2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Microwave Detection of Breast Cancer

E. C. Fear, Student Member, IEEE and M. A. Stuchly Fellow, IEEE

Page 1854.

Abstract:

Breast cancer affects many women, and early detection aids in fast and effective treatment. Mammography, which is currently the most popular method of breast screening, has some limitations, and microwave imaging offers an attractive alternative. A microwave system for breast tumor detection that uses previously introduced confocal microwave imaging techniques is presented in this paper. The breast is illuminated with an ultrawide-band pulse and a synthetic scan of the focal point is used to detect tumors; however, the geometric configuration and algorithms are different from those previously used. The feasibility of using small antennas for tumor detection is investigated. Signal processing algorithms developed to mitigate the dominant reflection from the skin are described, and the effectiveness of these skin subtraction algorithms is demonstrated. Images of homogeneous and heterogeneous breast models are reconstructed with various numbers of antennas. Both the influence of antenna spacing and the suitability of simplified models for system evaluation are examined.

References

  1. P. M. Meaney, K. D. Paulsen, J. T. Chang, M. W. Fanning and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II-Imaging results", IEEE Trans. Med. Imag., vol. 18, pp.  508-518, June  1999.
  2. S. C. Hagness, A. Taflove and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors", IEEE Trans. Biomed. Eng., vol. 45, pp.  1470-1479,  Dec.  1998.
  3. S. C. Hagness, A. Taflove and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element", IEEE Trans. Antennas Propagat., pp.  783-791, May  1999.
  4. L. E. Larsen, and J. H. Jacobi, Eds., Medical Applications of Microwave Imaging, New York: IEEE Press, 1986.
  5. M. Miyakawa, "Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography", Med. Biol. Eng. Comput., vol. 31, pp.  S31-S36, 1993.
  6. K. D. Paulsen and P. M. Meaney, "Nonactive antenna compensation for fixed-array microwave imaging-Part I: Model development", IEEE Trans. Med. Imag., vol. 18, pp.  496-507, June  1999.
  7. A. Franchois, A. Joisel, C. Pichot and J.-C. Bolomey, "Quantitative microwave imaging with a 2.45-GHz planar microwave camera", IEEE Trans. Med. Imag., vol. 18, pp.  550-561, Aug.  1998.
  8. A. E. Souvorov, A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov and G. P. Tatsis, "Microwave tomography: A two-dimensional Newton iterative scheme", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1654-1658, Nov.  1998.
  9. W. C. Chew, "Imaging and inverse problems in electromagnetics,"in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, Ed. Norwood, MA: Artech House, 1998, ch. 12.
  10. F.-C. Chen and W. C. Chew, "Time-domain ultra-wideband microwave imaging radar system", in Proc. IEEE Instrum. Meas. Conf., 1998, pp.  648-650. 
  11. E. C. Fear and M. A. Stuchly, "Microwave system for breast tumor detection", IEEE Microwave Guided Wave Lett., vol. 9, pp.  470-472, Nov.  1999.
  12. E. M. Johansson and J. E. Mast, "Three-dimensional ground penetrating radar imaging using synthetic aperture time-domain focusing", Proc. SPIE , vol. 2275, pp.  205-214, 1994.
  13. J. I. Halman, K. A. Shubert and G. T. Ruck, "SAR processing of ground-penetrating radar data for buried UXO detection: Results from a surface-based system", IEEE Trans. Antennas Propagat., vol. 46, pp.  1023-1027, July  1998 .
  14. S. Gabriel, R. W. Lau and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz", Phys. Med. Biol., vol. 41, pp.  2251-2269, 1996.
  15. S. C. Hagness, A. Taflove and J. E. Bridges, "Wideband ultralow reverberation antenna for biological sensing", Electron. Lett., vol. 33, no.  19, pp.  1594-1595, Sept.  1997.
  16. J. Maloney and G. Smith, "A study of transient radiation from the Wu-King monopole-FDTD analysis and experimental measurements", IEEE Trans. Antennas Propagat., vol. 41, pp.  668-676, May  1993.
  17. T. Montoya and G. Smith, "A study of pulse radiation from several broad-band loaded monopoles", IEEE Trans. Antennas Propagat., vol. 44, pp.  1172-1182,  Aug.  1996.
  18. T. Montoya and G. Smith, "Vee dipoles with resistive loading for short-pulse ground-penetrating radar", Microwave Opt. Technol. Lett., vol. 13, pp.  132-137,  Oct.  1996.
  19. T. T. Wu and R. W. P. King, "The cylindrical antenna with nonreflective resistive loading", IEEE Trans. Antennas Propagat., vol. 13, pp.  369-373, May  1965.
  20. L. C. Shen and R. W. P. King, "Corrections to `The cylindrical antenna with nonreflective resistive loading'", IEEE Trans. Antennas Propagat., vol. AP-13, p.  998,  Nov.  1965.
  21. M. Kanda, "Time domain sensors for radiated impulsive measurements", IEEE Trans. Antennas Propagat., vol. 31, pp.  438-444,  May  1983.
  22. K. Esselle and S. S. Stuchly, "Pulse receiving characteristics of resistively loaded dipole antennas", IEEE Trans. Antennas Propagat., vol. 38, pp.  1677-1683, Oct.  1990.
  23. D. Lamensdorf and L. Susman, "Broadband-pulse-antenna techniques", IEEE Antennas Propagat. Mag., vol. 36, pp.  20 -30, Feb.  1994.
  24. J. D. Taylor, Ed., Introduction to Ultra-Wideband Radar Systems, Boca Raton, FL: CRC Press, 1995.
  25. O. E. Allen, D. A. Hill and A. R. Ondrejka, "Time-domain antenna characterizations", IEEE Trans. Electromag. Compat., vol. 35, pp.  339-345, Aug.  1993 .
  26. K. Umashankar and A. Taflove, Computational Electromagnetics, Norwood, MA: Artech House, 1993.
  27. J. Berenger, "A perfectly matched layer for the absorption of electromagentic waves", J. Comput. Phys., vol. 114, pp.  185-200, 1994.
  28. E. Okoniewska, , private communication, July 1999