2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Evaluation of Electromagnetic Interference from a Cellular Telephone with a Hearing Aid

K. Caputa, M. A. Stuchly, Fellow, IEEE M. Skopec, H. I. Bassen, P. Ruggera and M. Kanda

Page 2148.

Abstract:

In a collaborative effort, electromagnetic interference (EMI) is evaluated from a global system for mobile communication telephone with one model of a hearing aid used in the ear canal. Since the electromagnetic fields cannot be measured in the ear canal, a reliable method of their modeling with the finite-difference time-domain method is established. Very good agreement has been achieved between the measured and computed electric and magnetic fields in free space in very close proximity to the telephone. Subsequently,electric and magnetic fields in the ear canal are computed for two models of the ear, and three positions of the telephone. The computed fields are compared with the acoustic measurements for a small number of humans subjected to the EMI test.

References

  1. M. Skopec, "Hearing aid electromagnetic interference from digital wireless telephones", IEEE Trans. Rehab. Eng., vol. 6, pp.  235-239, Feb.  1998.
  2. F. K. Kuk and K. H. Nielsen, "Factors affecting interference from digital cellular telephones", Hearing J., vol. 50, pp.  32-34, 1997.
  3. T. A. Victorian, "An update on digital cellular telephone interference and hearing aid compatibility", Hearing J., vol. 41, pp.  53-60, 1998 .
  4. M. Okoniewski and M. A. Stuchly, "Modeling of interaction of electromagnetic fields from a cellular telephone with hearing aids", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1686-1693, Nov.  1998.
  5. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 1995.
  6. J. S. Colbourn and Y. Rahmat-Samii, "Human proximity effects on circular polarized handset antennas in personal satellite communications", IEEE Trans. Antennas Propagat., vol. 46, pp.  813-820, June  1998.
  7. J.-P. Berenger, "Perfectly matched layer for the FDTD solution of wave-structure interaction problems", IEEE Trans. Antennas Propagat., vol. 44, pp.  110-117, Jan.  1996.
  8. M. Okoniewski and M. A. Stuchly, "A study of the handset antenna and human body interaction", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1855-1864, Oct.  1996.
  9. Q. Yu, O. P. Gandhi, M. Aronsson and D. Wu, "An automated SAR measurement system for compliance testing of personal wireless devices", IEEE Trans. Electromagn. Compat., vol. 41, pp.  234-245, Aug.  1999.
  10. A. D. Tinniswood, C. M. Furse and O. P. Gandhi, "Computations of SAR distributions for two anatomically based models of the human head using CAD files of commercial telephones and the parallelized FDTD code", IEEE Trans. Antennas Propagat., vol. 46, pp.  829-833, June  1998.