2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Numerical Assessment Concerning a Focused Microwave Diagnostic Method for Medical Applications

Salvatore Caorsi, Member, IEEE Andrea Massa and Matteo Pastorino Senior Member, IEEE

Page 1815.

Abstract:

The possibility of focused microwave imaging in medical applications is investigated in this paper by means of a numerical assessment based on the forward scattering solution. As a text case, a human abdomen is considered and different electromagnetic sources operating at the working frequencies f = 433 MHz and f = 2.45 GHz are used. Many numerical investigations are performed in order to define the optimal dimensions of the reduced investigation domain. To quantitatively evaluate the effects of the reduction of the original investigation domain on the inversion data, suitable relative errors are defined. Once the reduced domain is defined, preliminary reconstructions are performed, aiming to evaluate the imaging capabilities of a global optimization technique when a focused approach is used for tomographic applications. Finally, some considerations are drawn and future developments of the proposed technique are indicated.

References

  1. L. E. Larsen, and J. H. Jacobi, Eds., Medical Applications of Microwave Imaging, New York: IEEE Press, 1986.
  2. M. Vanden-Bossche and A. Barel, "Necessity of simulation tools in parameter identification problems concerning image", in Proc. 2nd European Simulation Congr. , Ghent, Belgium, 1986, pp.  601-605. 
  3. C. Pichot, L. Jofre, G. Perronet and J. C. Bolomey, "Active microwave imaging of inhomogeneous bodies", IEEE Trans. Antennas Propagat., vol. AP-33, pp.  416-425, Apr.  1985.
  4. T. Nakajima, H. Sawada and I. Yamaura, "Microwave CT imaging for a human forearm at 3 GHz", IEICE Trans. Commun., vol. E78-B, no. 6, pp.  874-882, 1995 .
  5. B. Yazgan, S. Paker and M. Kartal, "Image reconstruction with diffraction tomography using different inverse radon transform algorithms", in Proc. Int. Biomed. Eng., Istanbul, Turkey, Aug. 18-20 1992.
  6. A. Broquetas, J. Romeu, J. M. Rius, A. R. Elias-Fusté, A. Cardama and L. Jofre, "Cylindrical geometry: a further step in active microwave imaging", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  836-844, May  1991.
  7. M. J. Hagmann and R. L. Levine, "Procedures for noninvasive electromagnetic property and dosimetry measurements", IEEE Trans. Antennas Propagat., vol. 38, pp.  99-106, Jan.  1990.
  8. D. K. Ghodgaonkar, O. P. Gandhi and M. J. Hagmann, "Estimation of complex permittivities of three-dimensional inhomogeneous biological bodies", IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp.  442-446, June  1983.
  9. P. M. Meaney, K. D. Paulsen, J. T. Chang, M. W. Fanning and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II-Imaging", IEEE Trans. Med. Imag. , vol. 18, pp.  508-518, Jun.  1999.
  10. A. Vander Vorst, "Microwave bioelectromagnetics in Europe", in Proc. IEEE MTT-S Microwave Symp. Dig., Atlanta, GA, June 1993, pp.  1137-1140. 
  11. T. C. Guo and W. W. Guo, "3-D dielectric imaging by inverse scattering with resolution unlimited by wavelength", in Annu. Rep. Elect. Insulation Dielectric Phenomena Conf., Leesburg, VA, 1989, pp.  65-74. 
  12. S. Caorsi, G. L. Gragnani, M. Pastorino and M. Rebagliati, "A model-driven approach to microwave diagnostics in biomedical applications", IEEE Trans. Microwave Theory Tech. (Special Issue), vol. 44, pp.  1910-1920, Oct.  1996.
  13. J. J. Mallorquí and A. Broquetas, "Microwave inverse scattering: biomedical and industrial applications", in Proc. Progress in Electromag. Res. Symp., Seattle, WA, 1995, p.  330. 
  14. C. Pichot, P. Lobel, L. Blanc-Féraud, M. Barlaud, K. Belkebir, J. M. Elissalt and J. M. Geffrin, "Gradient and Newton-Kantorovich methods for microwave tomography,"in Inverse Problems in Medical Imaging and Nondestructive Testing, H. W. Engl, A. K. Louis, and W. Rundell, Eds. Berlin: Germany: Springer-Verlag, 1997, pp.  168-187. 
  15. S. Caorsi, G. L. Gragnani, S. Medicina, M. Pastorino and G. A. Pinto, "A Gibbs random field-based active electromagnetic method for noninvasive diagnostics in biomedical applications", Radio Sci., vol. 30, pp.  291-301, 1995.
  16. W. C. Chew and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method", IEEE Trans. Med. Imag. , vol. 9, pp.  218-225, June  1990.
  17. R. E. Kleinman and P. M. van den Berg, "Two-dimensional location and shape reconstruction", Radio Sci., vol. 29, p.  1157, 1994.
  18. A. Broquetas, J. J. Mallorquí, J. M. Rius, L. Jofre and A. Cardama, "Active microwave sensing of highly contrasted dielectric bodies", J. Electromag. Wave Applicat., vol. 7, pp.  1439-1453, 1993.
  19. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, Bristol: U.K.: IOP Press, 1998.
  20. M. Slaney, A. C. Kak and L. E. Larsen, "Limitation of imaging with first-order diffraction tomography", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  860-873, Aug.  1984.
  21. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.
  22. R. L. Haupt, "An introduction to genetic algorithms for electromagnetics", IEEE Antennas Propagat. Mag., vol. 37, pp.  7 -15, Feb.  1995.
  23. D. S. Weile and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review", IEEE Trans. Antennas Propagat, vol. 45, pp.  343-353, Mar.  1997.
  24. M. Pastorino, "Short-range microwave inverse scattering techniques for image reconstruction and applications", IEEE Trans. Instrum. Meas., vol. 47, pp.  1419-1427, Dec.  1998.
  25. R. F. Harrington, Field Computation by Moment Method, New York: Macmillan, 1968.
  26. M. Ney, "Method of moments as applied to electromagnetic problems", IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp.  972-980, Oct.  1985.
  27. C. A. Balanis, Antenna Theory: Analysis and Design, New York: Wiley, 1997.
  28. K. R. Foster and H. P. Schwan, "Dielectric properties of tissues,"in Handbook of Biological Effects of Electromagnetic Fields, C. Polk, and E. Postow, Eds. Boca Raton, FL: CRC Press, 1986.
  29. S. Caorsi and M. Pastorino, "Two-dimensional microwave imaging approach based on a genetic algorithm", IEEE Trans. Antennas Propagat., to be published.
  30. S. Caorsi, A. Massa and M. Pastorino, "Nonlinear inverse scattering approach for image reconstruction by using a genetic algorithm", in Proc. Int. Nonlinear Electromag. Syst. Symp., Pavia, Italy,May 10-12 1999, p.  153. 
  31. S. Caorsi and M. Pastorino, "Microwave nondestructive testing: A stochastic optimization approach,"in Electromagnetic Nondestructive Evaluation (II), D. Lesselier, and A. Razek, Eds. Amsterdam: The Netherlands: IOS Press, 1999,vol. 15, pp.  145-156.