2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 11, November 2000

Table of Contents for this issue

Complete paper in PDF format

Computer Simulation and Experimental Studies of SAR Distributions of Interstitial Arrays of Sleeved-Slot Microwave Antennas for Hyperthermia Treatment of Brain Tumors

James C. Lin, Fellow, IEEE Shinji Hirai, Chin-Lin Chiang, Wen-Lin Hsu, Jenn-Lung Su, Member, IEEE and Yu-Jin Wang

Page 2191.

Abstract:

The specific-absorption-rate (SAR) distributions produced by three-, six-, and seven-element arrays of sleeved-slot interstitial antennas in brain-equivalent tissues are investigated in this paper. Computer simulations of SAR distributions are compared to experimental measurement made in a brain-equivalent gel phantom at 2450 MHz. Results showed that a 15-mm antenna spacing would produce SAR patterns with the least variation in its distribution compared to smaller or larger spacings. Moreover, the region of elevated SARs is inscribed by the array and extends 35 mm in length to include the distal antenna-tip region. In addition, results indicate that a hexagonal array configuration of either six or seven sleeved-slot interstitial antennas could provide elevated SARs in brain tissues. Since the six-element configuration uses one less interstitial antenna with comparable SARs, it offers a better scheme for hyperthermia treatment of brain tumors.

References

  1. M. H. Seegenschmiedt, P. Fessenden, and C. C. Vernon, Eds., Thermoradiotherapy and Thermochemotherapy, Vol. 1, Biology, Physiology and Physics, Berlin: Germany: Springer-Verlag, 1995.
  2. M. H. Seegenschmiedt, P. Fessenden, and C. C. Vernon, Eds., Thermoradiotherapy and Thermochemotherapy, Vol. 2, Clinical Applications , Berlin: Germany: Springer-Verlag, 1996.
  3. J. H. Suh and G. H. Barnett, "Brachytherapy for brain tumor", Hematol. Oncol. Clin. North Amer., vol. 13, pp.  635-650, 1999.
  4. J. Overgaard, D. G. Gonzalez, M. C. C. M. Hulshof, G. Arcangeli, O. Dahl, O. Mella and S. M. Bentzen, "Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma", Lancet, vol. 345, pp.  540-543, 1995.
  5. J. Overgaard, D. G. Gonzalez, M. C. C. M. Hulshof, G. Arcangeli, O. Dahl, O. Mella and S. M. Bentzen, "Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma-A multicentre randomized trial by the European Society for Hyperthermic Oncology", Int. J. Hyperthermia, vol. 12, pp.  3-20, 1996.
  6. H. Kuwano, K. Sumiyoshi, M. Watanabe, N. Sadanaga, T. Nozoe, M. Yasuda and K. Sugimachi, "Preoperative hyperthermia combined with chemotherapy and irradiation for the treatment of patients with esophageal carcinoma", Tumori., vol. 81, pp.  18-22, 1995.
  7. B. Stea, J. Kittleson and J. R. Cassady, "Treatment of malignant glioma with interstitial irradiation and hyperthermia", Int. J. Radiat. Oncol. Biol. Phys., vol. 24, pp.  657-667, 1992.
  8. T. Nakajima, D. W. Roberts, T. P. Ryan, P. J. Hoopes, C. T. Coughlin, B. S. Trembly and J. W. Strohbehn, "Pattern of response to interstitial hyperthermia and brachytherapy for malignant intracranial tumour: A CT analysis", Int. J. Hyperthermia, vol. 9, pp.  491-502, 1993.
  9. B. Emami, C. Scott, C. A. Perez, S. Asbell, P. Swift, P. Grigsby, A. Montesano, P. Rubin, W. Curran, J. Delrowe, H. Arastu, K. Fu and E. Moros, "Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors-A prospectively controlled randomized study by the Radiation Therapy Oncology Group", Int. J. Radiat. Oncol. Biol. Phys., vol. 34, pp.  1097-1104, 1996.
  10. P. K. Sneed, P. R. Stauffer, M. W. McDermott, C. J. Diederich, K. R. Lamborn, M. D. Prados, S. Chang, K. A. Weaver, L. Spry, M. K. Malec, S. A. Lamb, B. Voss, R. L. Davis, W. M. Wara, D. A. Larson, T. L. Phillips and P. H. Gutin, "Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost + /- hyperthermia for glioblastoma multiforme", Int. J. Radiat. Oncol. Biol. Phys., vol. 40, pp.  287-295, 1998.
  11. J. C. Lin and Y. J. Wang, "Interstitial microwave antennas for thermal therapy", Int. J. Hyperthermia, vol. 3, pp.  37-47, 1987.
  12. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, New York: Wiley, 1981, ch. 1.
  13. M. F. Iskander and A. M. Tumeh, "Design optimization of interstitial antennas", IEEE Trans. Biomed. Eng., vol. 36, pp.  238-246, Feb.  1989 .
  14. J. C. Lin, "Engineering and biophysical aspects of microwave and radio-frequency radiation,"in Hyperthermia,D. J. Watmough, and W. M. Ross, Eds. Glasgow: Scotland: Blackie, 1986, pp.  42-75. 
  15. A. W. Guy, "Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models", IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp.  205 -214, Feb.  1971.
  16. J. W. Baish, P. S. Ayyaswamy and K. R. Foster, "Heat transport mechanisms in vascular tissues: A model comparison", J. Biomech. Eng., vol. 108, pp.  324-331,  1986.
  17. J. Crezee and J. J. W. Lagendijk, "Temperature uniformity during hyperthermia: The impact of large vessels", Phys. Med. Biol., vol. 37, pp.  1331-1337,  1992.