2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Development of Inductive Regional Heating System for Breast Hyperthermia

Youji Kotsuka, Senior Member, IEEE Masashi Watanabe, Masayuki Hosoi, Iku Isono and Masaki Izumi

Page 1807.

Abstract:

In response to demand for clinical use, a simple noninvasive regional heating applicator system for breast hyperthermia has been developed using ferrite cores. Since the breast is positioned between a pair of ferrite cores, it is possible to regionally heat it without considering the dimension of the breast. To find a method of controlling the heating position horizontally and vertically, magnetic-field distributions are analyzed using the three-dimensional finite-element method. Theoretical analyses suggest that a conductive thin plate and a novel eddy current absorber are effective for controlling the maximum heating position. A new applicator system operates at a frequency of 4 MHz and a maximum output power of 600 W. Heating tests using an agar phantom and rabbits show a temperature rise of more than 8 °C at a depth of 8 cm after heating for 10 min without heating fatty tissue.

References

  1. A. Rosen and H. D. Rosen, New Frontiers in Medical Device Technology,: Wiley, 1995, pp.  312-337. 
  2. A. Westra and W. C. Dewey, "Variations in sensitivity to heat shock during the cell-cycle of Chinese hamster cell in nitro", Int. J. Radiat. Biol. , vol. 19, pp.  467-477, 1971.
  3. E. Ben-Hur, et al. "Thermal enhanced radio-response of cultured Chinese hamster cell-inhabitation of repair of sub lethal damage and enhancement of lethal damage", Radial Res., vol. 58, pp.  38-51, 1974 .
  4. P. P. Antichi, et al. "Selective heating of coetaneous human tumors at 27.12 MHz", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.  569-572, Aug.  1978.
  5. F. K. Storm, et al. "Clinical RF hyperthermia by magnetic-loop induction: A new approach to human cancer therapy", IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.  1149-1157, Aug.  1982.
  6. R. S. Elliott, et al. "Electromagnetic heating of deep seated tumors", IEEE Trans. Biomed. Eng., vol. BEM-29, pp.  61-64, Jan.  1982 .
  7. J. R. Oleson, "A review of magnetic induction methods for hyperthermia treatment of cancer", IEEE Trans. Biomed. Eng., vol. BME-31, pp.  91-97, Jan.  1984.
  8. P. S. Ruggera, et al. "Development of RF helical coil applicator which produce transversely uniform axially distributed heating in cylindrical fat-muscle phantoms", IEEE Trans. Biomed. Eng., vol. BME-31, pp.  98-105,  Jan.  1984.
  9. M. J. Hagman, et al. "Coupling efficiency of helical coil hyperthermia applications", IEEE Trans. Biomed. Eng., vol. 32, pp.  539-540,  July  1985.
  10. I. Kimura, et al. "VLF induction heating for clinical hyperthermia", IEEE Trans. Magn., vol. Mag-22, pp.  1897-1900, June   1986.
  11. J. G. Kern, et al. "Experimental characterization of helical coil as hyperthermia applicators", IEEE Trans. Biomed. Eng., vol. 35, pp.  46-52, Jan.  1998.
  12. H. Kanai, "Magnetic induction hyperthermia", IEEE Trans. Magn., vol. MAG-88, no. 41, pp.  42-52, Jan.  1988 .
  13. A. L. Albert, et al. "The RF troidal transformer as a heat delivery system for regional and focused hyperthermia", IEEE Trans. Biomed. Eng., vol. 35, pp.  1077-1085, Dec.  1988.
  14. J. B. Anderson, et al. "A hyperthermia system using a new type of inductive applicator", IEEE Trans., Biomed. Eng., vol. BEM-31, pp.  212-227, Jan.  1984.
  15. Y. Kotsuka, "A new construction method on induction heating material for hyperthermia", IEICE, Tokyo, Japan, Tech. Rep. 85-78, 1985.
  16. Y. Kotsuka and E. Hankui, "Investigation on two types of applicators for local hyperthermia of induction and capacitive heating", Proc. Int. EMC. Symp Dig., vol. 2, pp.  722-725, Sept.  1989.
  17. Y. Kotsuka and E. Hankui, "Development of ferrite core applicator with variable gap", Nat. Conv. IEICE, vol. B-292, 1990.
  18. Y. Kotsuka, et al. "Development of a new ferrite core applicator system for inductive deep hyperthermia", in Proc. 6th Int. Congr. Hypertherm. Oncol. , Tucson, AZ, Apr. 1992, p.  339. 
  19. Y. Kotsuka, E. Hankui and Y. Shigematsu, "Development of ferrite core applicator system for deep-induction hyperthermia", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1803-1810, Oct.  1996.
  20. Y. Kotsuka, et al. "Development of ferrite core applicator for local induction heating", IEICE, Tokyo, Japan, Tech. Rep. EMCJ90-38, Sept. 1990 .
  21. A. Rosen and H. D. Rosen, "RF/Microwaves in thermal therapies", IEICE, Tokyo, Japan, Tech. Rep. MW98-21, May 1998.