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Accuracy of the Method of Moments for Scattering
by a Cylinder

Karl F. Warnick and Weng Cho Chewellow, IEEE

Abstract—\We study the accuracy and convergence of the Sobolev norms and accurate computation of residuals in order
method of moments for numerical scattering computations for to bound the solution error.

an important benchmark geometry: the infinite circular cylinder. As a consequence of the lack of a satisfactory convergence
From the spectral decomposition of the electric-field integral - .
equation for this scatterer, we determine the condition number Fheory forlarge §Catter|ng problems, pumencal methods are val-
of the moment matrix and the dependence of solution error on idated by checking test cases for which exact or tabulated solu-
the choice of basis functions, discretization density, polarization tions are available. Although this type of verification can pro-
of the incident field, and the numerical quadrature rule used vide reasonable confidence of accuracy over classes of similar
to evaluate moment-matrix elements. The analysis is caried geattarer geometries, it yields only a limited understanding of
out for both the TM polarization (weakly singular kernel) and . . .
TE polarization (hypersingular kernel). These results provide the underlylng causes 9f S(_)IU'F'On Sl a.nd condmonlnumber
insights into empirical observations of the convergence behavior growth. Without theoretical insight, numerical observations for
of numerical methods in computational electromagnetics. test cases can be extrapolated only heuristically to more general
Index Terms—Boundary integral equations, electromagnetic problems of practlcal Inte_rest. .
scattering, error analysis, moment methods, numerical analysis. In order to illustrate the influences of scatterer size and geom-
etry on the behavior of surface integral-equation methods, and
to better understand how benchmark results generalize to more
complex problems, we study the accuracy of the method of mo-
UMERICAL methods based on integral equations haveents applied to the electric-field integral equation (EFIE) for
enjoyed wide use in computational electromagnetics fan infinite circular cylinder from a theoretical point-of-view. For
many years, and the introduction of techniques for fast evaluhe cylinder, the spectrum of the EFIE is known [12]. We obtain
tion of interactions has greatly extended the range of probleithe spectrum of the discretized operator, and thereby determine
that can be analyzed using integral equation solvers [1]. Desgie condition number of the moment matrix and the solution
the increasing importance of these methods, the dependencergdr in terms of the choice of basis functions, the discretiza-
solution accuracy on the discretization scheme and the gedinn density, and the numerical quadrature rule used to evaluate
etry of the scatterer remains poorly understood. In this papgrpment-matrix elements. Results are given for both the TM po-
we study the convergence of the method of moments for a prization (weakly singular kernel) and TE polarization (hyper-
fectly conducting cylinder. singular kernel). Spectral analyses of the EFIE have also been
Asymptotic error and condition number estimates for thgiven for an infinite strip and cavity [13], [14]. The dependence
boundary-element method applied to the Helmholtz proble@i the conditioning of the moment matrix on the inner product
have been obtained through the theory of fractional ordeged to discretize the EFIE has been studied for the cylinder
Sobolev spaces [2]-[7]. These results quantify the dependenséng a similar approach [15].
of solution convergence rates and operator conditioning on
the discretization length, in the limit of infinite refinement. II. TM POLARIZATION
Due to the large electrical sizes of problems of interest in
computatiqnal e!eptrorpagngtic;, howevgr, asymptotic thepri ‘S(x) incident on a two-dimensional perfectly conducting scat-
alone are insufficient in validating and improving numeric erer is
methods since the dependence of convergence rates on the size
and global geometry of the scatterer must be understood as
well. A posterioriresidual-based error bounds have also been
developed [8]-[10], and have been applied to adaptive grid ,
algorithms [11]. These bounds require numerical evaluation §fi€"e 5 denotes the surface of the scatterés, is the
wavenumber of the incident field, ang is the character-
istic impedance of the surrounding medium. The kernel is
(x,x') = iHSV (ko|x — x'|)/4, whereH{" (z) is the Hankel
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. INTRODUCTION

The EFIE for a TM-polarized time—harmonic electric field

—ikon/sds’g(x, x)J(x') = E'(x) (1)
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to the total number of unknown¥. The continuous integral From this expression, we can identify
operator is thereby reduced to the moment matrix

Ay = TR0 S (o) HEY, (o)
Zpun = —ikonh™? // dsds’ g(x, x Yt (xX)fn(x) (2) 2 =
XT—q—sNFq-i—sN (9)
wherel is the element width or discretization length. The pa- ) " ) ) ,
rameterh determines the number of degrees of freedom. In tHiS the eigenvalue ef®. By making use of this result, we will
paper, we employ the dimensionless discretization density §fftermine the condition number of the moment matrix and the
unknowns per wavelength, = A\/h to characterize the fine- solution error introduced by d|scret|;at|on.
ness of the mesh. In the limit asN — oo, the Fourier transform%; and F;

The results of this paper are based on determining the spBEE0Me unity, and only the= 0 term of the summation in (9)
trum of Z,.,,, for the special case of a cylindrical scatterer. ThEEMains. Thus, the eigenvalues of the moment matrix are of the

kernel of the EFIE can be expanded in cylindrical modes usidg™
oo ‘ A=A+ 4, (10)
HP (holx = X)) = 3" ko) By (koa)e™ =) (3) G _
oo where\) = (nrkoa/2)Jy(koa)Hy ’ (koa) is the corresponding
_ ) ) eigenvalue of the continuous integral equation and arises from
wherex andx’ lie on a circle of radius: and¢ and¢’ are the the s — 0 term. The deviation of _, F, from unity in thes =
corresponding angles in_ the cylindri_cal coor(_jinate system. \Waerm of (9), together with the remaining terms of the sum,
assume that the expansion and testing functions are of the fg§fgduce a spectral error terw, due to the discretization of the

fn(@) = f(¢ — ¢n) andt, (@) = (¢ — ¢ ), and that the nodes continuous integral operator. The spectral error will be studied
are evenly spaced so that = (n—1/2)6y, wherefy = 2r/N.  fyrther in Section I1-B.

In terms of cylindrical modes, the moment matrix becomes
A. Condition Number

Dnn = nmhoa Z Ji(koa) HY (ko) T 1@ =n) The difficulty of solving a linear system with the matiis
2N I=—co determined in large part by the condition number of the ma-
(4) trix. The condition number(Z) in the L, norm is the ratio
of the largest and smallest singular values of the matrix. Since
whereT; is the Fourier transforms af¢) the eigenfunctions of the EFIE for the cylinder are complete,
1 ‘ and the operator can be diagonalized by a unitary transforma-
T, = % d(/Jt(d))e_”‘?5 (5) tion, it is a normal operator (see [16]). Equation (4) shows that

for a regular discretization, the discretized EFIE has a complete
evaluated at and normalized byt /6y, and F; is defined simi- system of eigenvectors, and is a normal matrix. The singular
larly. values of a normal matrix are equal to the magnitudes of the

From (4), the eigenvectors of the moment matrix are of tieigenvalues, thus, we can obtain the condition number from the
form 7%~ whereq is an integer. The corresponding eigenextremal eigenvalues.

values can be determined from As a function ofyg, |Jq(k0a)H§1)(k0a)| is oscillatory and in-

N - creasing folq| < koa, and decays monotonically foy| > koa.

Z A L nwkoa Z Jl(koa)H(l)(koa) The maximum value occurs gf| =~ kqa. Using expansions of
ot 2N = ! the Bessel and Hankel functions [17, eq. 8.441 #3, eq. 8.443,

and eq. 8.454], we arrive at

N
XT_IECilqu ei(q—l)an. (6) 62/3 1 —4iv/3
nzzzl J,(WHD (1) ~ E)I(‘T/LZS)\/_)V_Q/?)' (11)

The sum overn can be evaluated using ) ) _
From this, the largest eigenvalue Bfis

EN: ci1Pn = (—1)1 sin(rq) @ \ n2m (1 —iv/3)
n=1

sin(rq/N)’ max = m(’foa)l/g 12)

The right-hand size of (7) is equalte-1)* N if ¢ = sIN, where where we have neglected the small shift due to discretization
s is an integer, and vanishes otherwise. Equation (6) then lggror. This eigenvalue corresponds to a surface-wave mode with

comes spatial frequency:, on the cylinder. For a large cylinder, this
N - current mode radiates fields that travel in a direction tangential
i nnkoa (1) to the surface of the cylinder. The magnitude of the eigenvalue
@99 = | 222 Jyrsn(koa)H ), (K ; S )
nz_:l © 2 S;OO aron (koa)Hy o (koa) grows with the 1/3 power of the electrical size of the cylinder.

By comparison, the eigenvalue of the TM surface-wave mode
X TqesnFypan | €99, (8) Eor ]an[ inf]inite strip grows with the square root of the strip length
13], [14].
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The smallest eigenvalue of the moment matrix is more dif- 2 .
ficult to determine due to the internal resonances associate: Computed
with closed conducting bodies. It is well known that the EFIE — Theory
becomes numerically unstableifa is such that the interior
boundary value problem with the Dirichlet condition on the
surface of the cylinder has a nontrivial solution. In this case,
J4(koa) = 0 for some integey. The corresponding eigenvalue
of the moment matrix is then determined by the discretization %10}
errorA, for the resonant mode, and the moment matrix is highly
ill conditioned.

If kga is such that the condition number of the moment ma-
trix is not dominated by an internal resonance or a near interna
resonance, the smallest eigenvalue arises from the highest fre
quency mode representable in the discrete basis, which cor 4oL
responds tdq| = N/2. Applying the large-order expansion 10
.],,(a:)H,El)(a:) ~ —i(m|)TH+O(r2), v — < [17, eq. 8.452] }
to Apmin = (mrkoa/2)JN/Q(kOa)H](\}/)Q(kOa) leads to the result N _ o '

Fig. 1. Condition number of the moment matrix, TM polarization, point

. testing, and pulse basis function as a function of discretization densifgr a
_wm (13) cylinder of radiustoa = 7, and as a function dfya for n, = 10.

A

)\min =

for the highest order eigenvalue of the moment matrix. As lorgused by inaccurate representation of low spatial frequency
asn, is large enough that this eigenvalue is smaller in magr(ifz| < N/2) eigenfunctions of the kernel.

tude than the lower order eigenvalues, the condition number cari) Polynomial BasesWe now consider the specialization of
be approximated as (16) to the case of piecewise polynomial expansion and testing
functions. The particular basis functions studied here are gen-
erated by convolutions of the pulse function, and are splines of
the type studied in [15]. Ap increases, greater accuracy is ob-
tained byp refinement, for which the basis consists of a set of
by making use of (12) and (13). Since internal resonances cagg®nomials complete up to order but we do not consider this
the magnitude of the smallest eigenvalue of the moment matfe of discretization here.

to decrease, this estimate is, in general, a lower bound for thg=g, the piecewise polynomial bases, the product of the
condition number. This condition number estimate is comparegrier transforms of the testing and expansion functions is
to computed values using the singular value decompositionqupq = sinc’(¢/N). The exponend is equal top + p’ + 2,

w(Z) ~ me\(k a)1/3 ~ 0.6nx(k a)1/3 (14)
~ 34/8r2(2/3) M - 0

the moment matrix in Fig. 1. wherep andp’ are the polynomial orders of the testing and
expansion functions. The pulse function (piecewise constant
B. Spectral Error basis) is of order 0, and the triangle function (piecewise linear

In this section, we study the spectral error introduced Hyasis) is order 1. The delta function (point matching) can also
the discretization of the EFIE, as defined in (10). Using thiee considered in this scheme, and has oréér In practice,
large-order expansionf,,(a:)H,(,l)(x) ~ —i(z|v])7t, the b<4 sincep refinement is generally employed for polynomial

spectral error can be approximated by bases beyond first order.
By making use of (16), the spectral error for these types of
7 T _s F sN H . . .
A, & a—sNLa+sN | AT F,—1] (15) testing and expansion functions is
n i Js+a/N[
. b
) i sgn(s)sin’ 7(s + B, /na
wheren, is the number of unknowns per wavelength. The refg,» ~ — 0 (b) ( bi{ )
) o 27\ wt(s+ By/na)
ative spectral errokl, = A, /)X is 1 570
. b
sin(m 8, /nx)
i77 T—q—sNFq-i—sN + |:4 -1 (17)
E,~— T ,F,—1. (16 e /n
¢ 209 5220 |s +q/N| Tt (16) o/

wheref, = g/(koa) is the normalized spatial frequency of the
The first term of this expression is determined by the asymptotjith mode. Fig. 2 shows the magnitude of the relative spectral
behavior of the spectral representation of the kernel, whichasror for a cylinder with a one-wavelength radius and a dis-
associated with the singularity of the Green’s funcijdr, x’)  cretization density of.y = 10. The expression fof, ; is
atx = x’. This contribution to£, might be called a “sam- modified slightly for theb = 0 case, as described below. For
pling error” since it arises from aliasing of high spatial fresmall 3, /nx, the spectral error increases with increasing poly-
quency(lg| > N/2) components of the kernel. The secondiomial order of the basis functions. As will be shown in Sec-
term7_,F, — 1 is the approximation error or smoothing errotion II-C, the influence of the spectral error on the current solu-
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0.25 . , . } For pulse expansion functi_ons and point testibg= 1), the
spectral error for smafB, /n is
0.2k . ‘ | B~ 1.81'77[32 3 7r2[3§ (20)
N © n3A 6n3
_0.15¢ : /T where the constant i%((3)/2 ~ 1.8 and{(z) is the Riemann
Lu?; o i zeta function. For point testing and triangle expansion functions
T odl g O or pulse testing and expansion functididas= 2), the spectral
' ) error is
: / 1.2in3% w2p32
0.05¢ S : 1 Eyo~— £ _ 1 21
=TT N / 0.2 n?)’\)\g 371%\ (1)
0 i . where the constant i&(3) ~ 1.2. For all three discretizations,
0 0.1 0.2 B/ 0.3 0.4 0.5 the sampling error is third order i, * and the smoothing error
A is second order. Fdr > 2, the sampling-error term becomes
higher order irn;1 asb increases. The smoothing error remains
Fig. 2. Relative spectral errokopa = 2w, m, = 10 in terms of ; ; -
Bq/nx = ¢g/N, whereg, is the spatial frequency of thgth eigenfunction second order, but its magthde grov_vs with
relative tok,. Solid line:b = 0 (point matching and expansian = 1/3). 2) Quadrature Error: The expressions for the spectral error

Dashed lineb = 1 (point matching and piecewise constant basis). Dotted lin@btained in the previous section were based on the assumption of

b = 2 (point matching and piecewise linear basis). The spectral error is Smé&act integration of the moment-matrix elemefts,,. In prac-

for eigenfunctions with low spatial frequency, and is larger near the Nyquist . ’

frequency of the meshy, = +n,/2). tice, numerical quadrature rules are employed to evaluate the
matrix elements. The effect of approximate integration can be

tion error is strongest fdg3, | < 1, which, in Fig. 2, corresponds taken into account in (16) by replacing the continuous integral

t0 B, /nx < 0.1. in the Fourier transform of the expansion functif{@) with the

For theb = 0 discretization, the leading order term of théluadrature rule so thaf, becomes

sampling error can be made to vanish by a proper choice of LM

the locations of the delta functions on each element of the dis- Fyn = — Z wp f(€p)e 16 (22)

cretization. Due to the singularity of the kernel, the testing and to ot

expansion points cannot coincide. In order to obtain finite mo- i

ment-matrix elements, their relative locations must be shiftef"eré M is the order of the quadrature rule and are the

We take the testing function to 5) and the expansion func- Weights corresponding to the abscisgasThe Fourier trans-

tion to bed (¢ + by /2)/2+ 8(¢— abo/2) /2, where the param- form T, of the testing f_unctlom(¢) is mod|f|eo! S|m|Iar_Iy.

etera specifies the relative shift of the testing and expansion "0 the M-point first-order Riemann integration rule,

points. In this casel”_, F, = cos(arq/N). For smallg, /na. the weights arew,, = é = #y/M and the ab_scissas are
the spectral error evaluates to &, = (n— 1/2)6 — 65/2. In the case of piecewise constant

expansion functiongb = 1), F, »; becomes the periodic sinc

__ inln[2sin(am/2)| function
©e TAAY . g
‘ o F, N (23)
U { 2 o5 =
- g {0+ 28 | an(a) e = —
471?)’\)\2 a 4 M sin YN
+a7r92(oc)+gg(a)} } The maxima ofF, 5, lie at ¢ = MNr, wherer =
5 9.9 0,+£1,42,.... Thus, for smallg, the terms of the summation
_ " "4 (18) oversin or whichs = M yield the leading contribution
motf in (16) for whichs = M+ yield the leadi ibuti
2n3 to the sampling error. SiNC&, ;v 2 ~ (—1)"M+D) for these
where g.(z) = i"FL[Lin(e™) — (—1)"Lin(c-i™)] and ©'MS We find that
Li,,(z) is the polylogarithm function of ordet. In obtaining 1) in (—=1)r(M+D)
this result, we have included the third-order term of the expan- Egm = T 2na N0 Z | M| (24)
sion J,(2)H () ~ —i/(x|v]) — iz?/(2x|v|?) in (9). The A0
leading order sampling-error term of (18) vanishes for a shift A/ is even, the sum over is finite and can be evaluated in
of & = 1/3. In this case, the spectral error becomes closed form, and the sampling error becomes
in (0.2 + 1.5[33) 7r2[33 55 inln2
~— - . ~ 25
Euo S T S 3 g )

The first term represents sampling error and the second ternfiassmall 3,. The quadrature rule also has a small effect on the
the smoothing error. smoothing error term of the spectral error, but the additional
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contribution is of the same order i), as the smoothing error
for exact integration.

The quadrature error contribution (25) is first ordemiﬁl,
and thus, can dominate the higher order spectral error terms
(16) for small values off. In order for the quadrature error to
be as small as the sampling error in (20) for&he 1 discretiza-
tion, M must increase as}. Commonly, matrix elements near 107}
the singularity of the kernel are evaluated using a method such i
analytical integration of the singularity of the kernel [18], which
reduces the quadrature error significantly. For a single-pointin__
tegration rule, analytical integration of the diagonal matrix ele- 10
ments reduces the quadrature error roughly by a factor of thre
for a single-point integration rule [14].

o Current Error
10 o s Scatt. Ampl. Error |
Theory

Error

C. Current Error 10°

Once the spectral error due to discretization is known, the
surface current solution error can be determined. If the inci-
dent field is a plane wave traveling along theaxis, then the Fig. 3. Relative rms surface current error and backscattering amplitude error
weights J,, no= 1,2,...,N, of the expaﬂSiQr‘ fun_ctions forIﬁLSiﬁyn"s”Sv?{ﬁ I,“Sin"tot'ié'ﬁﬁgf’m“ciréhf gcrirc?rleige;velzgncdog?gaeT Sc(hpeargzls? r;he
the approximate current are obtained by solving a linear systegaitering amplitude error is third order.
with a vector having components

] " if N > koa, which is equivalent to the conditiom, > 1. We
E, = / dt, (p)etorco? (26) thus arrive at
. , . L . - 071/2
as the rlght-hand side. Usmg the cylindrical mode expansion of 9 Eél) 4T (F,—1)
a plane waveF’ can be written as [l e — > o (32)
nrroa | S= | Hy ' (koa)(14 E,)
i .9 iqpn
B = Z i1y (koa)L-qe™. (27) WhereE(gl) is the sampling-error term of (16). This result shows
= that to leading order, the approximate current solution is not af-
Applying Z ! to this expression gives fected by the smoothing error introduced by the testing func-
tions. This occurs because the left- and right-hand sides of the
J i i1J,(koa)T_, Gitn (28) EFIE in (1) are tested using the same set of functions, and the
" e Aq effect of the testing functions cancels for each mode.

A comparison of this result with numerical experiments is
since each term of the sum in (27) is an eigenvectdZ.ofhe shown in Fig. 3. The approximate expression (20) is employed

exact current at the angl, on the cylinder is for the sampling error. The number of integration points is suf-
ficiently large that the quadrature error (25) is negligible for this
o = 10Jy(koa) 4. range ofny.
= _z: A9 c (29) Due to the smoothness of the current solution for a smooth in-
= cident field, the current error is determined by the spectral error
The current erroNJ,, = J? — J, is then for modes of low spatial frequency, i.e., néa and smaller.

- This is evident in (32) since the magnitude of the Hankel func-

AJ. — 2 Z 1+ E, T ciatn (30) tion grows rapidly with the index when the index is larger than
" nrkoa = H§1>(k0a)(1 +E,) the argument, and terms of the summation in (32) are negligible

for |¢| > koa. Modes with higher spatial frequency contribute
at the node with anglé,,. to the error if the incident field on the surface of the cylinder

Using this result for the error at each node, the rms curreigtless smooth than a plane wave. If the incident field is pro-
error becomes (31), shown at the bottom of this page.Since theced by a line source located at a distasif®m the cylinder,
magnitude Ole(,l)(a:) grows rapidly with|| when|i/| > |z|, for example, then it can be shown that the current error depends
theg # 0 terms of the summation overin (31) are negligible on the spectral errak, for roughly |¢g| < 2a/d, for smalld,

||AJ|| = 2 i i '[:S]\T(l + Eq B Tf(])(l + E;—I—S]\T - Tiq—s]\’) Ve
- nrkoa

b e HiY (Roa) HE,  (koa)(1+ E)(1 + B, n)

(31)
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which exceedg:,a when the line source is closer thagix to whereE? is the scattered field, and is related to the scattering

the cylinder. width by o = (4/k)|S(¢%, ¢°)|%. S(¢%, $°) can be obtained
We consider briefly the behavior of the current errdtgé is  from the approximate current, on the scatterer using

such that the cylinder has an internal resonance or a nontrivial fa N

solution to the interior Dirichlet problem. For the continuous i sy MTRoG s *

EFIE, both the resonant eigenvalue and amplitude of the corre- S ¢7) = 2N nz: En" I (35)

sponding mode in the incident field vanish togetherk@sap- ) ) .

proaches a resonance, leading to a finite limit for the amplituf1€re £y, is the scattered plane wave, discretized on the surface

of that mode in the exact surface current. For the discretized #-the conductor using the expansion functighgs). _

tegral equation, sampling error leads to a nonzero value for theBY Mmaking use of (28), the approximate bistatic scattering

eigenvalue of the resonant mode at the internal resonance. #Aplitude for the cylinder becomes

=1

amplituQe of the resonant mode in the discretized incident field o0 J,(koa)F,T_ ‘
@7)isE, = 3, _o(=1) NI n(koa)T_—_sn. Since S(¢)=— > (13 =1 had (36)
Jn(x) decays exponentially 48| increases/, . is small for =—o0 Hy " (koa)(1+ Ey)

s #0,s0 thatEg is negligible in magnitude relative to the sam
pling error. When the inverse of the moment matrix is applied
Ei, = Egeiwn, the resulting approximate current solution is
missing the resonant mode. If the discretization error is near the g Jy (koa) Eél)
machine precision, then rounding error leads to the corruption AS(¢) = — Z ) 1+ E
of the amplitudes of other modes as well. 1==o0 Hy" (Koa) !
Discretization shifts the location of an exact internal res

where¢ = ¢* — ¢*. Subtracting the exact value of the scattering
mplitude gives

I (37)

t th lind function bfa. At ical or the error, whereEél) is the sampling-error component of
tnanccl-:‘ ot the cylin tﬁr asa untc |ont ) C;]' a qufmgtr|ca 'nd'.t.the spectral errof,. This result shows that to leading order,
ernal resonance, the moment matrix has an infinite conditign, smoothing error terrf_, I, — 1 of the spectral erroE,

number, and direct linear system solution methods can fail dH es not contribute to the scattering amplitude error. The relative

to rounding error. It can also be seen that the nur_ner!cal mter% or for the backscattering amplitudé0) is shown in Fig. 3.
resonances lie at real valuesigfz, so that discretization does

not lead to complex resonancesylfs a zero of/,(x), then for

. lll. TE POLARIZATION
koa neary, the eigenvalue of the EFIE of ordercan be ex-

panded as For a TE-polarized incident field, the EFIE becomes
T bt
3 = i XY, () o ) @y it | [ a5 o x)302)
1 )
From (15), the sampling errak, introduced by discretization + PV/ ds' g(x, x)V' - I(x)| = E;(¢) (38)
0 S

is nearly pure imaginary. In order for the eigenva.k@eir A, of

the moment matrix to vanish, (33) shows that — x must be wheret is a unit tangent vector anl{x) is the surface current

real. vector on the scatterer. The EFIE for the TE polarization differs
At an exact internal resonance, since the resonant moderism the TM EFIE in that the kernel is hypersingular due to the

missing from the moment-method solution, the current error igesence of the derivative operators in the second term on the

large. Scattering amplitudes and cross sections can still be ggt-hand side of (38).

curate, however, since an internally resonant mode does not rafhe TE EFIE can be discretized by employing testing and

diate outside the scatterer. At the numerical internal resonanggpansion functions in the same manner as for the TM case.

where the moment matrix is singular, direct solution methodgsing the expansion (3), the moment-matrix elements can be
can lead to significant solution error for other modes as wellxpressed as

In this case, the conjugate gradient (CG) iterative solver can be

applied to the normal forfZJ = Z'E of the linear system. 7 — nkoa // dep dg’ tn(p) Z'Jz(koa)Hz(l)(koa)

The amplitude of the resonant mode in the new right-hand side 460 7

is zero since the corresponding eigenvalue is zero and, thus, the il Ofn(P) oo
iterative procedure is not significantly affected by the vanishing X [COS (¢ — @) fuld) (hoa)?  0¢ } =)
eigenvalue. (39)
D. Scattering Amplitude Error for the circular cylinder. Expandingps(¢ — ¢') into exponen-

For a two-dimensional object, the bistatic scattering ampﬁ'—als’ integrating the second term by parts, and making use of the

tude for a plane wave traveling at an angleffdue to an inci- recursion relations for the derivatives of the Bessel and Hankel

dent plane wave is defined by [19] functions yields
nmw

koa ’ .
[oi Zon = =5 2 ' T{(koa) HY (koa)T_ Fy'm=on)
ES(p) . 4 eikops(d)iad)s), p— 0 (34) ;
mkop

(40)
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By proceeding as in the previous section, the eigenvalu&s of

are found to be 04

oo 0.35r
nrkoa 1y
Ag = 5 Z J(/H-SN(kOa)H;-k)sN(kOa)T—q—SNFq-I-SN

S=—0C

0.31
(41) 0.25r

for the TE polarization. This expression is identical to (9), ex- ;?;0.2,
cept that the Bessel and Hankel functions are replaced with the =
first derivatives. The eigenvalues of the continuous EFIE ari 0157

N0 = (nrkoa/2)J(koa) H" (koa). ol

A. Condition Number 0.05}

Since| J{,(a:)H,Sl), (z)| grows agr| becomes large, in contrast
to the TM case, the modes with high spatial frequencies hav 0
the largest eigenvalues for the TE polarization. The maximun
eigenvalue ofZ corresponds tqg = N/2 and is

. Fig. 4. Relative spectral error TE polarizatibpe = 27, n, = 10 in terms
A L mna (42) of 8,/nx = ¢/N. Solid line:b = 1 (point matching and piecewise constant
max — basis). Dashed lindi = 2 (point matching and piecewise linear basis—=
1/3). Dotted line:b = 3 (piecewise constant testing functions and piecewise
linear basis).

where we have made use #f(zx)HS" (z) ~ i|v|/(7z2), v —
oo. Near internal resonances lead to small eigenvaluesg:ifs ) ) )
such that]{l(koa) is small for somey. These small eigenvaluesg'ven by (45), vanishes. To obta_lr_l the spectral error for small
dominate the condition number for largga. For values of fa/7x» W& must employ an additional term of the expansion
koa such that internal resonances are not dominant, the smallésie)He" (z) ~ ilv|/(rz?) — iz? /(2x|v]) in (41). This leads
eigenvalues correspond to the modes wWith ~ kqa, which 1O

are the surface-wave modes for the cylinder. In this case, since 0.9in32  72p2

J{,uH,Sl) (v) ~ 0.2(1 4+ 4v/3)v~=*/3 for large|v|, the smallest o1 = T30 T g2 (46)
eigenvalue is AT g

) 13 where the constant %((3)/4 ~ 0.9.
Amin 2= 0.37(1 + 'L\/g) (koa) . (43) For theb = 2 discretization, the diagonal moment-matrix el-
ementZz,,, diverges if the testing point is located at the apex

The resulting condition number estimate is : . . : .
of the triangle expansion function. The testing functions must

K(Z) ~ 0.4nx(koa)*/? (44) be shifted in order for the matrix elements to be finite. Thus, we
o employ the shifted symmetric testing functiéf@+«fy/2)/2+
which is of the same order as the TM result. §(¢p—aby/2)/2. Inthis case, a factor &h[2sin(cr/2)] appears

| in the leading order term of the sampling error. This term van-
B. Speciral Error ishes for a shift of = 1/3, and the total spectral error becomes

From (41), the relative discretization error is ) ) " 5 oo
in (—0.287 +1.58})  «2f2

inn E 2= - (47)
Eq = ;7)\0)\ Z |3 + Q/N|qufsNFq+sN + T,qu -1 ! ni’AS 371%‘
9 570

(45) for small 3,/n.. The constants are.(1/3)/4 ~ 0.2 and
7g2(1/3)/6 + g3(1/3)/2 ~ 1.5.
The current and scattering amplitude errors have the same formkor theb = 3 discretization, the spectral error is
as (32) and (37) for the TM polarization, but the Bessel and 1.8in8% w232
Hankel functions are replaced with their first derivatives. Due 73 34)\0(1 -5 2q
to the growth off " (x) with v for || > |«|, the dependence At X
of the error onk falls off for |g| > koa for the TE polariza- for small3, /n. The constanti8((3)/2 ~ 1.8. Inall cases, the
tion, as occurs for the TM case. Singk" (z) decreases ds| sampling error is third order in} ', and the smoothing error is
approacheg:| from below, however, the current error dependsecond order. The sampling errors for the= 1 andb = 2
more strongly on the spectral error for surface-wave modes wilscretizations depend strongly on the location of the testing
spatial frequencies neéay for the TE polarization. functions, thus, these discretizations are more sensitive to ir-
1) Polynomial Basesif the polynomial basis functions of regular testing than the = 3 discretization. Fig. 4 gives the
Section II-B.1 are used to discretize the TE EFIE, the spectsgectral error foil < b < 3. Current error results for thie= 3
error for theb = 0 discretization does not decreasengsbe- discretization (pulse testing and triangle expansion functions or
comes large, and the solution does not converge. Fdr thd  point testing with piecewise quadratic expansion functions) are
discretization, the leading order term of the spectral error, slsown in Fig. 5.

(48)
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102 . With integration by parts, the quadrature error due to the hy-
R Current Error persingular term of the EFIE is
s Scatt. Ampl. Error -
Theory E(glj)w =1 5 Z Jytsn(koa)
2/{}0@)\(1 520

X H(1+5N(k0a)TiqfsN,J\l (;+5N,J\l (52)

where 1 ,, is the Fourier transform of the derivative of the
pulse function, which is

Ty 1 = 25 sin o (53)
Expanding the Bessel and Hankel functions in (52) and evalu-
107 . ating the sum oves leads to
10° 10' 10° ,
™ ) npy
E yy=— N3 In [2 cos(amM/2)] (54)

Fig. 5. Relative rms surface current error and backscattering amplitude error
for a cylinder, TE polarizatioroa = =, and theb = 3 discretization scheme fgr small 3,, which is of the same order as (25) for the weakly
(pulse/triangle or point/quadratic testing and expansion functions). . . .
singular kernel. The total sampling error for the TE polariza-
tion is given by the sum of (25) and (54). Although the inte-
2) Quadrature Error: Since the kernel of the EFIE for thegrand of the hypersingular term has the same spectral content
TE polarization has a stronger singularity than in the TM caseijth or without integration by parts, the two formulations differ
the hypersingular term of (38) is often integrated by parts tay a vanishing integral of a total derivative. When a numerical
reduce the singularity before application of a numerical quadmiadrature rule is employed, this integral no longer vanishes,
ture rule. We consider here the spectral error introduced by tlvbich accounts for the difference between (51) and (54).
quadrature rule with and without integration by parts for the case
of pulse testing and triangle expansion functighs= 3) with I\V. CONCLUSION
the M-point ||jteg_rat|oq rule Qescrlbed n Sectlorl II—B.?. From the spectrum of the discretized electric-field integral
If the EFIE is discretized directly as in (38), without integra- ion f ttering by a cvlinder. we have estimated the con-
tion by parts, the sampling error arising from the hypersingulgg.uatlon orsca g byacylinder, .
term is given by |t|onlnumber ofthe moment matr!x and determined the spectral
error introduced by the discretization scheme. For the TM polar-
) ization, the largest eigenvalue is determined by the surface-wave
;1})\4 _ 2/;”77;0 (@4 sN)Jgsan (Koa) mode, and the smallest eigenvalue is_produqed either by the
084 120 highest frequency mode representable in the discrete basis or an
. . y internally resonant mode. For the TE polarization, the largest
Hyron (koa)T-g-avat Fppon - (49) eigenvalue is associated with the highest frequency mode, and

In this expression[, ,; arises from the pulse testing function,the smallest eigenvalue is produced by the surface-wave mode

and is equal to the periodic sinc function of (28}, ,, is the or an internal resonance. For both polarizations, neglecting the

Fourier transform of the derivative of the triangle function, sanifect of internal resonances, the condition number grows with
pled using theVZ-point quadrature rule, which is the 1/3 power pf _the electrical size of the cylinder. _ _
The total shift in the spectrum introduced by the discretiza-

tion of the EFIE divides naturally into two contributions, which

.. Tq X . )
) ioea/N 2isin N we refer to here as sampling and smoothing errors. The first
Fy =™ 9—7rq (50) type of error is due to aliasing of high-frequency components
08I TN of the kernel of the EFIE, and the second arises from inac-

curate testing and expansion of low-frequency components of
wherea specifies the relative shift of the testing and expansiGRe kernel. We evaluate the spectral error for several types of
functions. Employing a large-order expansion®{x)H.(z)  piecewise polynomial testing and expansion functions and show
and evaluating the summation ovefor small 3, yields that, for these discretization schemes, the sampling error is third
order, whereas the smoothing error is second order. The use of
numerical quadrature to evaluate moment-matrix elements leads
to an additional first-order sampling-error contribution. The rms
current error on the cylinder at the nodes of the discretization is
For« = 0, the leading term of the error given by (51) vanishesletermined by both the sampling error and the smoothing error
and the error becomes higher orderm'ﬁl. This result shows due to the expansion functions used to represent the current.
that direct integration of the hypersingular term causes senshe error in scattering amplitudes computed from the current
tivity to irregular testing locations. depends on leading order only on the sampling error.

1) _ P
o= 2)0

tan(anM/2). (51)
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These results on the convergence of the method of momentss] K. F. Warnick and W. C. Chew, “Accuracy and conditioning of the

for the cylinder provide insight into the behavior of numer- ~ method of moments for the 2D EFIETSth Annu. Rev. Progress Appl.
ical hods f l d . Si h Comput. Electromagpp. 198-204, Mar. 15-20, 1999.

Ica methods Oor more comp Icate geom_etl’.les. Ince the SaMrg) —— “On the spectrum of the electric field integral equation and the
pling-error contribution to the spectral shift introduced by dis- convergence of the moment method,” Univ. lllinois at Urbana Cam-
cretization is determined locally by the singularity of the kernel, _ Paign, Urbana, IL, Tech. Rep. CCEM-24-99, 1999.

it is relatively independent of the global properties of a scat-

15] A. G. Dallas, G. C. Hsiao, and R. E. Kleinman, “Observations on the
numerical stability of the Galerkin method&dv. Comput. Math.vol.

terer. If the large-scale geometry is such that the spectrum con- 9, pp. 37-67, 1998.
tains small low-order eigenva'uesy the relative Spectra' error béle] A.G. Ramm, “Eigenfunction expansion of a discrete spectrum in diffrac-

tion problems, Radiotekh. Elektronvol. 18, pp. 364—369, 1973.

comes Igrgg, and moment-method solutions degrade' For ﬂﬂ?]] I. S. Gradshteyn and I. M. RyzhiRable of Integrals, Series, and Prod-
TE polarization, surface —wave modes cause the EFIE to have  ucts 5thed. New York: Academic, 1994.
small eigenvalues, which decrease in magnitude as the size Bf! S- Wandzura, “Accuracy in computation of matrix elements of singular

kernels,” in11th Annu. Rev. Progress Appl. Comput. Electromegj.

_the scatterer_ increases. For resonance-regime _scatter_ers, (NON- || "Monterey, CA, Mar. 20-25, 1995, pp. 1170-1176.
internal) cavity-type resonances are also associated with smaib] J. J. Bowman, T. B. A. Senior, and P. L. E. Uslendtgctromagnetic
eigenvalues of the integral equations of scattering, and large so- and Acoustic Scattering by Simple Shapeliew York: Hemisphere,

lution errors can occur in this case as well.
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