2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Microwave MEMS-Based Voltage-Controlled Oscillators

Aleksander Dec, Member, IEEE and Ken Suyama Senior Member, IEEE

Page 1943.

Abstract:

A microwave voltage-controlled oscillator (VCO) based on coupled bonding wire inductors and microlectromechanical system (MEMS)-based variable capacitors for frequency tuning is demonstrated in this paper. The MEMS-based variable capacitors were fabricated in a standard polysilicon surface micromachining technology. The variable capacitors have a nominal capacitance of 1.4 pF and have a Q factor of 23 at 1 GHz and 14 at 2 GHz. The capacitance is variable from 1.4 to 1.9 pF as the tuning voltage is swept from 0 to 5 V. The VCO, fabricated in a 0.5-µm CMOS technology, was assembled in a ceramic package where MEMS and CMOS dice were bonded together. The oscillator operates at 2.4 GHz, achieves a phase noise of -122 dBc/Hz at 1-MHz offset from the carrier, and exhibits a tuning range of 3.4%.

References

  1. D. Leeson, "A simple model of feedback oscillator noise spectrum", Proc. IEEE, pp.  329-330, Feb.  1966.
  2. K. Kurokawa, "Some basic characteristics of broadband negative resistance oscillator circuits", Bell Syst. Tech. J., pp.  1937-1955,  July  1969.
  3. W. Robins, Phase Noise in Signal Sources: Theory and Applications, Stevenage: U.K.: Peregrinus, 1982, pp.  49-53. 
  4. J. Craninckx and M. Steyaert, "A 1.8 GHz low-phase-noise spiral-LC CMOS VCO", in VLSI Circuits Symp. Tech. Dig., June 1996, pp.  30-31. 
  5. B. Razavi, "A 1.8-GHz CMOS voltage-controlled oscillator", in IEEE ISSCC Tech. Dig., Feb. 1997, pp.  388-389. 
  6. L. Dauphinee, M. Copeland and P. Schvan, "A balanced 1.5 GHz voltage controlled oscillator with an integrated LC resonator", in IEEE ISSCC Tech. Dig., Feb. 1997, pp.  390-391. 
  7. M. Zannoth, B. Kolb, J. Fenk and R. Weigel, "A fully integrated VCO at 2 GHz", in IEEE ISSCC Tech. Dig., Feb. 1998, pp.  224-225. 
  8. D. Young and B. Boser, "A micromachined variable capacitor for monolithic low-noise VCOs", in IEEE Solid-State Sens. Actuator Workshop Dig., June 1996, pp.  86-89. 
  9. A. Dec and K. Suyama, "Micromachined varactor with a wide tuning range", Electron. Lett., vol. 33, no. 11, pp.  922-924, May  22, 1997.
  10. A. Dec and K. Suyama, "Micromachined electromechanically tunable capacitors and their applications to RF ICs", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2587-2595, Dec.  1998.
  11. D. Young and B. Boser, "A micromachined based RF low noise voltage controlled oscillator", IEEE Proc. CICC, pp.  431-434, May  1997 .
  12. A. Dec and K. Suyama, "A 1.9 GHz micromachined based low phase noise CMOS VCO", in IEEE ISSCC Tech. Dig., Feb. 1999, pp.  80-81. 
  13. A. Dec and K. Suyama, "A 2.4 GHz LC CMOS VCO with micromachined tunable capacitors for frequency tuning", in IEEE MTT-S Int. Microwave Symp. Dig. , June 1999, pp.  511-518. 
  14. D. Young, J. Tham and B. Boser, "A micromachine-based low phase-noise voltage controlled oscillator for wireless communications", in Proc. Int. Solid-State Sens. Actuators Conf., June 1999, paper P4D4.1.
  15. D. Koester, R. Mahadevan, A. Shishkoff and K. Markus, "Smart MUMP's design handbook including MUMP's introduction and design rules", MEMS Technol. Applicat. Center, pp.  1-8,  July  1996.
  16. C. Dyck, J. Smith, S. Miller, E. Russick and C. Adkins, "Supercritical carbon dioxide solvent extraction from surface micromachining micromechanical structures", Proc. SPIE, pp.  225-235, Oct.  1996.
  17. J. Craninckx and M. Steyaert, "A CMOS 1.8 GHz low phase noise voltage controlled oscillator with prescaler", in IEEE ISSCC Tech. Dig., Feb. 1995, pp.  266-267.