ating or deflecting cavities and in microwave electronics &hift per cell as a function of frequency_ The ana|ysis is car-
generators of microwave energy. The dimensions of periogigd out using Hahn’s method of modal field matching along
waveguide structures are optimized for maximum couplingansverse planes. In Section II, we summarize the results of the
to the beam of charged particles. There are also situatiofisheral theory of Hahn, retaining the notation introduced in his
in which an undesirable paraSitiC slow-wave structure tﬁ‘|g|na| papers [9]’ [10] The restriction to our class of struc-
generated. An example is a vacuum chamber of a storagees and frequencies, defined in Section Iil, will allow us to
ring accelerator. Such a chamber consists of long pipes insigigive, in Section IV, the above-mentioned dispersion relation
the dipole and quadrupole magnets, and shorter sectionsiyPfhe form® = ®(f). Having both the frequency and phase
larger diameter between the magnets, which serve as vacusft per cell, we can compute, in Section V, the expansion co-
pump-out stations. In this case, the objective is to minimiz&ficients and field distributions. In Section VI, some instructive

the coupling to the beam in order to suppress longitudingispersion diagrams are evaluated in a variety of structures.
instabilities due to the interaction of the beam with the excited

TMg modes [2], [3]. This has been the motivation for studying
field distributions and dispersion diagrams of such “long cell”
structures. However, it seems that such structures might find! here is a preference in the literature to subdivide the peri-
utility as bandpass filters and as multichannel communicati@4ic structure into cylindrical subregions and to match the fields
lines for transmitting signals. There are geometries that provigng axial cylindrical interfaces. The disadvantage of this ap-
remarkably linear sections in dispersion curves. This meapi®ach is that the phase shift per cell does not appear explicitly
that the group velocity is constant over sizable bandwidth the field expressions and there is no simple relation between
of frequencies in which signals propagate without dispersi@'@e expansion coefficients of the cylindrical subregions. Hahn
distortion. [10] investigated this and other possible ways of structure sub-
The periodic waveguide structures have been extensinIWiSions and was able to provide a superior method for modal
investigated [4]. The most recent development in the anangld matching along transverse planes. For convenience of the
is due to Amaréet al.[5], [6]. Their formulation is based on the 'éader, Hahn’s theory is presented below using Hahn'’s original
coupled-integral-equation technique, which allows an arbitrafptations.
number of discontinuities per unit cell. It does not require e assume harmonic time variation of the field components
solving a nonlinear determinant equation, and the phenomerfifl We use the phasor notation. Due to the cylindrical sym-
of relative convergence [7] is eliminated. Alternatively, th&etry of the waveguide, we use a cylindrical coordinate system:
complete solution of the electromagnetic problem for thege—coordinate along the waveguide axis-the radial coordi-
structures, i.e., solving wave equations with boundary condidte, and’)—the azimuthal angle.

tions, can be obtained by dividing the structure into simple In the rotationally symmetricTM, mode, only three
field components are different from zeroFE.,.(r,z),

, , E.(r,z), and Hy(r,z). It is sufficient to consider
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z=0 z=0 ‘
Fig. 1. Basic cell.
E.(r,2) = —j(kr)=*0.(rHy(r,2)), wherek = 2rf/c. In f is the frequency is the speed of light, ang,,, are zeros of

periodic structures, the enti#é, (r, z) field component, as well the Bessel functions. The expansion coefficients, andill
as all other field components, phase shiftdyp(—j30L) in  are solutions of the system of homogeneous linear equations
moving fromz to z + L, wherelL is the period of the structure.

The quantity 3y is the fundamental reference propagation < My Ml?) <“IIII> - <0> (8)
constant and the phaggL = & is called the phase shift per —Mi> Mo ¢ 0
cell.

. . ) with the block matrices
Fig. 1 schematically shows the basic cell of the structure,

together with dimensions and matching planes. In accordances,; = AY'S?'"*A . cos ® — AY'7? 14 + Y1 (9)
with [9] and [10], we divide the basic cell into subregion | with _ AvIg2i-1 4 . Ay Ig20—1 IpI1—1
the larger radiug! and lengthed®, and subregion Il with the Moz = AYV'STA - cos @+ AVITA+ YT
smaller radius:'' and lengthed It ) (10)
The azimuthal magnetic component of the rotationally sym-Mi2 = AY'S# 71 A - sin @. (11)
metric transversal magnetitM, mode in subregion | is ex-

7 27—-1 2T—-1 TT -1 H
panded into normal modes Here, Y, S , T4 T and T are the following

diagonal matricesY® = Y6, ST = S3-1g 0,
Hi(rz)= > (—juln B B gt S8 ) where $21°1 = 1/sin2kl,d', T2 = cot2kL,d",
— coskl,, df sinkl,,d! T = tan k™l d", and 71 = cot &1 d™. The matching

YEp(kL r) (1) matrix A has the elements
.. . . . L. A _ 2$2jonl<]0($j0nz)
wher(_e the origine = 0 is put in the center of subregion I. Simi- TG = 2252 T (Gom)
larly, in subregion Il

B Arn,n = Anrn, (12)

where
1L/, .
Hy(r,z) z=a"/a" < 1. (13)
_ 7 o = L oqr sin KL~ ir COs kL~
i Y —~ TIUm g I gmm Ymn T The phase shift per celt is related to the frequencyby the
S m= equation
) an p(krrnT)' (2)
det M =0 (14)
The origin is now put in the center of subregion II. The or-
thonormal radial basic functionsare where the symbalet A/ means the determinant of the matrix
: Mll M12
; Ji(k ) ) M = < ) . (15)
i) = —o s i =111 3 My M
p( 1m7) 7r1/2az(]1(j0m)7 ¢ ’ ( ) 12 22
The coefficientsu!, andi!, are determined by the matrix
In (1)—(3) equation
k=2rf/c (4) <uTI) _ A-COS%‘I) A-sin%@ <urIrI> (16)
kim = jom/ai (5) t A -sin %@ —A - cos %(P 4
kL = (K = (/ffwm)Q)l/2 (6) Thus, for a given geometry and for a given frequency, the

Y =k/E. . (7)  Hy(r,z) component of thd8"M, mode propagating through the
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basic cell is completely described. The remaining componemtther hand, for a gived' andf > (cjo1/27al), we find from
E.(r,z) and E.(r, z) are given by the relation®,.(r,z) = the above formula

Jk7Y0. Hy(r,2) and E_(r, 2) = —j(kr)™10.(rHy(r,2)). If

one denumerates the basic cell by the indéx= 0 then, by ./, cjoz \ e N2

applying the Floquet theorem, the field in tiséth cell of the 5 1 < [ < <2m1> - (W) = fumax-  (21)
structure is equal to the field in the basic cell times the phase

factorexp(—j K ®).

1/2

Let us introduce the notationfi =  cjon/27a’,
k = 1,2,...,4 = LII for the cutoff frequencies. Then,
as stated abovefl < f < fuax Due to (13), we
For fixed quantityk, i.e., for a given frequency, the quan-always haveff < fII. Depending on the value of the ratio
tity k%, becomes imaginary starting from a certain value of the = (a''/al), two cases can be considergd: > /... and
indexm. Thus, as seen from (1) and (2), there are two kinds ¢f' < f,.x.
modes: The firsty propagating modes described by sines and 1) \we call the structure “deep” iflf > fi..x, from which
cosines, and the remaining infinitely many evanescent modes, e find
generated at the structure discontinuities, described by hyper-

[ll. SPECIFICATION OF THEWAVEGUIDE

bolic sines and hyperbolic cosines. In this paper we describe in oIl N2 ol \ 2 1/2

detail the field in the frequency intervajo; /2ma! < f < — < [(10—1> + &2 <d1f‘ ) ] . (22)
cjoa/2nal. For this situation, series (1) can be rewritten in the @ Joz Joz

form

o i In this casef < [(f)? — (ec/dndD)?Y/? < fIL,
Hlp )= [t 22 kaz | pcosk;z Yokl and no mode can propagate through subregion Il without
19(772)_ Juy T 1 b1 7 1 lp( 717) : : H : H H
cosk_,d sink’, d attenuation. For this situation, (2) can be written in the

o form
LR .
+ 3 (i i)

m=2

HY(r 2) = exp <—i®> <—J & ull +L£,I,>
exp (=L (@' = ) Jabokt,r)  @ny PO 3%) 2 (g i

™ v’
I (11 I /10
' — Hom(dT — |2 kL) (23
where exp( Koo ( |7|))77mp( T (23)
Iiirn, = ((/g},my _ k2)1/2 77}71, — /f/lfim, m> 2. where
(18) Ii?rn = ((k1I£n)2 - k2)1/2 and 7’]}711 = k/li?rn

In other words, we still need infinitely many normal modes
to describe the field, but only the first one has a constant ampli-
tude in subregion 1. It will be shown in Section IV that of spe-
cial interest is the case in which the quantitysinh 2x., d"
is negligibly small form > 2. In this case, determinant rela-
tion (14) between the phase shift per celand the frequency
f can be resolved algebraically. Let us, for instance, consider

To assure the integrity of the structure (so that it does
not break down into independent cavities—subregions 1),
we introduce the condition

260 d"T < e

1/sinh 2" d" to be negligibly small with respect to unity and, Using (4) and (5), we find
as such, replaced by zeros in subsequent expressions, if 12
. 2 -
I £C Cjo1 2
26l Al > e, form > 2. (19) v < [(Tn ) —f ]

The number can be chosen by what we want to consider
negligible in numerical calculations. If, for instanee~= 10,
then

which shows that the smaller the raditl§ of the opening
in the “iris,” the thinner the “iris,” must be, i.e., the shorter
subregion Il must be.

[} » e[
1/Sinh(2/€£md1) < 10t<, form > 2. (20) 2) The structure is “shallow” iff;" < fmax. Then

i ; 8t © N2 oy 2]Y2
Using (4), (5), (18), and (19), we find ot [(,0_1> +52<d?~ )] 24
oy —1/2 a Jo2 Jo2
T ec ¢Jo2 2 . T
<> [(%al) _f] o ] < dm/2ma In this case, a bandwidth of frequencies
which shows that the length of subregion | is limited from below. I

1/2
I\ ec \2
This clarifies what is meant by a “long cell structure.” On the < f< {(fQ) B (47rd1) } (25)
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can be available in which the first mode in subregion happens to the matricedY1S21-1 4 . cos ® s, which are

can propagate freely. We can write parts of the block matrice&/;; andM,,. The resulting matrix
M now contains only two elements witlin®,;  and two
H},I(r, 2) elements withcos @, 5. We rearrange the rows and columns

A in such a way that the elements witth ®5; v andcos ® ;.
jp T 22 Sl f 2 x 2 submatrix in th left-hand-side ¢
Vo i T orm a 2 x 2 submatrix in the upper left-hand-side corner
CoS P of the matrix M. Now applying a similar procedure to that
qp coskliz ) VLRI described above, we still produdéN — 2) more zeros in the
1

= exp <—‘7§<I>>

" Sin kLT
N — 2 zeros in each. It is then feasible to partially develop

+ Z < j Lf,{) the determinandet A/ and to obtain from (14) the following
m=2 dispersion formula:
+ €Xp Kam dH WLILP k11£n ’ 2
( ( 1= D) ( |- 27l + @y v = arccos <—m> ,
(26) s(p+4q)
l==41,42,... +00.  (27)
Here
IV. DISPERSIONFORMULA
The determination of the phase shift per delis a function of s =YL=t A2

frequency is the central problem of periodic structures. The so- p=a11 — alyda/D
lution usually consists in trying to satisfy (14) by trial and error, = By — s/ D
and it can be quite tedious if one attempts to find many points ¢ = 711 T P2/ Hs
to draw dispersion curves. In this section, due to the restricting Do = det(amn)
conditions defined in Section I, we will be able to actually re- Dg = det(3,.), m,n=2...,N
solve implicit relation (14) and to derive an explicit formula for d
the phase shift per cell as a function of frequency.

For computational purposes, it is necessary to truncate the in- — oc1moc1n0422/af2) )’
finite series and infinite matrices introduced in Section II. The
value of the phase shift per cell will be influenced by our choice

o = det Qmn, — ((alnla2n + 06277106171)0412

mn=3,...,N

of the numberM of terms in series (17) and the numbErof dg = det (/3mn — ((BimB2n + PomPin) P12
terms in series (23) or (26). We, therefore, introduce new nota- )

tion ¢ s, x. How much the value ob ;s  will differ from the - ﬁlmﬁlnﬁ??/ﬁm))v
value of the unknown asymptotizis related to the convergence m,n=3,...,N

g:sz\e/rltles of the method, which will be discussed in Sections V oy = — Y11T5171A§1 o

_ ylgI-1 42
While matching matrix (12) is rectangular, willf rows and Pu=Y1y AL - B
N columns, block matrices (9)—(11) have dimensidasc N a1, — FiA /An
and matrix (15) has dimensiosV x 2N. Bin = —a1n + Fady, /A1, n=2,...,N
. ; -1
_ As the f|r_st step,_let us return t_o the dlagqnal matsi¢ Cmn = Gmn — (Xomn — AimArnF1) /A2, + 5mn77n
introduced in Section Il. According to Section lll, we have

2
3
|

1T II
S2=1 = 1/sin2k!,d", but S2-' = —jsinh2x!,,d" for tanhr,d mn=2..,N
m > 2. Due to (20), the matrix elemeng™~! for m > 2are ~ Bmn = — Gmn + (Xonn AlmAlnF2)/A11 mnt
negligible. The resultingV x N matrix S?'=! has only one - coth 1L 'l mn=2,...,N
element different from zero: the elemesft —*. This simplifies M
greatly theN x N matrix AY1$?1-1 4 contained in (9)—(11). @y = Z??iAkmAkn, mmn=1..., N,
It has the form(AYTS?™1A),,,, = Y[S?=1A,,, As,,. Now, k2
using basic procedure®(/N? + 1) vanishing elements can be X, = A11(Aimain + a1miin), m,n=2,...,N.

produced in the&N x 2N matrix (15). Namely, we multiply

the first row by the factord;»/A;; and we subtract it from  If f > cjoi/2na™t, thenFy = ay; + YT, By = a1 —
the second row. We then multiply the first row by the factolr’IHTfI_l.

A13/A1; and we subtract it from the third row. We continue If f < cjoi1/2ma'l, thenFy = ay; + niltanh xl{d™,
this procedure up to th&'th row. Similarly, we multiply the £, = a1 + n!'coths!ld™.

first and second rows and in the first and the second columns:

(N +1)th row sequentially by factord;,,/4;; and we subtract ~ The advantage of (27) for calculating dispersion diagrams is
it correspondingly from théN + n)th row, i.e.,n = 2,...,N. as follows. To find the phase shift per cell for a fixed frequency
We apply the same procedure to the columns. As a result, without (27) and only by means of (14), one first has to insert a

elements in the block matriced;, and —A{;> become zero, trial phased, into the matrixA4 and calculate the whol&V x

except the matrix elemen{$/,-);; and(—M;2)1:. The same 2N determinant. Then, repeating the calculations several times,
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one tries to satisfy (14) by iteration. On the other hand, having ™7 = ‘
(27), one calculates only tw@Vv — 1) x (N — 1) determinants, :
D, and Dg, and two(N — 2) x (N — 2) determinantsd,,
anddgs, and there are no iterations. Moreover, various symmetry
relations among the introduced quantities can be exploited in th
computer code.

The dispersion diagrams can be constructed by means of (21
using aFORTRAN DC-loop with the frequency as an independent
variable changed in small regular steps. Tteloop contains
the following test. If in (27) the quantity(s® + pq)/(s(p +
g))| > 1,then go to the next step. This is the case of a stop-

ReEz along the maiching plane in 1/meters

-600 + A \‘;, i

band frequency region. I(s*> + pq)/(s(p + ¢))| < 1, then -700%——7 e e —k‘,/,‘——

write down the frequency” and the resulting phase shift per - - Y om0 oo o o aven
cell &, v, and go to the next step. An automatic regulation of radius of the waveguide in meters

the frequency step size makes the step in the stopbands ten or @)

more times bigger then in the passbands in order to save com- |
puter time.

V. FIELD DISTRIBUTIONS AND CONVERGENCE
CONSIDERATIONS

Having the phase shift per caly, y available, we can insert
it back into (15). Homogeneous system (8) of the linear equa
tions for the unknown expansion coefficient§, and:'l now
has a nontrivial solution because (14) is satisfied. In order tc
solve this system, we omit one of its equations, i.e., the last on
forinstance. Settingy = 1, we then obtain a system pfV — 1
inhomogeneous linear equations fa¥ — 1 unknown coeffi- OE . ‘ :
cientsull, m = 1,...,N,andil, m = 1,...,N — 1. This dop e e e
. _ 0.000 0.010 0.020 0.030 0.040 0.050 0.060
system can be solved by a computer routine. The coefficient radius of the waveguide in meters
w! andil follow from (16). The field distributions are now

fully determined for a given frequency and given dimensions of ()

the Waveguide structure Fig. 2. (a) Real part o, along the matching plane. (b) Imaginary partof
- - . . long th tching plane.

The truncation of series (23) or (26), i.e., their abrupt termi-_ 0 e matehing piane

nation, causes a mismatch error Whe_n approaching the trarrr]ls'thod by increasing the numbA¥ keeping the ratidf : N

verse matching plane between subregions | and Il. However, i

we limitthe range of the variableto the interva—(d ! —6"}) < Un;\rr:aergiglle of along cell periodic waveguide structure with a
z < (d' — &), whereé'" is the thickness of a thin cutoff P gcelip g

. ) stepwise constant circular cross section is the vacuum chamber
slab along the matching plane, the truncation error can be sup-

pressed. Namely, at the distarieé < d'! — 811, the evanes- of a storage ring a_ccel_erat_or. A realistic vacuum chamber con
: . o0 710 sists of pieces of pipes in dipole and quadrupole magnets of dif-
cent modes, characterized by the exponentiglé— ., (d - — : :
. o r Em ferent lengths of the same diameter, which are connected by
|z])), decay rapidly with increasing index. Starting at cer- i .
! - . ... pump-out cavities of a larger diameter between the magnets.
tainm = N, the contribution from the remainder of the infi-

S (3o (20 b el e o eyt 117 8E e Tsectoneore, orsmpi v o
d — 6. For instance, itxp(—~x!L,6') < A = 0.005 < 1, ’ g4

i i I _ 4 I _ 4 I _
then the contribution from the lagfth term at the boundary of sions in meterss’ = 0.0635 m, d* = 0.165 m, a* = 0.044

ImEz along the matching plane in 1/meters

al/al = 0.6929 >

the “matching gap” will be 0.005 times smaller then its value én’ dt = 275 m. Ke?plnge = 10, we find from (24) that this
. . Structure is “shallow
the matching plane and, as such, completely negligible. In other 11/2
words, finite series are sufficient for a practically exact descrip- Jo1 2 , [ a'l
tion of the field in this restricted area. <JTQ> te <de02>
The same reasoning can be applied to subregion | character- — 0.65051
ized by series (17). For the symmetrical cutdft= 6 = § and _ _ _
for the same percentage of the last evanescent mode decay?®{ifé (25) yields the available bandwidth of allowed frequen-
haveA > exp(—rl8) ~ exp(—r!,,8). Using (5) and (18), Cies2607.76 MHz < f < 3887.59 MHz. For the frequency
we see that' /al ~ joy /jorr =~ N/M with the result J = 2622.06 MHz and M = 43, N = 30, for instance, (27)
oo gives ®4330 = 1.57296 rad ~ w/2. The choiceM = 43,
a o’ =M:N. 28) N — 30 approximately satisfies (28). Fig. 2(a) and (b)
Once the optimum ratid/ : N has been determined forshows the component®eE!(d! r), ReEX(—d ) and
a given N, one can address the question of precision of timEL(d!,r), ImE!(—d, +) in the matching plane along
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20001 - ~f---{----f--A----H4---F----fF--F---f--A----4 i )
| matching gap boundary
! in subregion I
T i -
5007 - oo

matching gap boundary
~..._in subregion II

IS
<
g
T S
I
I
I

ReEz along the basic cell z-axis in 1/meters

Reliz along the basic cell z-axis in 1/meters

I AN matching plane
8000 ——F———— —— b — e i

66.0000 The basic cell z-axis 1166.0000
20045——— — A - — e e
(a) 6 66 67 68
z-axis evaluation points
800 —
! @
6000 =~ - -----f\-----
50

g ‘
R Ch Ny ik e 900
= 5
P e i e S 2
3 000 g 850-1
= WM =
oo ‘w8007
EEIUIE el SR R S Sl sl Sl Sy b = 750 ;
® g |
=] e '
=000 A-f - b --e oY) Z 700~ -
B = |
E £ i ;

6000— - < -\ f---- -~ w 650 |

- matching plane 2 |
8000 - - — R s -
" o _ 166 £ : , =~ in subregion Il
The basic cell axis S50 = — e -4 - e TR oo I
I I I I
B | | | |
(®) 500+ t f f t t— i
. . . . 65 66 67 68
Fig. 3. (a) Real part of, along the basic cell axis. (b) Imaginary partiof . L
along the basic cell axis. z-axis evaluation points
(b)

the radius of the basic cell (in Fig. 1). The areas between thg 4. (a) Real part of. along the basic cell axis. (b) Imaginary partiof

interlacing Gibbs oscillations are smaller in the middle of th Igzg )the basic cell axis. (Detail of the residual dicontinuity at the matching

interval0 < » < «'Tand bigger near the center= 0. The spike '

near the discontinuity at = o' becomes narrower and higher = - : —

with increasingd and N. The number of half-wavelengths of 158 — - - - oo

the oscillations coincides with numbet$ and V. -
Taking againA = 0.005, we can cut off a slab of the thick- 157

nessé = —(lnA/kl;) ~ —(InA/klL) = 00025 mon  § 440

each side of the matching plane, 0.0025 m in subregion | an 3 P . L )
0.0025 m in subregion II, i.e26 = 0.005 m in total. The total 5 = [ @330, (5340)

length of the basic cell i8d! + 24 = 0.330m + 5.500 m. ?:’ o

Evaluating the field at a discrete set of points 0.005 m apart, wi
have 66 points in subregion | and 1100 points in subregion |1 %
point 66 lying in the matching plane. It is advantageous to shiﬂé
the whole pattern to the left by 1/2 of the step, i.e., by 0.0025 m
The matching gagé will then be positioned between points 66
and 67. In this way, the residual discontinuities due to the trun 3
cation of the infinite series (17) and (26) will be made invisible. 156 —— —— ~——
Fig. 3(a) and (b) shows the complete real and imaginary part

Re E.(r,z) andlin E.(r, z) in the basic cell along the-axis

(r = 0). Fig. 4(a) and (b) shows the regi@4 between points Fig. 5. Convergence behavior of the phase shift per cell at constant frequency
66 and 67 zoomed, revealing the residual discontinuities in de= 2622.06 MHz for various values of\/ and N'. The numbers at points
tail. They do not influence evaluation points in Fig. 3(a) and iffean(14. N).

(b) and they are, therefore, invisible. As a result, the actual field

distribution is determined practically exactly at a finite set dbtic value of®. It will be demonstrated in the following section
discrete points, provided the value®j; y reached the asymp- that, for the above example with,; 30, this is actually the case.

—

57

1.57

\;4L;L el —t

20 40 60 80

Order of Determinant detM
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Fig. 6. (@) Section of a dispersion diagram. (b) Detail of narrow-band area.
Detail of wide-band area.

VI. AGGREGATEDISPERSIONDIAGRAMS

Fig. 5 shows the dependence of the phase shift pefgell

1723

1) —— 212
] 3 I t I
| |
! 2111
240 - 2101
N
s 2 209+
5 5
R=] =
)
& 200 g 208
Q (5]
= =]
8' o
= B 2074
160 £ 206 -
205 1
120 —s——g—m—= 204 F—y
Phase shift per cell Phase shift per cell

@ (b)

Fig. 7. (a) Section of a dispersion diagram. (b) Detail of an area in Fig. 7(a).
The stopband at mode at 207.675 GHz is only 13-MHz wide, whereas the
neighboring passbands are about 2500-MHz wide.

has been reached alreadydaf; 30 = 1.57296 rad because a
higher choice, i.e.®;s 4, gave an identical numerical result,
i.e., (1)58,40 = 1.57296 rad.

Keeping the choicéM, N) = (43, 30), we can evaluate the
whole aggregate dispersion diagram in the allowed frequency
region of2607.76 MHz < f < 3887.59 MHz. It consists of
111 passbands, i.e., dispersion curves. Fig. 6(a) shows a section
of the aggregate dispersion diagram starting at 3100 MHz.
Notice the smooth modulation in the passband-stopband
bandwidths. The bandwidths increase with frequency and reach
maximum atAf = 3307.46 MHz (rmode)-3293.20 MHz
(zero mode)= 14.26 MHz. The narrowest stopband is
Af = 3293.198 MHz (zero mode)3292.647 MHz (zero
mode) = 0.551 MHz. As the frequency increases further,
the passband width decreases, reaching the minimum at
Af = 3503.457 MHz (7 mode)-3497.801 MHz (zero mode)

) 5.656 MHz, and the stopband width reaches maximum at
Af = 3515.507 MHz (= mode)-3503.457 MHz (= mode)

= 12.05 MHz. The next passband width maximum is at
Af = 3704.810 MHz (r mode)-3688.794 MHz (zero mode)

= 16.016 MHz and it is about 400 MHz apart from the previous
maximum. The character of dispersion curves changes too.

on parameters8/ and N for the same waveguide and frequencirhe narrow passband curves have a sine-like shape, whereas

as in Section V, i.e.g! = 0.0635 m, d! = 0.165 m, o't =
0.044 m, d! = 2.75m, f = 2622.06 MHz. The pairs of num-
bers in the parentheses are the paraméfersV). The correct

ratioM : M = ol : o!! ~ 1.4is maintained in the middle curve,

whereas the upper curve is drawn for the rdti® > 1.4 and
the lower curve for the rati®.0 < 1.4. The taper-like shape of
the curves indicates that, irrespectively of the radtlo. A/, the
curves would approach the asymptotic vaduvith increasing

the wide passband curves are practically straight lines, except
in the neighborhoods of the zero amdmodes. The narrow
passband and the wide passband areas zoomed are shown in
Fig. 6(b) and (c), respectively. The character of the bandwidth
modulation in the aggregate depends on the dimensions of the
structure.

As the second example, we consider a model of a “mul-
tichannel communication line.” It is a hollow cylindrical

M and N. However, the convergence is much faster for theopper conductor, a copper tubing, with the outside diameter
ratio given by (28). This is consistent with findings of other ausf 3 mm. The inside diameter changes stepwise between
thors [7], [9], [10]. In the above example, the asymptotic valug and 1.8 mm every 20 mm! = 1 mm, ¢ = 0.9 mm,
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The theory presented in this paper allows one to evalus
the phase shift per cell of inducédM, modes by an explicit
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