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Efficient Hybrid Spatial and Spectral Technigues
In Analyzing Planar Periodic Structures with
Nonuniform Discretizations

Yongxue Yu and Chi Hou Chan

Abstract—A new efficient technique for analyzing planar pe- Il. FAST CONVERGENT SERIESUSING EWALD'S METHOD AND
riodic structures with arbitrary unit cell geometry rendered in a THE LATTICE-SUM METHOD
nonuniform discretization is proposed in this paper. The mixed
potential integral equation is solved by the method of moments ~ Employing the CIM, the closed-form spatial Green’s func-
in conjunction with the Rao—Wilton—Glisson triangular discretiza-  tions for the vector and scalar potentials are represented by the
tion. The convergence of computing each elementin the impedance symmations of three terms, representing the quasi-dynamic im-
matrix is accelerated using Ewald’'s method for contributions of ages, complex images, and surface wave terms, respectively [7].

quasi-dynamic and complex images and the lattice-sum method ) . - . ;
for the surface-wave contribution. Numerical efficiency and accu- Ewald’s method involves splitting a sum into two parts using

racy of this hybrid method are compared with the spectral-domain an exponentially converging function: with one over the spatial

method. domain and the other transformed to the spectral domain. The
Index Terms—Convergence of numerical methods, frequency- €valuation ofthe Green's function for the quasi-dynamic images
selective surfaces, periodic structures. has been presented in [4], [5], where Ewald’'s method was ap-
plied only to the quasi-dynamic images. The essential formula

is

I. INTRODUCTION

eIkl 2 [~ 2 2, kb
LECTROMAGNETIC analysis of planar periodic struc- —Fp5—— = \/—%/ exp <—an3 + E) ds. (1)
tures has a wide range of applications. The spectral-do- e 0
main method of moments (MoM) is a powerful tool in analyzinrgg
periodic structures. However, each element of the impeda

oosing the integration path suitably, the Green’s function can
split into two parts as follows:

matrix still requires the sums of tens of thousands of Floquet’s Gz, y, 7))
modes. To improve the flexibility in modeling various geome- T o _ e—ikRuno
tries, a nonuniform discretization was reported in [1], which is =— Y Y JUmbtntIs

. . . ’ 47 ann
an extension of the approach in [2], and the required Green'’s m=—00n=—00
function is obtained using the complex image method (CIM) = G1+G, (2)
[3]. The number of terms for convergence is on the order of . \/ o T2 T2 2 3
several hundreds. In this paper, we show that the numerical ef- ™" (w=a'dmT, ) +(y =y +nly)*+ . 3)

ficiency can be further improved by using Ewald’s method [4] Applying Poisson’s summation formula and Ewald’s identity,
and the lattice-sum method. Ewald’s method has been applieddthowing the notations in [4], the spectral and spatial compo-
the free-space Green’s function in [5] and the geometry is liment of the Green’s functiof; andG, are given, respectively,
ited to rectangular elements only. According to the CIM, we das

compose the periodic spatial Green'’s function into three sumsG
which represent the contributions from the quasi-dynamic im- 1@, y) _ _

ages, complex images, and the surface waves, respectively. Itis ¢~/ [k (=) 4k, (=)

still very time consuming to calculate these sums since most of — 8T, T,
them are highly oscillating and slowly convergent. The contri- oo oo 4240
. . . . e moerfe(Qmn /Eo £ dEo)
butions from the quasi-dynamic images, complex images, and  x Z Z Z
il ann
surface waves can be accelerated by Ewald’s method and the lat- m=—ocon=—oco &
tice-sum method [6], respectively. These techniques are then in- - [2mw<;‘—m’>+2m<Ty—y’>] 4
tegrated to yield an efficient hybrid methodology for analyzing xe ’ (4a)
periodic structures. Ga(z,y)
o> o>
_ i Z Z Cj(k;mTI +kinTy)
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In this paper, we extend Ewald’s method to evaluate compl
image terms. The important consideration is that we need
include the contribution from the phase&f,,, when choosing
the integral path. The path of integration must be chosen so t
the integrand remains boundedsas> 0 and decays as — oc.
Thus, we have

™ ™
§ — 00, arg(s) € [_Z_arg(ann)v Z_arg(ann)}
®)
‘ B w B _
s — 0, arg(s)e [—Z—i-a,—z > B = arg(e). >
) -0.5T,
The correct integration path must be located inside the i

tersection of (5) and (6). There are six overlapping regions f
different3 and R,,,,,, as detailed in [7].

The lattice-sum method introduces a lattice sum to represein
the Green's function for the Surface"/_\’ave contribution in termgy 1. Mmodification of the coordinates in the application of the lattice-sum
of a rapidly convergent Neumann series. The surface wave corthod.
tribution for the two-dimensional periodic Green’s function can
be represented in terms of zeroth-order Hankel functions of the TABLE |
DETAILS OF CONVERGENCE FOR THEPROPOSEDM ETHODS(EXAMPLE 1—3)
second kind, as in (7). Meanwhile, it can also be represented by

its spectral form, as in (8)

) oo oo Summation Index (K) yew—r Greenis Function Required CPU (Second)

A, g 9 ) ik T, i nT: mplitude Phase(Degree)

G = T2 > > HE (Ko A g )&/ Fa T2 4,010 Example 1 (Quasi-dynamic images)
M=—00n=—00 @ 1 0.2995720 |  -79.23332 8.326¢-4
- - 2 03152400 |  -76.26852 3.332¢-3

27r 1 : ’ 7
GAqu — Z Z P [(@=a)om+y—y") 8] ) 3 03151226 | -76.28632 7.497e-3
5
Ty e 5 Tmn 4 03151229 | -76.28632 1.416¢-2
(8) 176 (Spectral Method) | 0.3151439 | -76.28700 8.944
. . . . E le 2 (Complex i )

By equating the spatial and spectral expressions in (7) a 1 02414714 | -167.5280 1.666-3
(8), after some mathematical manipulations, the lattice sum 5 02400956 |  -170.8593 333263
order! is obtained as [6] '

3 0.2400663 |  -170.8581 7.497e-3
o0 o0 4 0.2400663 |  -170.8581 1.416e-2
_ (2 Flbrmn :
Si(ko) = Z Z Hy™ Qmnkopmn)e 4 (Spectral Method) | 0.2400663 |  -170.8580 1.666e-3
Mm=—00 N=—00 '(ki - ) E le 3 (Surface waves)
X eV R TR (9) 1 2.877640 | 0.8964027 8.334e-4
. . . . 2 2.876710 | 0.8966923 8.334e-4

We split the lattice sum in (9) into two parts, denoted b 5 <
Bessel functions of the first kind and the second kin#, re- 2876719 08950125 1.667-3
spectively, as 4 2.876712 | 0.8950116 1.667e-3

114 (Spectral Method) | 2.876408 |  0.8945202 1.264
J QY
Si(ko) = Si (ko) + 4S; (ko) (10)
Substituting (9), (10) into (7), we have the Green’s function TABLE I
as COMPARISON OFNUMBER OF THE TERMS AND REQUIRED CPU (5(AMPLE 1- 3)
A, JT

G q(pmn) _Jr Hé )( FooPrmn) CONVERGENCE TERMS (N) REQUIRED CPU (SECOND)
o EXAMPLES SPECTRAL PROPOSED SPECTRAL PROPOSED
b7l' k J k )\ ) e METHOD METHOD METHOD METHOD

JT 1 e~ d1bumn
2 _E: 0)J1(FoAn Example | 124609 49 8.944 7.497¢-3
- Example 2 81 25 1.666¢-3 3.332e-3
= —§Y0(/€0pmn) Example 3 52441 25 1.264 8.329e-4

T o>
Ibrmn
- 5 Z S (kO)Jl(kO)\rnnprnn)C ate

I=—o0 Inthis way, the Green'’s function is represented as a Newmann
(11) series with coefficients given by} (ko). Applying the addition
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Fig. 2. Comparison of the reflected power from the crossed dipoles of two different methods.

theorem for Bessel and Hankel functions, (9) can be representieel surface-wave contribution. Again, one has the singularity

by the rapidly converging series [6] 1/+/kopm» Subtracted, which comes froby (kop.n )-
Y
St (ko) Jitm (ko) ™ 2kt2 [ll. NUMERICAL RESULTS
1 -k 2\
=- [Ynl(k0)+_ Z % <k_> 1,0 In the first example, the convergence of Ewald’s method for a
T ) 0 quasi-dynamic image is compared with that of the spectral-do-

ko m Jz+m( /%27_,_/33) ' main methodf = 45°, ¢ = 25°, T, = 1.0, T, = 1.0\,
e x—x' =048\, y—y = —0.91), (= — 2/ + jb) = 0.002, and

—44¢
! zp: zq: \Ja2+p32 g +0; = kg g, = 1.0. The indexk denotes that the sum runs fronk to &
(12) for bothm andn. Ewald’s method converges/at= 3 while the
spectrum sum oscillates unkil= 176. The accuracy of Ewald’s
Note that one advantage of this method is tHat ko) is the method has reached seven significant figureks at 3 and the
same for all locationg,,,.. This enables us to construct a tableesult agrees with that of the spectral one to the fourth dec-
for different orders of and then to apply this table to all theimal place. The second example computes a practical complex
Green’s functions with differenp,,,,,. It is worth mentioning image, which was obtained by Prony’s method. The parameters
that in [6], this technique is valid only within a specific rangeised aréd = 45°, ¢ = 30°, 7, = 1.0\, T, = 1.0\, & — 2’ =
(0 < Jz—2'| £0.57, and0 < |y—v/| < 0.51}). However, itis 1.9, y — ¢’ = 1.9, and(z — 2’ + jb) = 0.14309 + 50.45817.
noted that for those points falling beyond the specific range, tsvald’'s method converges at= 2, while the spectral method
Green'’s function is evaluated first by using the same method@sverges at = 4. The third example compares the lattice-sum
in [6], and then multiplying a phase-shifting factor. For examplenethod and the spectral representation of the surface wave term
to apply the formula in (12) for an interaction between point with 6 = 45°, ¢ = 30°, T,, = 1.0\, T, = 1.0\, z = 0.17},
andP (Fig. 1), we consider this interaction equivalently as that= 0.17X, 2’ = 0.14)\,y' = 0.14\ K, = 1.23\, ande,. = 1.0.
between pointS and P. Inside a new cell with central point The index isp = ¢ = 3 andm = 1, respectively. The lat-
O (0.5T3,0.5T},), this interaction falls into the valid range. Atice-sum method converges/at= 2, while the spectral method
phase shifting factog’(*0Z=+%7.) js then multiplied with the oscillates untilk = 114 to the fourth decimal place. The de-
computed result. tails of the convergence comparison for Example 1-3 are listed
To improve the efficiency of constructing the impedancim Table I. The number of terms for convergen¥eand the re-
matrix, four interpolation tables are constructed here. The firgtired CPU time to achieve the convergence on a workstation
two tables correspond to the sums in (4), with the phase factdpha Server 4100 are given in Table Il for each case.
eI kemTatk,nTy) excluded for both the quasi-dynamic and Using this hybrid method, the reflected power for a fre-
complex images, respectively. One of them has the singularifjyiency-selective surface (FSS) with crossed dipoles (Fig. 2) is
term1/r subtracted. Another two tables correspond to (12) faomputed in Example 4, whefe= 0° ¢ = 0°, 7,, = 10, mm,
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Fig. 3. Discretization of a circular notched patch FSS and the reflected and transmitted power.

TABLE IlI Rao—Wilton—Glisson (RWG) discretization is adopted. In Fig. 3,
COMPARISON OFCONERGENCE AND THEREQUIRED CPUOF TWO METHODS it is shown that the resonance occurs‘at: 10.594 GHz.

viethod | Summation o o crisecond IV. CONCLUSION

index
Spectral | K=200 | 0.1960+] 2552241 | -2.0770e2j4.9954e 2 | _ 0.5189 In this paper, a new method was proposed to efficiently
method | K=250 | 0.1960+]255.4642 | 2.0769¢-2-4 9987¢-2 0.797 evaluate the impedance matrix elements in the MoM using
Hybrid K= 0.2011+]256.3243 | -2.08200-2-15.068362 | 5.390.2 the mixed potential integral equation (MPIE) for analyzing
method k=3 0.2011+]256.3241 | -2.08196-235.06830-2 56502 periodic structures. This method adopted the CIM to evaluate

the closed-form spatial Green'’s function, and then applied dif-
ferent techniques to accelerate the convergence of the truncated
summation. One technique is Ewald’'s method for evaluating

Ly =10 mm,e; = 4.0 &3 = 1.01, by = 3.0 mm, h, = 1.0 the contributions from quasi-dynamic and complex images
mm, andf = 10 GHz. The length and width of each arm in the . N y b ges,
nd another is the lattice-sum method, based on an addition

cross is 6.875 and 0.625 mm, respectively. Fig. 2 shows that {he .
; . . eorem of Bessel functions, for that from the surface wave. It
numerical result from the hybrid method agrees well with that .
. is demonstrated by numerical results that the proposed method
calculated by the fast Fourier transform (FFT)-based method.0 - . .
) . . o . . iS much more efficient than the spectral-domain method. In this
discretization of 32¢< 32 in [8], while it has a slight difference . —
way, the CIM can be used successfully in periodic structures
from that of 16x 16.

In Table I, we compare the spectral and hybrid methods Wth complicated geometries.

calculating the impedance matrix elements for two basis func-
tions in the arm of the cross, as shown in Fig. 2. From this table,
we see that the hybrid method can accelerate the matrix-fillingThe authors are indebted to Dr. W. Ren, formerly with Kyushu
time to calculate a pair of testing and basis function about 9-Usiversity, Fukuoka, Japan, Dr. R. C. McPhedran, University of
times. The slight discrepancy between the spectral and hybfigidney, Sydney, NSW, Australia, and Dr. N. Nicorovici, Uni-
methods is because a true Galerkin procedure is used in viegsity of Sydney, Sydney, NSW, Australia, for their helpful dis-
spectral method, while an approximation is applied in the hgussions.
brid method [8].
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