2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Integrated Models for the Analysis of Biological Effects of EM Fields Used for Mobile Communications

Francesca Apollonio, Micaela Liberti, Guglielmo d'Inzeo and Luciano Tarricone

Page 2082.

Abstract:

The understanding of the modalities of interaction of electromagnetic (EM) fields with biological material is a key point in the identification of possible induced effects. Since the beginnings of bioelectromagnetic research studies, most of the attention has been focused on the effects on nervous systems and neuronal cells. The importance of this target has recently increased due to the wide diffusion of mobile terminals, used close to the head. In this paper, an integrated interaction model is proposed. The model, validated in each part of its components with experimental data, allows to obtain a quantitative link from the external applied field to the effects on neurons (isolated or linked to similar others). The models is firstly based on the evaluation of the EM field at cellular membrane level, then on the evaluation of the effects induced on each component of the model growing from the low biophysical level (membrane channels) to the biological one (neuron time behavior). The use of well-assessed models for the simulations of each part allows both the evaluation of the effect at different levels of complexity, and the employment of this effect acting as an input on the upper level. This approach allows,for the first time, a complete quantitative evaluation of the effects on neurons due to the fields from the existing mobile systems, and can be a useful instrument for the evaluation of the possible health impact of new technologies.

References

  1. "The Radio Science Bulletin", Dec.  1993.
  2. Research Coordination Committee, Office of Global and Integrated Environmental Health, "International EMF Project:Health effects of static ad time varying electric and magnetic fields", World Health Organization, Geneva, Switzerland, Minutes of Meeting 4-5 D. 1, Dec. 1997.
  3. C. K. Chou and A. W. Guy, "Effects of electromagnetic fields on isolated nerve and muscle preparations", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.  141-147, Jan.  1978.
  4. S. L. Arber and J. C. Lin, "Microwave-induced changes in nerve cells: Effects of modulation and temperature", Bioelectromagnetics, vol. 6, pp.  257-270, 1985.
  5. O'Neil, J. C. Lin and Y.-C. Ma, "Estimation and verification of a stochastic neuron model", IEEE Trans. Biomed. Eng., vol. BME-33, pp.  654-666, July  1986.
  6. P. Bernardi, G. d'Inzeo, S. Pisa and J. C. Lin, "Effects of low-frequency modulated microwaves on neuronal activity,"in Italian Recent Advances in Applied Electromagnetics , G. Franceschetti, and R. Pierri, Eds. Napoli: Italy: Liguori Editore, 1991, pp.  515-531. 
  7. P. Bernardi and G. d'Inzeo, "A non linear analysis of the effects of transient electromagnetic fields on excitable membranes", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  670-679, July  1984.
  8. P. Bernardi, M. Cavagnaro and S. Pisa, "Evaluation of the SAR distribution in the human head for cellular phones used in a partially closed environment", IEEE Trans. Electromagn. Compat., vol. 38, pp.  357-366, Mar.  1996.
  9. P. Bernardi, M. Cavagnaro, S. Pisa and E. Piuzzi, "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2074-2082, Dec.  1998.
  10. A. R. Orlando, G. Mossa and G. d'Inzeo, "Effects of microwave radiation on the permeability of carbonic anhydrase loaded unilamellar liposomes", Bioelectromagnetics , vol. 15, no. 3, pp.  303-313, 1994.
  11. G. d'Inzeo, C. Giacomozzi and S. Pisa, "Analysis of the stimulation of a nerve fiber surrounded by an inhomogeneous, anisotropic and dispersive tissue", Appl. Comput. Electromag. Soc. J. (Special Issue), vol. 7, no.  2, pp.  179-190, 1992.
  12. G. d'Inzeo, K. P. Esselle, S. Pisa and M. A. Stuchly, "Comparison of homogeneous and heterogeneous tissue models for coil optimization in neural stimulation", Radio Sci., vol. 30, no. 1, pp.  245-253, 1995.
  13. B. Bianco, A. Chiabrera, G. d'Inzeo, A. Galli and A. Palombo, "Comparison between `classical' and `quantum' modeling of bioelectromagnetic interaction mechanisms,"in Electricity and Magnetism in Biology and Medicine, M. Blank, Ed. San Francisco, CA: San Francisco Press, 1993, pp.  537-539. 
  14. Abbate, G. d'Inzeo, A. Palombo and L. Tarricone, "Evaluation of fractal properties of ACh-receptor channel's gating exposed to microwave fields", Bioenerg. Biochem., vol. 35, pp.  81-86, 1994.
  15. F. Apollonio, G. d'Inzeo and L. Tarricone, "Modeling of neuronal cells exposed to RF fields from mobile telecommunication equipment", Bioelectrochem. Bioenerg. , vol. 47, pp.  199-205, 1998.
  16. C. K. Chou, H. Bassen, J. Osepchouk, Q. Balzano, R. Petersen, M. Meltz, R. Cleveland, J. C. Lin and L. Heynick, "Radio frequency electromagnetic exposure: Tutorial review on experimental dosimetry", Bioelectromagnetics , vol. 17, pp.  195-208, 1996.
  17. M. G. Douglas, M. Okoniewski and M. A. Stuchly, "A planar diversity antenna for handheld PCS devices", IEEE Trans. Veh. Technol., vol. 47, pp.  747-754, Mar.  1998 .
  18. J. Wang and O. Fujiwara, "FDTD computation of temperature rise in the human head for portable telephones", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1528-1534, Aug.  1999.
  19. G. Lazzi and O. P. Gandhi, "On modeling and personal dosimetry of cellular telephone helical antennas with the FDTD code", IEEE Trans. Antennas Propagat., vol. 46, pp.  525-530, Apr.  1998.
  20. A. D. Tinniswood, C. M. Furse and O. P. Gandhi, "Computations of SAR distributions for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code", IEEE Trans. Antennas Propagat., vol. 46, pp.  829-833, June  1998.
  21. E. C. Fear and M. A. Stuchly, "Biological cells with gap-junctions in low-frequency electric fields", IEEE Trans. Biomed. Eng., vol. 45, pp.  856-866,  July  1998.
  22. O. P. Gandhi, G. Lazzi and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1884-1897, Oct.  1996.
  23. P. Bernardi, M. Cavagnaro, G. d'Inzeo and M. Liberti, "Cell modeling to evaluateEM field absorption in biological samples", in XXVI Gen. Assembly Int. URSI Abstract Book , Aug. 13-21 1999, p.  615. 
  24. L. Liu and S. F. Cleary, "Absorbed energy distribution from RF EM radiation in a mammalian cell model", Bioelectromagnetics, vol. 16, pp.  160-171, 1995.
  25. W. R. Adey, "Cell and molecular biology associated with radiation fields of mobile telephones", Rev. Radio Sci. 1996-1999 , pp.  845-872, 1999.
  26. C. A. Cain, "A theoretical basis for MW and RF field effects on excitable cellular membranes", IEEE Trans. Microwave Theory Tech., vol. MTT-28, p.  142,  Feb.  1980.
  27. G. P. Drago, M. Marchesi and S. Ridella, "The frequency dependence of an analytical model of an electrically stimulated biological structure", Bioelectromagnetics , vol. 5, pp.  47-62, 1984.
  28. P. Bernardi, G. d'Inzeo and S. Pisa, "A generalized model of the neuronal membrane electrical activity", IEEE Trans. Biomed. Eng., vol. 41, pp.  125-133,  Feb.  1994.
  29. G. d'Inzeo, S. Pisa and L. Tarricone, "Ionic channels gating under EM exposure: A stochastic model", Bioelectron. Bioeng. J., no. 29, pp.  290-304, 1993 .
  30. G. d'Inzeo, P. Bernardi, F. Eusebi, F. Grassi, C. Tamburello and B. M. Zani, "Effects of microwaves on the acetylcholine-induced channels in cultured chick myotubes", Bioelectromagnetics, vol. 4, pp.  363-372, 1988.
  31. M. Zago, A. Palombo and G. d'Inzeo, "Solvent-hemoglobin binding site interaction under microwave electromagnetic exposure: A molecular dynamics study", in 2nd World Congr. Elect. Mag. Biol. Med. Abstract Book, 1997, p.  196. 
  32. B. Bianco, A. Chiabrera, E. Moggia and T. Tommasi, "Enhancement of the interaction between low-intensity RF EM fields and ligand binding due to cell basal metabolism", Wireless Networks, vol. 3, pp.  477-487, 1997.
  33. C. F. Blackman, J. P. Blanchard, S. G. Benane and D. E. House, "The ion parametric resonance model predicts magnetic field parameters that affect nerve cells", FASEB J. , vol. 9, pp.  547-551, 1995.
  34. S. Bruna, W. Rocchia, B. Bianco, J. J. Kaufman and A. Chiabrera, "The state of the science for the Langevin-Lorentz model", in 2nd World Cong. Elect. Mag. Biol. Med. Abstract Book, 1997, pp.  375- 378. 
  35. M. H. Repacholi, "Low-level exposure to radiofrequency electromagnetic fields: Health effects and research needs", Bioelectromagnetics, vol. 19, pp.  1-19, 1998.
  36. J. A. Stratton, Electromagnetic Theory, New York: McGraw-Hill, 1941.
  37. F. Apollonio, M. Liberti, M. Cavagnaro, L. Tarricone and G. d'Inzeo, "Un modello integrato per l'interazione dei campi elettromagnetici con i sistemi biologici", Alta Freq., vol.  3, pp.  22-28, 1999.
  38. W. F. Pickard and F. Rosenbaum, "Biological effects of MW at the membrane level: Two possible athermal electrophysiological mechanisms and proposed experimental tests", Math. Biosci., vol. 39, p.  235, 1978.
  39. H. Wachtel, R. Seaman and W. Joines, "Effects of low-intensity MW on isolated neurons", Annu. New York Acadamy Sci., vol. 247, p.  46, 1975.
  40. A. Caddemi, C. Tamburello, L. Zanforlin and V. Torregrossa, "MW effects on isolated chick embryo hearts", Bioelectromagnetics, vol. 7, p.  3359, 1986.
  41. E. Neher and B. Sakmann, "Single-channel currents recorded from membrane of denervated frog muscle fibers", Nature, vol. 260, pp.  799-802, 1976.
  42. F. Apollonio, G. d'Inzeo and L. Tarricone, "A generalized model for the analysis of neuronal cells exposed to electromagnetic fields", in XX BEMS Abstract Book , 1998, p.  242. 
  43. B. Hille, Ionic Channels of Excitable Membranes, Sunderland: U.K.: Sinauer Associates, 1986.
  44. A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve", J. Physiol., vol. 117, pp.  500-544, 1952.
  45. F. Apollonio, G. d'Inzeo and L. Tarricone, "Energy evaluation of MW effects on ACh channels with parallel computing", Electrobiol. Magnetobiol., vol. 19, no. 1, 2000. to be published.
  46. N. Laxminarayanaiah, Equation of Membrane Biophysics, New York: Academic, 1984.
  47. "ENV50166-2", European Prestandard ENV 50 166-2, 1995.
  48. Int. Commission Non-Ionizing Radiation Protection "Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields", Health Phys. , vol. 74, no. 4, pp.  494-522, 1998.
  49. C. Polk and E. Postow, CRC Handbook of Biological Effects of Electromagnetic Fields, Boca Raton, FL: CRC Press, 1986.
  50. A. Chiabrera, C. Nicolini, and H. P. Schwan, Eds., "Interaction mechanisms of electromagnetic fields,"in Interaction Between Electromagnetic Fields and Cells , New York: Plenum, 1985.
  51. W. R. Adey, "Electromagnetics in biology and medicine,"in Modern Radio Science 1993, H. Matsumoto, Ed. New York: Oxford Univ. Press, 1993.