2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Feasibility of Noninvasive Measurement of Deep Brain Temperature in Newborn Infants by Multifrequency Microwave Radiometry

K. Maruyma, S. Mizushina, Member, IEEE T. Sugiura, Member, IEEE G. M. J. Van Leeuwen, J. W. Hand, G. Marrocco, Member, IEEE F. Bardati, Member, IEEE A. D. Edwards, D. Azzopardi and D. Land

Page 2141.

Abstract:

Clinical studies of hypothermal neural rescue therapy for newborn infants who have suffered hypoxia-ischaemia are currently hindered by the difficulty in measuring deep brain temperature. This paper addresses: the specific requirements for this measurement problem, the design of a proposed radiometer system, a method for retrieving the temperature profile within the cooled head, and an estimation of the precision of the measurement of deep brain temperature using the technique. A five-frequency-band radiometer with a contact-type antenna operating within the range 1-4 GHz is proposed to obtain brightness temperatures corresponding to temperature profiles predicted by a realistic thermal model of the cooled baby head. The problems of retrieving the temperature profile from this set of brightness temperatures, and the estimation of its precision, are solved using a combination of model fitting and Monte Carlo techniques. The results of this paper show that the proposed technique is feasible, that it is expected to provide a good estimate of the temperature profile within the cooled baby-head, and that the estimated precision (2) of the temperature measured in the deep brain structures is better than 0.8 K, depending upon the estimation procedure used.

References

  1. F. Colbourne and D. Corbett, "Delayed postischemic hypothermia: A six month survival study using behavioral and histological assessments of neuroprotection", J. Neurosci., vol. 15, pp.  7250-7260, 1995.
  2. E. Sirimanne, R. M. Blumberg, D. Bossano, M. Gunning, A. D. Edwards, P. D. Gluckman and C. E. Williams, "The effect of prolonged modification of cerebral temperature on outcome following hypoxic-ischaemic brain injury in the infant rat", Pediatric Res., vol. 39, no. 4, pp.  591-597, 1996.
  3. M. Thoresen, J. Penrice, A. Lorek, E. Cady, M. Wylezinska, V. Kirkbride, C. Cooper, G. C. Brown, A. D. Edwards, J. S. Wyatt and E. O. R. Reynolds, "Mild hypothermia following severe transient hypoxia-ischaemia ameliorates delayed cerebral energy failure in the newborn piglet", Pediatric Res., vol. 37, pp.  667-670, 1995.
  4. C. E. Williams, A. J. Gunn, C. Mallard and P. D. Gluckman, "Outcome after ischemia in the developing sheep brain: An electroencephalographic and histological study", Annu. Neurol. , vol. 31, pp.  14-21, 1992.
  5. M. Thoresen, S. Satas, M. Puka-Sundvall, A. Whitelaw, A. Hallestrom, E. Loberg, U. Ungerstedt, P. A. Steen and H. Hagberg, "Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins", Neuroreport, vol. 8, pp.  3359-3362, 1997.
  6. A. D. Edwards, X. Yue, M. V. Squier, M. Thoresen, E. B. Cady, J. Penrice, C. Cooper, J. S. Wyatt, E. O. R. Reynolds and H. Mehmet, "Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia", Biochem. Biophys. Res. Commun., vol. 217, no. 3, pp.  1193-1199, 1995 .
  7. A. J. Gunn, P. D. Gluckman and T. R. Gunn, "Selective head cooling in newborn infants after perinatal asphyxia: A safety study", Pediatrics, vol. 102, no.  4, Pt. 1, pp.  885-892, Oct.  1998.
  8. D. Azzopardi, F. M. Cowan, N. J. Robertson and A. D. Edwards, "Mild whole body hypothermia following birth asphyxia", Pediatric Res., vol. 45, p.  908, 1999.
  9. E. B. Cady, P. C. D'Souza, J. Penrice and A. Lorek, "The estimation of local brain temperature by in vitro 1H magnetic resonance spectroscopy", Mag. Reson. Med., vol. 33, pp.  862-867, 1995.
  10. P. Mellergard, "Changes in human intracerebral temperature in response to different methods of brain cooling", Neurosurgery, vol. 31, pp.  671-677, 1992.
  11. P. Mellergard, "Monitoring of rectal, epidural and intraventricular temperature in neurosurgical patients", Acta Neurochiral Suppl. Wien., vol. 60, pp.  485-487, 1994.
  12. P. Mellergard, "Intracerebral temperature in neurosurgical patients: Intracerebral temperature gradients and relationships to consciousness level", Surgical Neurol., vol. 43, no. 1, pp.  91-95, Jan.  1995.
  13. R. J. Corbett, A. R. Laptook, G. Tollefsbol and B. Kim, "Validation of a noninvasive method to measure brain temperature in vivo using 1H NMR spectroscopy", J. Neurochem., vol. 64, pp.  1224-1230,  1995.
  14. J. R. MacFall, D. M. Prescott, H. C. Charles and T. V. Samulski, "1H MRI phase thermometry in vivo in canine brain, muscle and tumor tissue", Med. Phys., vol. 23, pp.  1775 -1782, 1996.
  15. D. V. Land, "A clinical microwave thermography system", Proc. Inst. Elect. Eng., vol. 134A, pp.  193-200, 1987.
  16. S. Mizushina, Non-Invasive Temperature Measurement, New York: Gordon and Breach, 1989.
  17. Y. Leroy, B. Bocquet and A. Mamouni, "Non-invasive microwave radiometry thermometry", Physiol. Meas., vol. 19, no. 2, pp.  127-148, May   1998.
  18. P. Thouvenot, J. Robert, A. Mamouni and C. Renard, "Microwave thermometry in intracranial pathology,"in Biomed. Thermol., M. Gautherie, and E. Albert, Eds. New York: Alan Liss, 1982, pp.  501-508. 
  19. D. F. Wait and T. Nemoto, "Measurement of the noise temperature of a mismatched noise source", IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp.  670-675, Sept.  1968.
  20. K. M. Lüdeke, B. Schiek and J. Kohler, "Radiation balance microwave thermograph for industrial and medical applications", Electron. Lett., vol. 14, pp.  194-196,  1978.
  21. G. M. J. Van Leeuwen, J. W. Hand, A. D. Edwards, D. Azzopardi and J. J. W. Lagendijk, "Numerical modeling of temperature distributions within the neonatal head", Pediatric Res., vol. 48, no.  3, pp.  351-356, 2000.
  22. D. A. Nelson and S. A. Nunneley, "Brain temperature and limits on transcranial cooling in humans: Quantitative modeling results", European J. Appl. Physiol., vol. 78, pp.  353-359, 1998.
  23. Xu, P. Tikuisis and G. Giesbrecht, "A mathematical model for human brain cooling during cold-water near-drowning", J. Appl. Physiol., vol. 86, pp.  265-272, 1999.
  24. R. H. Dicke, "The measurement of thermal radiation at microwave frequencies", Rev. Sci. Instrum., vol. 17, pp.  268-275, 1946.
  25. S. Mizushina, M. Matsuda, K. Matsui, Y. Hamamura and T. Sugiura, "Non-invasive temperature profiling using multi-frequency microwave radiometry in presence of water-filled bolus", Trans. IEICE, vol. E74, pp.  1293-1302, 1991.
  26. S. Mizushina, T. Shimizu, K. Suzuki, M. Kinomura, H. Ohba and T. Sugiura, "Retrieval of temperature-depth profiles in biological objects from multi-frequency microwave radiometric data", J. Electromag. Waves Applicat., vol. 7, pp.  1515-1548, 1993.
  27. J. Dobbing and J. Sands, "Quantitative growth and development of human brain", Archives Disease in Childhood, vol. 48, pp.  757-767, 1973.
  28. K. R. Foster, J. L. Schepps, R. D. Stoy and H. P. Schwan, "Dielectric properties of brain tissue between 0.01 and 10 GHz", Phys. Med. Biol., vol. 24, pp.  1177-1187, 1979.
  29. J. L. Schepps and K. R. Foster, "The UHF and microwave dielectric properties of normal and tumour tissues: Variation in dielectric properties with tissue water content", Phys. Med. Biol., vol. 25, pp.  1149-1159, 1980.
  30. M. A. Stuchly and S. S. Stuchly, "Dielectric properties of biological substances-Tabulated", J. Microwave Power, vol. 15, pp.  19-26, 1980.
  31. C. Gabriel, S. Gabriel and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey", Phys. Med. Biol., vol. 41, pp.  2251-2269,  1996.
  32. S. Gabriel, R. W. Lau and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz", Phys. Med. Biol., vol. 41, pp.  2251-2269, 1996.
  33. J. B. Hasted, Aqueous Dielectrics, London: U.K.: Chapman & Hall, 1973, ch. 1, 2, and 3 .
  34. K. Maruyama, Y. Niwa, S. Mizushina, J. Hand, H. Hirata and T. Sugiura, "Non-invasive temperature measurement in neonate's brain using multi-frequency microwave radiometry", in Proc. Asia-Pacific Microwave Conf., vol. 2, 1998, pp.  885- 888. 
  35. H. Ohba, M. Kinomura, M. Ito, T. Sugiura and S. Mizushina, "Multi-frequency microwave radiometry for noninvasive thermometry using a new temperature profile model function", Trans. IEICE Electron., vol. E78-C, pp.  1071-1081, 1995.
  36. J. B. Van de Kamer, N. Van Wieringen, A. A. C. De Leeuw and J. J. W. Lagendijk, "The significance of accurate dielectric tissue data for hyperthermia treatment planning", Int. J. Hyperthermia, to be published.