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Accuracy of the Method of Moments for Scattering
by a Cylinder

Karl F. Warnick and Weng Cho Chew, Fellow, IEEE

Abstract—We study the accuracy and convergence of the
method of moments for numerical scattering computations for
an important benchmark geometry: the infinite circular cylinder.
From the spectral decomposition of the electric-field integral
equation for this scatterer, we determine the condition number
of the moment matrix and the dependence of solution error on
the choice of basis functions, discretization density, polarization
of the incident field, and the numerical quadrature rule used
to evaluate moment-matrix elements. The analysis is carried
out for both the TM polarization (weakly singular kernel) and
TE polarization (hypersingular kernel). These results provide
insights into empirical observations of the convergence behavior
of numerical methods in computational electromagnetics.

Index Terms—Boundary integral equations, electromagnetic
scattering, error analysis, moment methods, numerical analysis.

I. INTRODUCTION

NUMERICAL methods based on integral equations have
enjoyed wide use in computational electromagnetics for

many years, and the introduction of techniques for fast evalua-
tion of interactions has greatly extended the range of problems
that can be analyzed using integral equation solvers [1]. Despite
the increasing importance of these methods, the dependence of
solution accuracy on the discretization scheme and the geom-
etry of the scatterer remains poorly understood. In this paper,
we study the convergence of the method of moments for a per-
fectly conducting cylinder.

Asymptotic error and condition number estimates for the
boundary-element method applied to the Helmholtz problem
have been obtained through the theory of fractional order
Sobolev spaces [2]–[7]. These results quantify the dependence
of solution convergence rates and operator conditioning on
the discretization length, in the limit of infinite refinement.
Due to the large electrical sizes of problems of interest in
computational electromagnetics, however, asymptotic theories
alone are insufficient in validating and improving numerical
methods since the dependence of convergence rates on the size
and global geometry of the scatterer must be understood as
well. A posteriori residual-based error bounds have also been
developed [8]–[10], and have been applied to adaptive grid
algorithms [11]. These bounds require numerical evaluation of
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Sobolev norms and accurate computation of residuals in order
to bound the solution error.

As a consequence of the lack of a satisfactory convergence
theory for large scattering problems, numerical methods are val-
idated by checking test cases for which exact or tabulated solu-
tions are available. Although this type of verification can pro-
vide reasonable confidence of accuracy over classes of similar
scatterer geometries, it yields only a limited understanding of
the underlying causes of solution error and condition number
growth. Without theoretical insight, numerical observations for
test cases can be extrapolated only heuristically to more general
problems of practical interest.

In order to illustrate the influences of scatterer size and geom-
etry on the behavior of surface integral-equation methods, and
to better understand how benchmark results generalize to more
complex problems, we study the accuracy of the method of mo-
ments applied to the electric-field integral equation (EFIE) for
an infinite circular cylinder from a theoretical point-of-view. For
the cylinder, the spectrum of the EFIE is known [12]. We obtain
the spectrum of the discretized operator, and thereby determine
the condition number of the moment matrix and the solution
error in terms of the choice of basis functions, the discretiza-
tion density, and the numerical quadrature rule used to evaluate
moment-matrix elements. Results are given for both the TM po-
larization (weakly singular kernel) and TE polarization (hyper-
singular kernel). Spectral analyses of the EFIE have also been
given for an infinite strip and cavity [13], [14]. The dependence
of the conditioning of the moment matrix on the inner product
used to discretize the EFIE has been studied for the cylinder
using a similar approach [15].

II. TM POLARIZATION

The EFIE for a TM-polarized time–harmonic electric field
incident on a two-dimensional perfectly conducting scat-

terer is

(1)

where denotes the surface of the scatterer, is the
wavenumber of the incident field, and is the character-
istic impedance of the surrounding medium. The kernel is

, where is the Hankel
function of the first kind. We discretize the EFIE using the
moment method by approximating the surface current
as a linear combination of expansion functions and
enforcing boundary conditions on the radiated field using the
testing functions , where the index ranges from one
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to the total number of unknowns . The continuous integral
operator is thereby reduced to the moment matrix

(2)

where is the element width or discretization length. The pa-
rameter determines the number of degrees of freedom. In this
paper, we employ the dimensionless discretization density or
unknowns per wavelength to characterize the fine-
ness of the mesh.

The results of this paper are based on determining the spec-
trum of for the special case of a cylindrical scatterer. The
kernel of the EFIE can be expanded in cylindrical modes using

(3)

where and lie on a circle of radius and and are the
corresponding angles in the cylindrical coordinate system. We
assume that the expansion and testing functions are of the form

and , and that the nodes
are evenly spaced so that , where .
In terms of cylindrical modes, the moment matrix becomes

(4)

where is the Fourier transforms of

(5)

evaluated at and normalized by , and is defined simi-
larly.

From (4), the eigenvectors of the moment matrix are of the
form , where is an integer. The corresponding eigen-
values can be determined from

(6)

The sum over can be evaluated using

(7)

The right-hand size of (7) is equal to if , where
is an integer, and vanishes otherwise. Equation (6) then be-

comes

(8)

From this expression, we can identify

(9)

as the eigenvalue of . By making use of this result, we will
determine the condition number of the moment matrix and the
solution error introduced by discretization.

In the limit as , the Fourier transforms and
become unity, and only the term of the summation in (9)
remains. Thus, the eigenvalues of the moment matrix are of the
form

(10)

where is the corresponding
eigenvalue of the continuous integral equation and arises from
the term. The deviation of from unity in the

term of (9), together with the remaining terms of the sum,
produce a spectral error term due to the discretization of the
continuous integral operator. The spectral error will be studied
further in Section II-B.

A. Condition Number

The difficulty of solving a linear system with the matrixis
determined in large part by the condition number of the ma-
trix. The condition number in the norm is the ratio
of the largest and smallest singular values of the matrix. Since
the eigenfunctions of the EFIE for the cylinder are complete,
and the operator can be diagonalized by a unitary transforma-
tion, it is a normal operator (see [16]). Equation (4) shows that
for a regular discretization, the discretized EFIE has a complete
system of eigenvectors, and is a normal matrix. The singular
values of a normal matrix are equal to the magnitudes of the
eigenvalues, thus, we can obtain the condition number from the
extremal eigenvalues.

As a function of , is oscillatory and in-
creasing for , and decays monotonically for .
The maximum value occurs at . Using expansions of
the Bessel and Hankel functions [17, eq. 8.441 #3, eq. 8.443,
and eq. 8.454], we arrive at

(11)

From this, the largest eigenvalue ofis

(12)

where we have neglected the small shift due to discretization
error. This eigenvalue corresponds to a surface-wave mode with
spatial frequency on the cylinder. For a large cylinder, this
current mode radiates fields that travel in a direction tangential
to the surface of the cylinder. The magnitude of the eigenvalue
grows with the 1/3 power of the electrical size of the cylinder.
By comparison, the eigenvalue of the TM surface-wave mode
for an infinite strip grows with the square root of the strip length
[13], [14].
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The smallest eigenvalue of the moment matrix is more dif-
ficult to determine due to the internal resonances associated
with closed conducting bodies. It is well known that the EFIE
becomes numerically unstable if is such that the interior
boundary value problem with the Dirichlet condition on the
surface of the cylinder has a nontrivial solution. In this case,

for some integer . The corresponding eigenvalue
of the moment matrix is then determined by the discretization
error for the resonant mode, and the moment matrix is highly
ill conditioned.

If is such that the condition number of the moment ma-
trix is not dominated by an internal resonance or a near internal
resonance, the smallest eigenvalue arises from the highest fre-
quency mode representable in the discrete basis, which cor-
responds to . Applying the large-order expansion

[17, eq. 8.452]
to leads to the result

(13)

for the highest order eigenvalue of the moment matrix. As long
as is large enough that this eigenvalue is smaller in magni-
tude than the lower order eigenvalues, the condition number can
be approximated as

(14)

by making use of (12) and (13). Since internal resonances cause
the magnitude of the smallest eigenvalue of the moment matrix
to decrease, this estimate is, in general, a lower bound for the
condition number. This condition number estimate is compared
to computed values using the singular value decomposition of
the moment matrix in Fig. 1.

B. Spectral Error

In this section, we study the spectral error introduced by
the discretization of the EFIE, as defined in (10). Using the
large-order expansion , the
spectral error can be approximated by

(15)

where is the number of unknowns per wavelength. The rel-
ative spectral error is

(16)

The first term of this expression is determined by the asymptotic
behavior of the spectral representation of the kernel, which is
associated with the singularity of the Green’s function
at . This contribution to might be called a “sam-
pling error” since it arises from aliasing of high spatial fre-
quency components of the kernel. The second
term is the approximation error or smoothing error

Fig. 1. Condition number of the moment matrix, TM polarization, point
testing, and pulse basis function as a function of discretization densityn for a
cylinder of radiusk a = �, and as a function ofk a for n = 10.

caused by inaccurate representation of low spatial frequency
eigenfunctions of the kernel.

1) Polynomial Bases:We now consider the specialization of
(16) to the case of piecewise polynomial expansion and testing
functions. The particular basis functions studied here are gen-
erated by convolutions of the pulse function, and are splines of
the type studied in [15]. As increases, greater accuracy is ob-
tained by refinement, for which the basis consists of a set of
polynomials complete up to order, but we do not consider this
type of discretization here.

For the piecewise polynomial bases, the product of the
Fourier transforms of the testing and expansion functions is

. The exponent is equal to ,
where and are the polynomial orders of the testing and
expansion functions. The pulse function (piecewise constant
basis) is of order 0, and the triangle function (piecewise linear
basis) is order 1. The delta function (point matching) can also
be considered in this scheme, and has order1. In practice,

since refinement is generally employed for polynomial
bases beyond first order.

By making use of (16), the spectral error for these types of
testing and expansion functions is

(17)

where is the normalized spatial frequency of the
th mode. Fig. 2 shows the magnitude of the relative spectral

error for a cylinder with a one-wavelength radius and a dis-
cretization density of . The expression for is
modified slightly for the case, as described below. For
small , the spectral error increases with increasing poly-
nomial order of the basis functions. As will be shown in Sec-
tion II-C, the influence of the spectral error on the current solu-
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Fig. 2. Relative spectral errork a = 2�, n = 10 in terms of
� =n = q=N , where� is the spatial frequency of theqth eigenfunction
relative tok . Solid line: b = 0 (point matching and expansion� = 1=3).
Dashed line:b = 1 (point matching and piecewise constant basis). Dotted line:
b = 2 (point matching and piecewise linear basis). The spectral error is small
for eigenfunctions with low spatial frequency, and is larger near the Nyquist
frequency of the mesh(� = �n =2).

tion error is strongest for , which, in Fig. 2, corresponds
to .

For the discretization, the leading order term of the
sampling error can be made to vanish by a proper choice of
the locations of the delta functions on each element of the dis-
cretization. Due to the singularity of the kernel, the testing and
expansion points cannot coincide. In order to obtain finite mo-
ment-matrix elements, their relative locations must be shifted.
We take the testing function to be and the expansion func-
tion to be , where the param-
eter specifies the relative shift of the testing and expansion
points. In this case, . For small ,
the spectral error evaluates to

(18)

where and
is the polylogarithm function of order. In obtaining

this result, we have included the third-order term of the expan-
sion in (9). The
leading order sampling-error term of (18) vanishes for a shift
of . In this case, the spectral error becomes

(19)

The first term represents sampling error and the second term is
the smoothing error.

For pulse expansion functions and point testing , the
spectral error for small is

(20)

where the constant is and is the Riemann
zeta function. For point testing and triangle expansion functions
or pulse testing and expansion functions , the spectral
error is

(21)

where the constant is . For all three discretizations,
the sampling error is third order in and the smoothing error
is second order. For , the sampling-error term becomes
higher order in as increases. The smoothing error remains
second order, but its magnitude grows with.

2) Quadrature Error: The expressions for the spectral error
obtained in the previous section were based on the assumption of
exact integration of the moment-matrix elements . In prac-
tice, numerical quadrature rules are employed to evaluate the
matrix elements. The effect of approximate integration can be
taken into account in (16) by replacing the continuous integral
in the Fourier transform of the expansion function with the
quadrature rule so that becomes

(22)

where is the order of the quadrature rule and are the
weights corresponding to the abscissas. The Fourier trans-
form of the testing function is modified similarly.

For the -point first-order Riemann integration rule,
the weights are and the abscissas are

. In the case of piecewise constant
expansion functions , becomes the periodic sinc
function

(23)

The maxima of lie at , where
Thus, for small , the terms of the summation

over in (16) for which yield the leading contribution
to the sampling error. Since for these
terms, we find that

(24)

If is even, the sum over is finite and can be evaluated in
closed form, and the sampling error becomes

(25)

for small . The quadrature rule also has a small effect on the
smoothing error term of the spectral error, but the additional
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contribution is of the same order in as the smoothing error
for exact integration.

The quadrature error contribution (25) is first order in ,
and thus, can dominate the higher order spectral error terms in
(16) for small values of . In order for the quadrature error to
be as small as the sampling error in (20) for the discretiza-
tion, must increase as . Commonly, matrix elements near
the singularity of the kernel are evaluated using a method such as
analytical integration of the singularity of the kernel [18], which
reduces the quadrature error significantly. For a single-point in-
tegration rule, analytical integration of the diagonal matrix ele-
ments reduces the quadrature error roughly by a factor of three
for a single-point integration rule [14].

C. Current Error

Once the spectral error due to discretization is known, the
surface current solution error can be determined. If the inci-
dent field is a plane wave traveling along the-axis, then the
weights , , of the expansion functions for
the approximate current are obtained by solving a linear system
with a vector having components

(26)

as the right-hand side. Using the cylindrical mode expansion of
a plane wave, can be written as

(27)

Applying to this expression gives

(28)

since each term of the sum in (27) is an eigenvector of. The
exact current at the angle on the cylinder is

(29)

The current error is then

(30)

at the node with angle .
Using this result for the error at each node, the rms current

error becomes (31), shown at the bottom of this page.Since the
magnitude of grows rapidly with when ,
the terms of the summation overin (31) are negligible

Fig. 3. Relative rms surface current error and backscattering amplitude error
for a cylinder, TM polarization,k a = �, and piecewise constant expansion
functions with point testing. The current error is second order, whereas the
scattering amplitude error is third order.

if , which is equivalent to the condition . We
thus arrive at

(32)

where is the sampling-error term of (16). This result shows
that to leading order, the approximate current solution is not af-
fected by the smoothing error introduced by the testing func-
tions. This occurs because the left- and right-hand sides of the
EFIE in (1) are tested using the same set of functions, and the
effect of the testing functions cancels for each mode.

A comparison of this result with numerical experiments is
shown in Fig. 3. The approximate expression (20) is employed
for the sampling error. The number of integration points is suf-
ficiently large that the quadrature error (25) is negligible for this
range of .

Due to the smoothness of the current solution for a smooth in-
cident field, the current error is determined by the spectral error
for modes of low spatial frequency, i.e., near and smaller.
This is evident in (32) since the magnitude of the Hankel func-
tion grows rapidly with the index when the index is larger than
the argument, and terms of the summation in (32) are negligible
for . Modes with higher spatial frequency contribute
to the error if the incident field on the surface of the cylinder
is less smooth than a plane wave. If the incident field is pro-
duced by a line source located at a distancefrom the cylinder,
for example, then it can be shown that the current error depends
on the spectral error for roughly , for small ,

(31)



WARNICK AND CHEW: ACCURACY OF METHOD OF MOMENTS FOR SCATTERING BY A CYLINDER 1657

which exceeds when the line source is closer than to
the cylinder.

We consider briefly the behavior of the current error if is
such that the cylinder has an internal resonance or a nontrivial
solution to the interior Dirichlet problem. For the continuous
EFIE, both the resonant eigenvalue and amplitude of the corre-
sponding mode in the incident field vanish together, asap-
proaches a resonance, leading to a finite limit for the amplitude
of that mode in the exact surface current. For the discretized in-
tegral equation, sampling error leads to a nonzero value for the
eigenvalue of the resonant mode at the internal resonance. The
amplitude of the resonant mode in the discretized incident field
(27) is . Since

decays exponentially as increases, is small for
, so that is negligible in magnitude relative to the sam-

pling error. When the inverse of the moment matrix is applied to
, the resulting approximate current solution is

missing the resonant mode. If the discretization error is near the
machine precision, then rounding error leads to the corruption
of the amplitudes of other modes as well.

Discretization shifts the location of an exact internal reso-
nance of the cylinder as a function of . At a numerical in-
ternal resonance, the moment matrix has an infinite condition
number, and direct linear system solution methods can fail due
to rounding error. It can also be seen that the numerical internal
resonances lie at real values of , so that discretization does
not lead to complex resonances. Ifis a zero of , then for

near , the eigenvalue of the EFIE of ordercan be ex-
panded as

(33)

From (15), the sampling error introduced by discretization
is nearly pure imaginary. In order for the eigenvalue of
the moment matrix to vanish, (33) shows that must be
real.

At an exact internal resonance, since the resonant mode is
missing from the moment-method solution, the current error is
large. Scattering amplitudes and cross sections can still be ac-
curate, however, since an internally resonant mode does not ra-
diate outside the scatterer. At the numerical internal resonance,
where the moment matrix is singular, direct solution methods
can lead to significant solution error for other modes as well.
In this case, the conjugate gradient (CG) iterative solver can be
applied to the normal form of the linear system.
The amplitude of the resonant mode in the new right-hand side
is zero since the corresponding eigenvalue is zero and, thus, the
iterative procedure is not significantly affected by the vanishing
eigenvalue.

D. Scattering Amplitude Error

For a two-dimensional object, the bistatic scattering ampli-
tude for a plane wave traveling at an angle ofdue to an inci-
dent plane wave is defined by [19]

(34)

where is the scattered field, and is related to the scattering
width by . can be obtained
from the approximate current on the scatterer using

(35)

where is the scattered plane wave, discretized on the surface
of the conductor using the expansion functions .

By making use of (28), the approximate bistatic scattering
amplitude for the cylinder becomes

(36)

where . Subtracting the exact value of the scattering
amplitude gives

(37)

for the error, where is the sampling-error component of
the spectral error . This result shows that to leading order,
the smoothing error term of the spectral error
does not contribute to the scattering amplitude error. The relative
error for the backscattering amplitude is shown in Fig. 3.

III. TE POLARIZATION

For a TE-polarized incident field, the EFIE becomes

(38)

where is a unit tangent vector and is the surface current
vector on the scatterer. The EFIE for the TE polarization differs
from the TM EFIE in that the kernel is hypersingular due to the
presence of the derivative operators in the second term on the
left-hand side of (38).

The TE EFIE can be discretized by employing testing and
expansion functions in the same manner as for the TM case.
Using the expansion (3), the moment-matrix elements can be
expressed as

(39)

for the circular cylinder. Expanding into exponen-
tials, integrating the second term by parts, and making use of the
recursion relations for the derivatives of the Bessel and Hankel
functions yields

(40)
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By proceeding as in the previous section, the eigenvalues of
are found to be

(41)

for the TE polarization. This expression is identical to (9), ex-
cept that the Bessel and Hankel functions are replaced with their
first derivatives. The eigenvalues of the continuous EFIE are

.

A. Condition Number

Since grows as becomes large, in contrast
to the TM case, the modes with high spatial frequencies have
the largest eigenvalues for the TE polarization. The maximum
eigenvalue of corresponds to and is

(42)

where we have made use of
. Near internal resonances lead to small eigenvalues ifis

such that is small for some . These small eigenvalues
dominate the condition number for large . For values of

such that internal resonances are not dominant, the smallest
eigenvalues correspond to the modes with , which
are the surface-wave modes for the cylinder. In this case, since

for large , the smallest
eigenvalue is

(43)

The resulting condition number estimate is

(44)

which is of the same order as the TM result.

B. Spectral Error

From (41), the relative discretization error is

(45)

The current and scattering amplitude errors have the same forms
as (32) and (37) for the TM polarization, but the Bessel and
Hankel functions are replaced with their first derivatives. Due
to the growth of with for , the dependence
of the error on falls off for for the TE polariza-
tion, as occurs for the TM case. Since decreases as
approaches from below, however, the current error depends
more strongly on the spectral error for surface-wave modes with
spatial frequencies near for the TE polarization.

1) Polynomial Bases:If the polynomial basis functions of
Section II-B.1 are used to discretize the TE EFIE, the spectral
error for the discretization does not decrease asbe-
comes large, and the solution does not converge. For the
discretization, the leading order term of the spectral error, as

Fig. 4. Relative spectral error TE polarizationk a = 2�, n = 10 in terms
of � =n = q=N . Solid line:b = 1 (point matching and piecewise constant
basis). Dashed line:b = 2 (point matching and piecewise linear basis,� =

1=3). Dotted line:b = 3 (piecewise constant testing functions and piecewise
linear basis).

given by (45), vanishes. To obtain the spectral error for small
, we must employ an additional term of the expansion

in (41). This leads
to

(46)

where the constant is .
For the discretization, the diagonal moment-matrix el-

ement diverges if the testing point is located at the apex
of the triangle expansion function. The testing functions must
be shifted in order for the matrix elements to be finite. Thus, we
employ the shifted symmetric testing function

. In this case, a factor of appears
in the leading order term of the sampling error. This term van-
ishes for a shift of , and the total spectral error becomes

(47)

for small . The constants are and
.

For the discretization, the spectral error is

(48)

for small . The constant is . In all cases, the
sampling error is third order in , and the smoothing error is
second order. The sampling errors for the and
discretizations depend strongly on the location of the testing
functions, thus, these discretizations are more sensitive to ir-
regular testing than the discretization. Fig. 4 gives the
spectral error for . Current error results for the
discretization (pulse testing and triangle expansion functions or
point testing with piecewise quadratic expansion functions) are
shown in Fig. 5.
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Fig. 5. Relative rms surface current error and backscattering amplitude error
for a cylinder, TE polarization,k a = �, and theb = 3 discretization scheme
(pulse/triangle or point/quadratic testing and expansion functions).

2) Quadrature Error: Since the kernel of the EFIE for the
TE polarization has a stronger singularity than in the TM case,
the hypersingular term of (38) is often integrated by parts to
reduce the singularity before application of a numerical quadra-
ture rule. We consider here the spectral error introduced by the
quadrature rule with and without integration by parts for the case
of pulse testing and triangle expansion functions with
the -point integration rule described in Section II-B.2.

If the EFIE is discretized directly as in (38), without integra-
tion by parts, the sampling error arising from the hypersingular
term is given by

(49)

In this expression, arises from the pulse testing function,
and is equal to the periodic sinc function of (23). is the
Fourier transform of the derivative of the triangle function, sam-
pled using the -point quadrature rule, which is

(50)

where specifies the relative shift of the testing and expansion
functions. Employing a large-order expansion of
and evaluating the summation overfor small yields

(51)

For , the leading term of the error given by (51) vanishes,
and the error becomes higher order in . This result shows
that direct integration of the hypersingular term causes sensi-
tivity to irregular testing locations.

With integration by parts, the quadrature error due to the hy-
persingular term of the EFIE is

(52)

where is the Fourier transform of the derivative of the
pulse function, which is

(53)

Expanding the Bessel and Hankel functions in (52) and evalu-
ating the sum over leads to

(54)

for small , which is of the same order as (25) for the weakly
singular kernel. The total sampling error for the TE polariza-
tion is given by the sum of (25) and (54). Although the inte-
grand of the hypersingular term has the same spectral content
with or without integration by parts, the two formulations differ
by a vanishing integral of a total derivative. When a numerical
quadrature rule is employed, this integral no longer vanishes,
which accounts for the difference between (51) and (54).

IV. CONCLUSION

From the spectrum of the discretized electric-field integral
equation for scattering by a cylinder, we have estimated the con-
dition number of the moment matrix and determined the spectral
error introduced by the discretization scheme. For the TM polar-
ization, the largest eigenvalue is determined by the surface-wave
mode, and the smallest eigenvalue is produced either by the
highest frequency mode representable in the discrete basis or an
internally resonant mode. For the TE polarization, the largest
eigenvalue is associated with the highest frequency mode, and
the smallest eigenvalue is produced by the surface-wave mode
or an internal resonance. For both polarizations, neglecting the
effect of internal resonances, the condition number grows with
the 1/3 power of the electrical size of the cylinder.

The total shift in the spectrum introduced by the discretiza-
tion of the EFIE divides naturally into two contributions, which
we refer to here as sampling and smoothing errors. The first
type of error is due to aliasing of high-frequency components
of the kernel of the EFIE, and the second arises from inac-
curate testing and expansion of low-frequency components of
the kernel. We evaluate the spectral error for several types of
piecewise polynomial testing and expansion functions and show
that, for these discretization schemes, the sampling error is third
order, whereas the smoothing error is second order. The use of
numerical quadrature to evaluate moment-matrix elements leads
to an additional first-order sampling-error contribution. The rms
current error on the cylinder at the nodes of the discretization is
determined by both the sampling error and the smoothing error
due to the expansion functions used to represent the current.
The error in scattering amplitudes computed from the current
depends on leading order only on the sampling error.
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These results on the convergence of the method of moments
for the cylinder provide insight into the behavior of numer-
ical methods for more complicated geometries. Since the sam-
pling-error contribution to the spectral shift introduced by dis-
cretization is determined locally by the singularity of the kernel,
it is relatively independent of the global properties of a scat-
terer. If the large-scale geometry is such that the spectrum con-
tains small low-order eigenvalues, the relative spectral error be-
comes large, and moment-method solutions degrade. For the
TE polarization, surface —wave modes cause the EFIE to have
small eigenvalues, which decrease in magnitude as the size of
the scatterer increases. For resonance-regime scatterers, (non-
internal) cavity-type resonances are also associated with small
eigenvalues of the integral equations of scattering, and large so-
lution errors can occur in this case as well.
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