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Abstract—In this paper, a class of periodic waveguide structures
with stepwise constant circular cross section is analyzed by means
of Hahn’s method of modal field matching along transverse planes.
It allows one to resolve algebraically the implicit determinant re-
lation between the phase shift per cell and frequency and to ob-
tain an explicit formula. Dispersion diagrams and field distribu-
tions are also calculated and plotted and convergence properties of
the method are tested.

Index Terms—Bandpass filters, communication channels,
dispersion diagrams, periodic structures, waveguide theory.

I. INTRODUCTION

A WAVEGUIDE with periodically stepwise constant cir-
cular cross section, i.e., the disk loaded or iris loaded

waveguide, is an example of a slow-wave structure [1]. Such
structures find applications in accelerator physics as acceler-
ating or deflecting cavities and in microwave electronics as
generators of microwave energy. The dimensions of periodic
waveguide structures are optimized for maximum coupling
to the beam of charged particles. There are also situations
in which an undesirable parasitic slow-wave structure is
generated. An example is a vacuum chamber of a storage
ring accelerator. Such a chamber consists of long pipes inside
the dipole and quadrupole magnets, and shorter sections of
larger diameter between the magnets, which serve as vacuum
pump-out stations. In this case, the objective is to minimize
the coupling to the beam in order to suppress longitudinal
instabilities due to the interaction of the beam with the excited

modes [2], [3]. This has been the motivation for studying
field distributions and dispersion diagrams of such “long cell”
structures. However, it seems that such structures might find
utility as bandpass filters and as multichannel communication
lines for transmitting signals. There are geometries that provide
remarkably linear sections in dispersion curves. This means
that the group velocity is constant over sizable bandwidth
of frequencies in which signals propagate without dispersive
distortion.

The periodic waveguide structures have been extensively
investigated [4]. The most recent development in the analysis
is due to Amariet al. [5], [6]. Their formulation is based on the
coupled-integral-equation technique, which allows an arbitrary
number of discontinuities per unit cell. It does not require
solving a nonlinear determinant equation, and the phenomenon
of relative convergence [7] is eliminated. Alternatively, the
complete solution of the electromagnetic problem for these
structures, i.e., solving wave equations with boundary condi-
tions, can be obtained by dividing the structure into simple
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cylindrical subregions and expanding the fields into an infinite
set of normal modes. The recent formulation of modal analysis
is given by Esteban and Rebollar [8].

The expansion coefficients in the modal analysis are deter-
mined from an infinite system of linear homogeneous equations,
which are derived by matching the solutions on the boundary
between the individual subregions. The condition required for
the system to have a nontrivial solution is that the determinant
of the system be equal to zero. This equation is an implicit dis-
persion relation between the frequency and phase shift per cell
of the structure. The determination of this relation is the central
problem of slow-wave structures.

In this paper, it is shown that, for a special class of struc-
tures with dimensions and a frequency satisfying certain condi-
tions, the determinant dispersion relation can be resolved alge-
braically and an explicit formula can be obtained for the phase
shift per cell as a function of frequency. The analysis is car-
ried out using Hahn’s method of modal field matching along
transverse planes. In Section II, we summarize the results of the
general theory of Hahn, retaining the notation introduced in his
original papers [9], [10]. The restriction to our class of struc-
tures and frequencies, defined in Section III, will allow us to
derive, in Section IV, the above-mentioned dispersion relation
in the form . Having both the frequency and phase
shift per cell, we can compute, in Section V, the expansion co-
efficients and field distributions. In Section VI, some instructive
dispersion diagrams are evaluated in a variety of structures.

II. SUMMARY OF HAHN’S THEORY

There is a preference in the literature to subdivide the peri-
odic structure into cylindrical subregions and to match the fields
along axial cylindrical interfaces. The disadvantage of this ap-
proach is that the phase shift per cell does not appear explicitly
in the field expressions and there is no simple relation between
the expansion coefficients of the cylindrical subregions. Hahn
[10] investigated this and other possible ways of structure sub-
divisions and was able to provide a superior method for modal
field matching along transverse planes. For convenience of the
reader, Hahn’s theory is presented below using Hahn’s original
notations.

We assume harmonic time variation of the field components
and we use the phasor notation. Due to the cylindrical sym-
metry of the waveguide, we use a cylindrical coordinate system:
—coordinate along the waveguide axis,—the radial coordi-

nate, and —the azimuthal angle.
In the rotationally symmetric mode, only three

field components are different from zero: ,
, and . It is sufficient to consider

only because the other two components are de-
termined by the relations and
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Fig. 1. Basic cell.

, where . In
periodic structures, the entire field component, as well
as all other field components, phase shift by in
moving from to , where is the period of the structure.
The quantity is the fundamental reference propagation
constant and the phase is called the phase shift per
cell.

Fig. 1 schematically shows the basic cell of the structure,
together with dimensions and matching planes. In accordance
with [9] and [10], we divide the basic cell into subregion I with
the larger radius and length , and subregion II with the
smaller radius and length .

The azimuthal magnetic component of the rotationally sym-
metric transversal magnetic mode in subregion I is ex-
panded into normal modes

(1)

where the origin is put in the center of subregion I. Simi-
larly, in subregion II

(2)

The origin is now put in the center of subregion II. The or-
thonormal radial basic functionsare

(3)

In (1)–(3)

(4)

(5)

(6)

(7)

is the frequency, is the speed of light, and are zeros of
the Bessel function . The expansion coefficients and
are solutions of the system of homogeneous linear equations

(8)

with the block matrices

(9)

(10)

(11)

Here, , , , , and are the following
diagonal matrices: , ,

, , and ,
where , ,

, and . The matching
matrix has the elements

(12)

where

(13)

The phase shift per cell is related to the frequencyby the
equation

(14)

where the symbol means the determinant of the matrix

(15)

The coefficients and are determined by the matrix
equation

(16)

Thus, for a given geometry and for a given frequency, the
component of the mode propagating through the
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basic cell is completely described. The remaining components
and are given by the relations

and . If
one denumerates the basic cell by the index then, by
applying the Floquet theorem, the field in theth cell of the
structure is equal to the field in the basic cell times the phase
factor .

III. SPECIFICATION OF THEWAVEGUIDE

For fixed quantity , i.e., for a given frequency, the quan-
tity becomes imaginary starting from a certain value of the
index . Thus, as seen from (1) and (2), there are two kinds of
modes: The first, propagating modes described by sines and
cosines, and the remaining infinitely many evanescent modes,
generated at the structure discontinuities, described by hyper-
bolic sines and hyperbolic cosines. In this paper we describe in
detail the field in the frequency interval

. For this situation, series (1) can be rewritten in the
form

(17)

where

(18)

In other words, we still need infinitely many normal modes
to describe the field, but only the first one has a constant ampli-
tude in subregion I. It will be shown in Section IV that of spe-
cial interest is the case in which the quantity
is negligibly small for . In this case, determinant rela-
tion (14) between the phase shift per celland the frequency

can be resolved algebraically. Let us, for instance, consider
to be negligibly small with respect to unity and,

as such, replaced by zeros in subsequent expressions, if

for (19)

The number can be chosen by what we want to consider
negligible in numerical calculations. If, for instance, ,
then

for (20)

Using (4), (5), (18), and (19), we find

which shows that the length of subregion I is limited from below.
This clarifies what is meant by a “long cell structure.” On the

other hand, for a given and , we find from
the above formula

(21)

Let us introduce the notation ,
for the cutoff frequencies. Then,

as stated above, . Due to (13), we
always have . Depending on the value of the ratio

, two cases can be considered: and
.

1) We call the structure “deep” if , from which
we find

(22)

In this case, ,
and no mode can propagate through subregion II without
attenuation. For this situation, (2) can be written in the
form

(23)

where

and

To assure the integrity of the structure (so that it does
not break down into independent cavities—subregions I),
we introduce the condition

Using (4) and (5), we find

which shows that the smaller the radiusof the opening
in the “iris,” the thinner the “iris,” must be, i.e., the shorter
subregion II must be.

2) The structure is “shallow” if . Then

(24)

In this case, a bandwidth of frequencies

(25)
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can be available in which the first mode in subregion II
can propagate freely. We can write

(26)

IV. DISPERSIONFORMULA

The determination of the phase shift per cellas a function of
frequency is the central problem of periodic structures. The so-
lution usually consists in trying to satisfy (14) by trial and error,
and it can be quite tedious if one attempts to find many points
to draw dispersion curves. In this section, due to the restricting
conditions defined in Section III, we will be able to actually re-
solve implicit relation (14) and to derive an explicit formula for
the phase shift per cell as a function of frequency.

For computational purposes, it is necessary to truncate the in-
finite series and infinite matrices introduced in Section II. The
value of the phase shift per cell will be influenced by our choice
of the number of terms in series (17) and the numberof
terms in series (23) or (26). We, therefore, introduce new nota-
tion . How much the value of will differ from the
value of the unknown asymptoticis related to the convergence
properties of the method, which will be discussed in Sections V
and VI.

While matching matrix (12) is rectangular, with rows and
columns, block matrices (9)–(11) have dimensions

and matrix (15) has dimensions .
As the first step, let us return to the diagonal matrix

introduced in Section II. According to Section III, we have
, but for

. Due to (20), the matrix elements for are
negligible. The resulting matrix has only one
element different from zero: the element . This simplifies
greatly the matrix contained in (9)–(11).
It has the form . Now,
using basic procedures, vanishing elements can be
produced in the matrix (15). Namely, we multiply
the first row by the factor and we subtract it from
the second row. We then multiply the first row by the factor

and we subtract it from the third row. We continue
this procedure up to the th row. Similarly, we multiply the

th row sequentially by factors and we subtract
it correspondingly from the th row, i.e., .
We apply the same procedure to the columns. As a result, all
elements in the block matrices and become zero,
except the matrix elements and . The same

happens to the matrices , which are
parts of the block matrices and . The resulting matrix

now contains only two elements with and two
elements with . We rearrange the rows and columns
in such a way that the elements with and
form a 2 2 submatrix in the upper left-hand-side corner
of the matrix . Now applying a similar procedure to that
described above, we still produce more zeros in the
first and second rows and in the first and the second columns:

zeros in each. It is then feasible to partially develop
the determinant and to obtain from (14) the following
dispersion formula:

(27)

Here

If , then ,
.

If , then ,
.

The advantage of (27) for calculating dispersion diagrams is
as follows. To find the phase shift per cell for a fixed frequency
without (27) and only by means of (14), one first has to insert a
trial phase into the matrix and calculate the whole

determinant. Then, repeating the calculations several times,
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one tries to satisfy (14) by iteration. On the other hand, having
(27), one calculates only two determinants,

and , and two determinants,
and , and there are no iterations. Moreover, various symmetry
relations among the introduced quantities can be exploited in the
computer code.

The dispersion diagrams can be constructed by means of (27)
using aFORTRAN DO-loop with the frequency as an independent
variable changed in small regular steps. TheDO-loop contains
the following test. If in (27) the quantity

, then go to the next step. This is the case of a stop-
band frequency region. If , then
write down the frequency and the resulting phase shift per
cell , and go to the next step. An automatic regulation of
the frequency step size makes the step in the stopbands ten or
more times bigger then in the passbands in order to save com-
puter time.

V. FIELD DISTRIBUTIONS AND CONVERGENCE

CONSIDERATIONS

Having the phase shift per cell available, we can insert
it back into (15). Homogeneous system (8) of the linear equa-
tions for the unknown expansion coefficients and now
has a nontrivial solution because (14) is satisfied. In order to
solve this system, we omit one of its equations, i.e., the last one
for instance. Setting , we then obtain a system of
inhomogeneous linear equations for unknown coeffi-
cients , , and , . This
system can be solved by a computer routine. The coefficients

and follow from (16). The field distributions are now
fully determined for a given frequency and given dimensions of
the waveguide structure.

The truncation of series (23) or (26), i.e., their abrupt termi-
nation, causes a mismatch error when approaching the trans-
verse matching plane between subregions I and II. However, if
we limit the range of the variableto the interval

, where is the thickness of a thin cutoff
slab along the matching plane, the truncation error can be sup-
pressed. Namely, at the distance , the evanes-
cent modes, characterized by the exponentials

, decay rapidly with increasing index . Starting at cer-
tain , the contribution from the remainder of the infi-
nite series (23) or (26) will be practically equal to zero at

. For instance, if ,
then the contribution from the last th term at the boundary of
the “matching gap” will be 0.005 times smaller then its value at
the matching plane and, as such, completely negligible. In other
words, finite series are sufficient for a practically exact descrip-
tion of the field in this restricted area.

The same reasoning can be applied to subregion I character-
ized by series (17). For the symmetrical cutoff and
for the same percentage of the last evanescent mode decay, we
have . Using (5) and (18),
we see that with the result

(28)

Once the optimum ratio has been determined for
a given , one can address the question of precision of the

(a)

(b)

Fig. 2. (a) Real part ofE along the matching plane. (b) Imaginary part ofE

along the matching plane.

method by increasing the number keeping the ratio
unchanged.

An example of a long cell periodic waveguide structure with a
stepwise constant circular cross section is the vacuum chamber
of a storage ring accelerator. A realistic vacuum chamber con-
sists of pieces of pipes in dipole and quadrupole magnets of dif-
ferent lengths of the same diameter, which are connected by
pump-out cavities of a larger diameter between the magnets.
There are also beam intersection regions. For simplicity, we con-
sider an infinite chain of cells, shown in Fig. 1, with the dimen-
sions in meters: m, m,
m, m. Keeping , we find from (24) that this
structure is “shallow”

and (25) yields the available bandwidth of allowed frequen-
cies MHz MHz. For the frequency

MHz and , , for instance, (27)
gives rad . The choice ,

approximately satisfies (28). Fig. 2(a) and (b)
shows the components , and

, in the matching plane along
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(a)

(b)

Fig. 3. (a) Real part ofE along the basic cell axis. (b) Imaginary part ofE
along the basic cell axis.

the radius of the basic cell (in Fig. 1). The areas between the
interlacing Gibbs oscillations are smaller in the middle of the
interval and bigger near the center . The spike
near the discontinuity at becomes narrower and higher
with increasing and . The number of half-wavelengths of
the oscillations coincides with numbers and .

Taking again , we can cut off a slab of the thick-
ness m on
each side of the matching plane, 0.0025 m in subregion I and
0.0025 m in subregion II, i.e., m in total. The total
length of the basic cell is m.
Evaluating the field at a discrete set of points 0.005 m apart, we
have 66 points in subregion I and 1100 points in subregion II;
point 66 lying in the matching plane. It is advantageous to shift
the whole pattern to the left by 1/2 of the step, i.e., by 0.0025 m.
The matching gap will then be positioned between points 66
and 67. In this way, the residual discontinuities due to the trun-
cation of the infinite series (17) and (26) will be made invisible.
Fig. 3(a) and (b) shows the complete real and imaginary parts

and in the basic cell along the-axis
( ). Fig. 4(a) and (b) shows the region between points
66 and 67 zoomed, revealing the residual discontinuities in de-
tail. They do not influence evaluation points in Fig. 3(a) and in
(b) and they are, therefore, invisible. As a result, the actual field
distribution is determined practically exactly at a finite set of
discrete points, provided the value of reached the asymp-

(a)

(b)

Fig. 4. (a) Real part ofE along the basic cell axis. (b) Imaginary part ofE
along the basic cell axis. (Detail of the residual dicontinuity at the matching
plane.)

Fig. 5. Convergence behavior of the phase shift per cell at constant frequency
f = 2622:06 MHz for various values ofM andN . The numbers at points
mean(M;N).

totic value of . It will be demonstrated in the following section
that, for the above example with , this is actually the case.
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(a) (b)

(c)

Fig. 6. (a) Section of a dispersion diagram. (b) Detail of narrow-band area. (c)
Detail of wide-band area.

VI. A GGREGATEDISPERSIONDIAGRAMS

Fig. 5 shows the dependence of the phase shift per cell
on parameters and for the same waveguide and frequency
as in Section V, i.e., m, m,

m, m, MHz. The pairs of num-
bers in the parentheses are the parameters . The correct
ratio is maintained in the middle curve,
whereas the upper curve is drawn for the ratio and
the lower curve for the ratio . The taper-like shape of
the curves indicates that, irrespectively of the ratio , the
curves would approach the asymptotic valuewith increasing

and . However, the convergence is much faster for the
ratio given by (28). This is consistent with findings of other au-
thors [7], [9], [10]. In the above example, the asymptotic value

(a) (b)

Fig. 7. (a) Section of a dispersion diagram. (b) Detail of an area in Fig. 7(a).
The stopband at� mode at 207.675 GHz is only 13-MHz wide, whereas the
neighboring passbands are about 2500-MHz wide.

has been reached already at rad because a
higher choice, i.e., , gave an identical numerical result,
i.e., rad.

Keeping the choice , we can evaluate the
whole aggregate dispersion diagram in the allowed frequency
region of MHz MHz. It consists of
111 passbands, i.e., dispersion curves. Fig. 6(a) shows a section
of the aggregate dispersion diagram starting at 3100 MHz.
Notice the smooth modulation in the passband–stopband
bandwidths. The bandwidths increase with frequency and reach
maximum at MHz ( mode)– MHz
(zero mode) MHz. The narrowest stopband is

MHz (zero mode)– MHz (zero
mode) MHz. As the frequency increases further,
the passband width decreases, reaching the minimum at

MHz ( mode)– MHz (zero mode)
MHz, and the stopband width reaches maximum at

MHz ( mode)– MHz ( mode)
MHz. The next passband width maximum is at

MHz ( mode)– MHz (zero mode)
MHz and it is about 400 MHz apart from the previous

maximum. The character of dispersion curves changes too.
The narrow passband curves have a sine-like shape, whereas
the wide passband curves are practically straight lines, except
in the neighborhoods of the zero andmodes. The narrow
passband and the wide passband areas zoomed are shown in
Fig. 6(b) and (c), respectively. The character of the bandwidth
modulation in the aggregate depends on the dimensions of the
structure.

As the second example, we consider a model of a “mul-
tichannel communication line.” It is a hollow cylindrical
copper conductor, a copper tubing, with the outside diameter
of 3 mm. The inside diameter changes stepwise between
2 and 1.8 mm every 20 mm: mm, mm,
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and mm. The structure is shallow and the
frequency range in which the presented theory is valid is

GHz GHz. A section of the aggregate
dispersion diagram is shown in Fig. 7(a). Fig. 7(b) shows a
part of the diagram zoomed. The bandwidth modulation is
less pronounced than in the previous example. The dispersion
curves are quite linear, with the exception of the neighbor-
hoods of the zero and modes. We have approximately

or
with some constants and . The group velocity of the
signal within a channel is then practically independent of
frequency: . This means
that a signal with a bandwidth within a channel, propagating
along the line, will not disperse.

VII. CONCLUSION

For long cell waveguide structures with stepwise constant
circular cross section, the subdivision by transverse matching
planes is the most economical one. In this way, the area of the
matching planes represents only a small fraction of the entire
waveguide boundary. It also naturally creates a chain of cylin-
drical cavities coupled by two-dimensional (i.e., infinitely thin)
coupling elements—the discontinuities themselves.

The theory presented in this paper allows one to evaluate
the phase shift per cell of induced modes by an explicit
formula in long cell periodic structures in a frequency region
restricted to the first propagating mode in subregion I. Exten-
sion of the frequency range by including the second propagating
mode in subregion I would lead to a submatrix of (15), con-
taining the phase shift per cell of no more then the fourth
order. Thus, the algebraic resolution of (14) would, in principle,
still be possible.
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