2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Development and Experimental Verification of the Wide-Aperture Catheter-Based Microwave Cardiac Ablation Antenna

Zeji Gu, Carey M. Rappaport, Senior Member, IEEE Paul J. Wang and Brian A. VanderBrink

Page 1892.

Abstract:

A new type of catheter-based microwave antenna cardiac ablation applicator has been developed. Unlike previously developed ablation catheters,this device forms a wide aperture that produces a large heating pattern. The antenna consists of the center conductor of a coaxial line, shaped into a spiral and insulated from blood and tissue by a nonconductive fluid-filled balloon. The antenna will be stretched straight inside a catheter for transluminal guiding. Once in place at the cardiac target, the balloon will be inflated,and the coiled spiral antenna will be ejected into the inflated balloon. The wide aperture antenna generates a ring-shaped power pattern. The heat generated from this deposited power is conducted through a volume larger than the spiral diameter, ablating diseased tissue. The resultant lesion profile is both wider and deeper than that of either conventionally used RF catheter-based ablation electrodes or that of other recently reported microwave applicators, and may offer greater heating accuracy and controllability. The new antenna design is tested by measuring S11-and S21-parameters, and by comparing power deposition patterns to conventional monopole antenna in a tissue-equivalent phantom. Heating experiments on in vitro organ tissue and on live pigs using 50, 100, and 150 W of 915-MHz microwave power have been performed to test the efficacy of the wide-aperture antenna design. These studies confirm the hypotheses that the wide-aperture microwave antenna can create lesions of significant depth that may be applicable for the ablative therapy of ventricular tachycardia.

References

  1. W. Jackman, et al. "Catheter ablation of atrioventricular junction using radiofrequency current in 17 patients. Comparison of standard and large-tip electrode catheters", Circulation, vol. 83, p.  1562, 1991.
  2. J. Langberg, et al. "Ablation of atrioventricaular junction using radiofrequency energy using a new electrode catheter", Amer. J. Cardiol., vol.  67, p.  142, 1991.
  3. F. Morady, et al. "Radiofrequency catheter ablation of ventricular tachycardia in patients with coronary artery disease", Circulation , vol. 87, pp.  363-372, 1993.
  4. Y. Kim, et al. "Treatment of ventricular tachycardia by transcatheter radiofrequency ablation in patients with ischemic heart disease", Circulation, vol. 89, pp.  1094-1102, 1994.
  5. J. Langberg, et al. "Catheter ablation or the atrioventricular junction using a helical microwave antenna: A novel means of coupling energy to the endocardium", PACE, vol. 14, pp.  2105-2133, 1991.
  6. R. Nevels, G. Dickey, F. Arndt, G. Raffoul, J. Carl and A. Pacifico, "Microwave catheter design", IEEE Trans. Biomed. Eng., vol. 45, pp.  885-890, July  1998.
  7. L. N. Horowitz, A. H. Harken, J. A. Kastar and M. E. Josephson, "Ventricular resection guided by epicardial and endocardial mapping for treatment of recurrent ventricular tachycardia", New Eng. J. Med., vol. 302, p.  590, 1980.
  8. C. H. Durney, "Electromagnetic field propagation and interaction with tissues,"in An Introduction to the Practical Aspects of Clinical Hyperthermia, S. B. Field, and J. W. Hand, Eds. New York: Taylor & Francis, 1990, ch. 10.
  9. J. G. Whayne, S. Nath and D. E. Haines, "Microwave catheter ablation of myocardium in vitro: Assessment of the characteristics of tissue heating and injury", Circulation, vol. 89, no. 5, pp.  2390-2395, May  1994.
  10. B. A. VanderBrink, Z. Gu, V. Rodriguez, M. S. Link, M. K. Homoud, N. A. M. Estes, III, C. M. Rappaport and P. J. Wang, "Microwave ablation using a wide-aperture antenna design in a porcine thigh muscle preparation: In vivo assessment of temperature profile and geometry", J. Cardiovas. Electrophys., vol. 11, no. 2, pp.  192 -198, Feb.  2000.
  11. L. S. Taylor, "Electromagnetic syringe", IEEE Trans. Biomed. Eng., vol. BME-25, pp.  303-304, May  1978.
  12. J. W. Strohbehn, E. W. Bowers, J. E. Walsh and E. B. Douple, "An invasive antenna for locally induced hyperthermia for cancer therapy", J. Microwave Power, vol. 14, pp.  339-350,  1979.
  13. T. Satoh and P. R. Stauffer, "Implantable helical coil microwave antenna for interstitial hyperthermia", Int. J. Hyperthermia, vol. 4, no. 5, pp.  497-512, 1988.
  14. T. Wonnell, P. Stauffer and J. Langberg, "Evaluation of microwave and radio frequency catheter ablation in a myocardium-equivalent phantom model", IEEE Trans. Biomed. Eng., vol. 39, pp.  1086-1095, Oct.  1992.
  15. C. M. Rappaport, Z. Gu and P. J. Wang, "Wide-aperture microwave catheter-based cardiac ablation", in Progress Electromag. Res. Symp. Dig., Hong Kong, Jan. 1997, p.  316. 
  16. Z. Gu, C. M. Rappaport, P. J. Wang and B. A. VanderBrink, "A 2 1/4 turn spiral antenna for catheter cardiac ablation", IEEE Trans. Biomed. Eng., vol. 46, pp.  1480-1482, Dec.  1999.
  17. A. W. Guy, "Analysis of electromagnetic fields induced in biomedical tissues by thermographic studies on equivalent phantom models", IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.  205 -214, Feb.  1971.
  18. H. Nakagawa and W. S. Yamanashi, et al. "Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation", Circulation, vol. 91, pp.  2264-2273,  1995.