2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

SAR Generated by Commercial Cellular Phones-Phone Modeling, Head Modeling,and Measurements

Andrea Schiavoni, Member, IEEE Paola Bertotto, Gabriella Richiardi and Paolo Bielli

Page 2064.

Abstract:

This paper presents the computation of the specific absorption rate (SAR) generated by cellular phones inside an anatomical model of a head. Four models of commercially available phones have been considered working at 900-and 1800-MHz bands (global system for mobile communication system). The phones have been modeled by using a computer-aided design representation obtained through the reverse engineering technique. Both SAR distributions and SAR averaged values have been computed inside the anatomical model of a head, by using the finite-difference time-domain method. Computations have been experimentally validated through measurements performed inside anthropomorphic phantoms irradiated by a dipole and cellular phones.

References

  1. "Consideration for Evaluation of Human Exposure to Electromagnetic Fields (EMF's) from Mobile Telecommunication Equipment (MTE) in the Frequency Range 30 MHz-6 GHz", CENELEC Standard ES 59005, Oct. 1998.
  2. "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", IEEE Standard C95.1-1991, 1991.
  3. M. A. Jensen and Y. Rahmat-Samii, "EM interaction of handset antennas and a human in personal communications", Proc. IEEE, vol. 83, pp.  7-17, Jan.  1995.
  4. O. P. Gandhi, J. Y. Chen and D. Wu, "Electromagnetic absorption in the human head for mobile telephones at 835 and 1900 MHz", in Proc. Int. EMC Symp., Rome, Italy,Sept. 1994, pp.  1-5. 
  5. P. Bielli, A. Leoni, P. Massaglia, A. Schiavoni, S. Dionisi, F. Grimaldi and P. Parente, "Expousre to hand-held transceiver radiation: Evaluation models and measurements", presented at the 6th Nordic Digital Mobile Radio Commun. Seminar, Stockholm, Sweden, June 1994.
  6. A. Watanabe, M. Taki, T. Nojima and O. Fujiwara, "Characteristics of the SAR distributions in a head exposed to electromagnetic field radiated by a hand-held portable radio", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1874-1883, Oct.  1996.
  7. A. Schiavoni, G. Richiardi and P. Bielli, "SAR evaluation into an anatomically based model of the human head generated by different types of cellular phones", in EMC'96, Rome, Italy,Sept. 1996, pp.  182-187. 
  8. A. Schiavoni and G. Richiardi, "FDTD analysis of the electromagnetic field into a human head like phantom and comparison with measurements", in 13th Int. Wroclaw Electromag. Compat. Symp. and Exhibition, Wroclaw, Poland, 1996, pp.  25- 28. 
  9. M. Okoniewski and M. Stuchly, "A study of handset antenna and human body interaction", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1855-1864, Oct.  1996.
  10. O. P. Gandhi, G. Lazzi and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1884-1897, Oct.  1996.
  11. Kuster, Balzano, and Lin, Eds., Mobile Communication Safety, London: U.K.: Chapman & Hall, 1996.
  12. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetic, Boca Raton, FL: CRC Press, 1993.
  13. A. Taflove, Computational Electrodynamics-The Finite Difference Time Domain Method , Norwood, MA: Artech House, 1995.
  14. Tinniswood, C. M. Furse and O. P. Gandhi, "Computations of SAR distribution for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code", IEEE Trans. Antennas Propagat., vol. 46, pp.  829-833, June  1998.
  15. O. P. Gandhi, G. Lazzi, Tinniswood and Yu, "Comparison of numerical and experimental methods for determination of SAR and radiation patterns of hand-held wireless telephones", Bioelectromagnetics, vol. 20, pp.  93-101, 1999.
  16. M. Annunziato, I. Bertini and F. Matera, "Neural filter for segmentation of NMR images", in 9th SCIA, June 1995.
  17. G. Richiardi, V. Vezzari, A. Schiavoni, P. Bertotto and P. Bielli, "Numerical representation of cellular phones: Procedure and accuracy", in EMC '98, Rome, Italy, pp.  184-189. 
  18. Dielectric Data Base, London, U.K.: MCL, 1995.
  19. G. Lazzi, C. M. Furse and O. P. Gandhi, "FDTD computation of electromagnetic absorption in the human head for mobile telephones", in BEMS'96, Victoria, BC, Canada,.
  20. S. Berntsen and S. N. Hornsleth, "Retarded time absorbing boundary conditions", IEEE Trans. Antennas Propagat., vol. 42, pp.  1059-1064, Aug.  1994.
  21. K. Meier, O. Egger, T. Schmid and N. Kuster, "Dosimetric laboratory for mobile communications", in 11th Int. EMC Tech. Exhibition Symp., Zurich, Switzerland,Mar. 1995, pp.  297-300. 
  22. T. Schmid, O. Egger and N. Kuster, "Automated E -field scanning system for dosimetric assessments", IEEE Trans. Microwave Theory Tech., vol. 44, no. 1, pp.  105-113, Jan.  1996.
  23. Hartsgrove, Kraszewsky and Surowiec, "Simulated biological materials for electromagnetic radiation absorption studies", Bioelectromagnetics, vol. 8, no. 1, pp.  29-36, 1987.
  24. "HP85070B Dielectric Probe Kit User's Manual", Hewlett-Packard Company, Santa Rosa, CA, 1997.
  25. "Guide to Expression of Uncertainty in Measurement", ISO TAG 4, 1993.