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Efficient Hybrid Spatial and Spectral Techniques
in Analyzing Planar Periodic Structures with

Nonuniform Discretizations
Yongxue Yu and Chi Hou Chan

Abstract—A new efficient technique for analyzing planar pe-
riodic structures with arbitrary unit cell geometry rendered in a
nonuniform discretization is proposed in this paper. The mixed
potential integral equation is solved by the method of moments
in conjunction with the Rao–Wilton–Glisson triangular discretiza-
tion. The convergence of computing each element in the impedance
matrix is accelerated using Ewald’s method for contributions of
quasi-dynamic and complex images and the lattice-sum method
for the surface-wave contribution. Numerical efficiency and accu-
racy of this hybrid method are compared with the spectral-domain
method.

Index Terms—Convergence of numerical methods, frequency-
selective surfaces, periodic structures.

I. INTRODUCTION

E LECTROMAGNETIC analysis of planar periodic struc-
tures has a wide range of applications. The spectral-do-

main method of moments (MoM) is a powerful tool in analyzing
periodic structures. However, each element of the impedance
matrix still requires the sums of tens of thousands of Floquet’s
modes. To improve the flexibility in modeling various geome-
tries, a nonuniform discretization was reported in [1], which is
an extension of the approach in [2], and the required Green’s
function is obtained using the complex image method (CIM)
[3]. The number of terms for convergence is on the order of
several hundreds. In this paper, we show that the numerical ef-
ficiency can be further improved by using Ewald’s method [4]
and the lattice-sum method. Ewald’s method has been applied to
the free-space Green’s function in [5] and the geometry is lim-
ited to rectangular elements only. According to the CIM, we de-
compose the periodic spatial Green’s function into three sums,
which represent the contributions from the quasi-dynamic im-
ages, complex images, and the surface waves, respectively. It is
still very time consuming to calculate these sums since most of
them are highly oscillating and slowly convergent. The contri-
butions from the quasi-dynamic images, complex images, and
surface waves can be accelerated by Ewald’s method and the lat-
tice-sum method [6], respectively. These techniques are then in-
tegrated to yield an efficient hybrid methodology for analyzing
periodic structures.
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II. FAST CONVERGENTSERIESUSING EWALD’S METHOD AND

THE LATTICE-SUM METHOD

Employing the CIM, the closed-form spatial Green’s func-
tions for the vector and scalar potentials are represented by the
summations of three terms, representing the quasi-dynamic im-
ages, complex images, and surface wave terms, respectively [7].
Ewald’s method involves splitting a sum into two parts using
an exponentially converging function: with one over the spatial
domain and the other transformed to the spectral domain. The
evaluation of the Green’s function for the quasi-dynamic images
has been presented in [4], [5], where Ewald’s method was ap-
plied only to the quasi-dynamic images. The essential formula
is

(1)

Choosing the integration path suitably, the Green’s function can
be split into two parts as follows:

(2)

(3)

Applying Poisson’s summation formula and Ewald’s identity,
following the notations in [4], the spectral and spatial compo-
nent of the Green’s function and are given, respectively,
as

(4a)

(4b)

0018–9480/00$10.00 © 2000 IEEE



1624 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 10, OCTOBER 2000

In this paper, we extend Ewald’s method to evaluate complex
image terms. The important consideration is that we need to
include the contribution from the phase of when choosing
the integral path. The path of integration must be chosen so that
the integrand remains bounded as and decays as .
Thus, we have

(5)

(6)

The correct integration path must be located inside the in-
tersection of (5) and (6). There are six overlapping regions for
different and , as detailed in [7].

The lattice-sum method introduces a lattice sum to represent
the Green’s function for the surface-wave contribution in terms
of a rapidly convergent Neumann series. The surface wave con-
tribution for the two-dimensional periodic Green’s function can
be represented in terms of zeroth-order Hankel functions of the
second kind, as in (7). Meanwhile, it can also be represented by
its spectral form, as in (8)

(7)

(8)

By equating the spatial and spectral expressions in (7) and
(8), after some mathematical manipulations, the lattice sum of
order is obtained as [6]

(9)

We split the lattice sum in (9) into two parts, denoted by
Bessel functions of the first kind and the second kind , re-
spectively, as

(10)

Substituting (9), (10) into (7), we have the Green’s function
as

(11)

Fig. 1. Modification of the coordinates in the application of the lattice-sum
method.

TABLE I
DETAILS OF CONVERGENCE FOR THEPROPOSEDMETHODS(EXAMPLE 1–3)

TABLE II
COMPARISON OFNUMBER OF THETERMS AND REQUIREDCPU (EXAMPLE 1–3)

In this way, the Green’s function is represented as a Newmann
series with coefficients given by . Applying the addition
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Fig. 2. Comparison of the reflected power from the crossed dipoles of two different methods.

theorem for Bessel and Hankel functions, (9) can be represented
by the rapidly converging series [6]

(12)

Note that one advantage of this method is that is the
same for all locations . This enables us to construct a table
for different orders of and then to apply this table to all the
Green’s functions with different . It is worth mentioning
that in [6], this technique is valid only within a specific range
( and ). However, it is
noted that for those points falling beyond the specific range, the
Green’s function is evaluated first by using the same method as
in [6], and then multiplying a phase-shifting factor. For example,
to apply the formula in (12) for an interaction between point
and (Fig. 1), we consider this interaction equivalently as that
between point and . Inside a new cell with central point

, this interaction falls into the valid range. A
phase shifting factor is then multiplied with the
computed result.

To improve the efficiency of constructing the impedance
matrix, four interpolation tables are constructed here. The first
two tables correspond to the sums in (4), with the phase factor

excluded for both the quasi-dynamic and
complex images, respectively. One of them has the singularity
term subtracted. Another two tables correspond to (12) for

the surface-wave contribution. Again, one has the singularity
subtracted, which comes from .

III. N UMERICAL RESULTS

In the first example, the convergence of Ewald’s method for a
quasi-dynamic image is compared with that of the spectral-do-
main method. , , , ,

, , , and
. The index denotes that the sum runs from to

for both and . Ewald’s method converges at while the
spectrum sum oscillates until . The accuracy of Ewald’s
method has reached seven significant figures at and the
result agrees with that of the spectral one to the fourth dec-
imal place. The second example computes a practical complex
image, which was obtained by Prony’s method. The parameters
used are , , , ,

, , and .
Ewald’s method converges at , while the spectral method
converges at . The third example compares the lattice-sum
method and the spectral representation of the surface wave term
with , , , , ,

, , , and .
The index is and , respectively. The lat-
tice-sum method converges at , while the spectral method
oscillates until to the fourth decimal place. The de-
tails of the convergence comparison for Example 1–3 are listed
in Table I. The number of terms for convergenceand the re-
quired CPU time to achieve the convergence on a workstation
Alpha Server 4100 are given in Table II for each case.

Using this hybrid method, the reflected power for a fre-
quency-selective surface (FSS) with crossed dipoles (Fig. 2) is
computed in Example 4, where , , mm,
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Fig. 3. Discretization of a circular notched patch FSS and the reflected and transmitted power.

TABLE III
COMPARISON OFCONERGENCE AND THEREQUIREDCPUOF TWO METHODS

mm, , mm,
mm, and GHz. The length and width of each arm in the
cross is 6.875 and 0.625 mm, respectively. Fig. 2 shows that the
numerical result from the hybrid method agrees well with that
calculated by the fast Fourier transform (FFT)-based method of
discretization of 32 32 in [8], while it has a slight difference
from that of 16 16.

In Table III, we compare the spectral and hybrid methods by
calculating the impedance matrix elements for two basis func-
tions in the arm of the cross, as shown in Fig. 2. From this table,
we see that the hybrid method can accelerate the matrix-filling
time to calculate a pair of testing and basis function about 9–15
times. The slight discrepancy between the spectral and hybrid
methods is because a true Galerkin procedure is used in the
spectral method, while an approximation is applied in the hy-
brid method [8].

The last example calculates an FSS consisting of notched cir-
cular patches. The notch is 60rotated to the -axis. The diam-
eter of the patch is 12 mm, and the width and the length of the
notch are mm and mm, respectively. In this
example, we have mm, , , mm,

mm, , , and mm. The

Rao–Wilton–Glisson (RWG) discretization is adopted. In Fig. 3,
it is shown that the resonance occurs at GHz.

IV. CONCLUSION

In this paper, a new method was proposed to efficiently
evaluate the impedance matrix elements in the MoM using
the mixed potential integral equation (MPIE) for analyzing
periodic structures. This method adopted the CIM to evaluate
the closed-form spatial Green’s function, and then applied dif-
ferent techniques to accelerate the convergence of the truncated
summation. One technique is Ewald’s method for evaluating
the contributions from quasi-dynamic and complex images,
and another is the lattice-sum method, based on an addition
theorem of Bessel functions, for that from the surface wave. It
is demonstrated by numerical results that the proposed method
is much more efficient than the spectral-domain method. In this
way, the CIM can be used successfully in periodic structures
with complicated geometries.
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