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Human Exposure to Radio Base-Station Antennas
In Urban Environment

Paolo BernardiFellow, IEEE Marta Cavagnaro, Stefano Pjddember, IEEEand Emanuele Piuzzi

Abstract—in this paper, the human exposure to the electro- At present, the most used technique for studying the power
magnetic field radiated by a radio base-station antenna operating absorbed in a subject exposed to EM fields is the finite-differ-
around 900 MHz in an urban environment has been analyzed. ence time-domain (FDTD) method [10]-[12]. However, when

A hybrid ray-tracing/finite-difference time-domain (FDTD) . .
method has been used to evaluate the incident field and the power exposure in an urban environment has to be modeled, the FDTD

absorbed in an exposed subject in the presence of reflecting walls. iS Not easily applicable due to the huge dimensions of the region
The base-station antenna has been characterized by means of itsto be studied with respect to the typical wavelength used in cel-
radiation pattern, evaluated with an FDTD analysis of a typical  |ular telecommunication systems.

panel antenna. Three particular situations for a rooftop mounted In this paper, the exposure of an anatomical model of the

antenna have been considered. In all the examined cases, th% bodyv to the field radiated b b tali t
obtained results, in terms of incident field and absorbed power, are uman body to the neld radiated by a base-station antenna op-

below the most recognized safety standard levels. The importance €rating around 900 MHz has been studied by using a hybrid
of an accurate modeling of the environment in which the exposure ray-tracing/FDTD technique. This technique uses the FDTD

takes place has been evidenced. method to study a limited region just containing the exposed
Index Terms—Dosimetry, FDTD methods, human exposure, subject, and geometrical optics to model the field propagation
land mobile radio cellular systems, ray tracing. in the remaining part of the domain, including the radiating an-

tenna and the reflecting/scattering objects. The radiation pat-
tern of the base-station antenna, which is the input of the hy-

brid method, has been computed by means of an FDTD anal-

I HE rapid diffusion of wireless communication systemssis. Three typical exposure conditions for a rooftop mounted
such as cellular phones and wireless local area netwolsgtenna have been considered and analyzed.
(WLANS), has caused an increased concern for the potential

detrimental effects on human health deriving from exposure to
electromagnetic (EM) fields emitted by the antennas of these Il. METHODS AND MODELS

systems. The FDTD method is currently the most used technique in

In particular, with reference to cellular telecommunicatio . : -

: L dosimetry problems. In fact, it allows a sufficiently accurate
systems, two different exposure conditions are present. The fifs . . . .

; : simulation of the field source (antenna) and a simple modeling
is the exposure of the user’s head to the portable phone a

. : ! or%dneterogeneous scatterers of complex shape (human body).
the second is the general population exposure to the field ra-. . e .
. . . This method, however, is not efficient to study scattering prob-
diated by the base-station antennas. The power absorbed in e nvolving large regions (urban environment) due to the
the head of a cellular phone user, due to the field radiated g 'arg g

the phone antenna, has been extensively studied (.g., [1]-] ge memory and CPU time requirements. In order to overcome

. . . problem, in this paper, the FDTD method has been used

while the assessment of the human exposure to the field radiated . . . . . S
. . o ) n conjunction with the ray-tracing technique, which is able to
by radio base-station antennas operating in urban areas is a tas ) S . . .
) . model field propagation in large multireflection environments
that today remains still unresolved. In fact, up to now, the ex- iy
; : - very efficiently.

posure to base-station antennas has been studied only with ret: ; . .

As a first step, the ray-tracing approach is used to evaluate

erence to S|mpl|f|gd conditions (uniform plane-wave |nC|denc%)le EM field incident on the exposed subject, starting from the
[6]-[8]. Base stations, however, often operate in an urban en-

X | . r%diation pattern of the base-station antenna and taking into ac-
vironment, where many scattering objects are present (groun . . . -
gtmt reflecting walls present in the environment (buildings,

buildings, etc.); therefore, the exposure conditions are quite Gclround, etc.). The ray-tracing algorithm used for the incident

ferent from free-space far-field exposure, and the need of an dc- o : :
. . . 1€ld evaluation is based on geometrical optics [13] and models

curate modeling of the real scenario arises [9]. These studieg” . . . )
. - o only first-order reflections. Neglecting higher order reflections

are particularly important in view of the fact that people can be

. . . . 1S a reasonable approximation for the particular environments
exposed to the field radiated by base stations for a long t'rgﬁ%t will be studied in the following; in fact, urban environments

although the eXposure levels are generally lower than those are only partially closed and the walls reflect less than 50% of

to mobile terminals. o . X
the incident power. As a consequence, higher order reflections
influence the field distribution only in a slight manner, and they

. INTRODUCTION
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using the well-known reflection coefficients for parallel and per- Bem, T&m
pendicular polarization [15]. A

As a second step, the incident field obtained with ray tracing ’ ’ | I 5
is used as an excitation inside the FDTD region in which the ex- - g <
posed subject is modeled, making use of the equivalence prin- 9cm §

ciple.

According to this principle, the total EM field present inside I
a limited region containing scattering objects, and due to ex-
ternal sources, is computed neglecting these sources and im-
posing equivalent electrigJ.) and magneti¢J,,,) currents at ' ‘ 1
the boundary surface of the region. In particular, considering
only the scattered field to be present out of the considered re-
gion, the equivalent currents are given by ‘ ’ ‘

129 cm

Je =—n x Hj 1)

(@) (b)
Jm =n x E; (2)

Fig. 1. Panel antenna geometry. (a) Frontal view. (b) Lateral view.

whereE;, H; represent the incident field, amds the unit vector
normal to the boundary surface and directed toward the external
(scattered field) region.

Within the hybrid method, the equivalence principle is
applied dividing the FDTD domain under study in two regions:
an inner region where the total EM field is computed, and an
external one where only the scattered field is evaluated. This =
external region is then closed applying a five-cell uniaxial
perfectly matched layer (UPML) absorbing boundary condition
with linear profile and 1% reflection coefficient [16]. The
FDTD field excitation is realized by imposing the equivalent
currents (1) and (2) at the boundary surface between the two
regions. The incident fiel®;, H; required for thel, andJ,,,
evaluation is that computed with the ray-tracing algorithm.

Applying the proposed hybrid technique, attention must be
paid to two aspects. First, the ray-tracing algorithm makes use
of the radiation pattern of the source. This approach gives reli-
able predictions of the EM-field values only in the Fraunhofer 180
region of the antenna, which starts at a distance from the an-
tenna approximately equal IOQ/)\ (whereD is the maximum Fig. 2. Section of the antenna normalized radiation pattern on the vertical
antenna dimension); this is the minimum distance at which thigne containing the maximum gain direction.
exposed subject can be placed. Second, the reflecting walls are
modeled in the ray-tracing algorithm, but not in the FDTD onénack of this array is mounted (at a distance of 7 cm) a metallic
This means that the interaction between the walls and field sc#at reflector whose dimensions are 25129 cm. The antenna
tered by the exposed subject is not considered. This approxirttaree-dimensional radiation pattern has been obtained applying
tion gives rise to an error in the evaluation of power absorptioa,near-to-far-field transformation to the near field evaluated by
which is negligible when the exposed subject is sufficiently faneans of an FDTD analysis [10]. Fig. 2 shows the section of
from the walls. In case of exposure near reflecting walls, thike obtained normalized radiation pattern on the vertical plane
approximation instead corresponds to neglecting the shadowgantaining the maximum gain direction. The obtained patterns
effect, due to losses in the exposed subject, on the image soucoepare well with those of typical panel antennas available on
As a consequence, the absorbed power is overestimated, githng market. In particular, the 3-dB aperture on the horizontal
rise to a worst-case condition. plane is equal to about 80while a —3-dB aperture of 13is

The radiation pattern utilized in the ray-tracing computatiorsbtained on the vertical plane; the overall gain of the antenna is
has been obtained through an FDTD analysis at 947.5 MH4.7 dBi. Usually, in order to optimize cell coverage, these an-
(central frequency of the global system for mobile communicéennas are mounted with a tilting angle of abcud@the vertical
tions (GSM) base-station transmit band [17]) of a typical panplane (mechanical tilting). Therefore, the obtained three-dimen-
antenna. The considered antenna is depicted in Fig. 1 and csional radiation pattern has been tilted by an anglé gh&rder
sists of four parallel pairs of vertical dipoles, aligned on a vete approach the realistic use condition.
tical axis with a uniform spacing of 32 cm (measured at the To study the interaction of the radiated EM field with an ex-
feeding point). The horizontal spacing of the dipoles is equal pwsed subject, a heterogeneous model of man has been used.
9 cm. All dipoles are fed with equal amplitude and phase. At thehis model has been obtained from a tissue-classified version
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of the “Visible Human Project” data setl developed at Brooks <+—— ANTENNA
Air Force Base Laboratories, Brooks AFB, TX [18]. The orig-

inal model had a 1-mm resolution and has been downsampled to

obtain afinal resolution of 5 mm. At the considered frequency of

947.5 MHz, in the tissue with the highest permittivity, this cell

dimension corresponds to about one-tenth of the wavelength, re-

sulting in a good accuracy for the FDTD simulations. The body <

model has a total height of 180 cm and 31 different types of tis- 8
sues/organs have been evidenced. In particular, due to the cell

(@
dimension used, the most external layer of the model has been
associated with an average tissue made of 1/2 skin and 1/2 fat. i' ANTENNA

6m

v

m

For the electrical characterization of the tissues at the considered 2m

frequency, the data reported in [19] and [20] have been used. ™
Ill. RESULTS AND DISCUSSION U 2 _ﬁ_

| 5__>
The above-described hybrid method has been used to eval-
uate the exposure of a subject to the field radiated by a rooftop

mounted base-station antenna. Three typical exposure condi-
tions have been considered (see Fig. 3). In all cases, the antenna (b)

is that described in the previous section, and is positioned with
a mechanical tilting of 8on the top of a 6-m-high trestle. The ¢ ANTENNA
g
o
i s |

6 m

I

30m

radiated power is 30 W, corresponding to a typical value for a
four-transmitter base station in urban area. The dimensions of
the FDTD total field region, in which the exposed subject is in-
serted, are 44 69 x 190 cm. The human body model is facing
the antenna and is kept at a height of 1 cm above the ground
to take into account the effect of shoe soles. In the first situa-
tion (case I), the subject stands on the building roof, where the
antenna is mounted, at a distance of 8 m from the trestle [see
Fig. 3(a)]. The chosen distance is the minimum allowing the use
of the Fraunhofer region approximation for the considered an-
tenna. The subject is placed within the beam of the first lateral
lobe of the radiation pattern. The roof electrical parameters are

30m

©
e, = 5.0 ando = 0.04 S/m [21]. In the second situation (Casé:ig. 3. Environment geometry for the three cases studied. Dashed lines

. . a1 represent planes not considered in the simulations. (a) Case |: subject on the
II), the subject stands on a balcony in front of the building whe ilding roof. (b) Case IlI: subject on the balcony. (c) Case Ill: subject on the

the antenna is mounted at a distance of 30 m [see Fig. 3(B}jeet.

The subject position corresponds to the direction of the prin-

cipal lobe of the antenna. The electrical parameters for the walls TABLE |

are the same considered in case I. In the third situation (case Il1)gPATIAL MAXIMUM (Ervax ), AND SPATIAL AVERAGE (Erave ), OF THE
the subject stands on the street beneath the building (30-m higH)C'DENT FIELD rms VALUE; MAXIMUM SAR VALUES AVERAGED OVER

. S 1 g(SAR; 4), OVER 10 g(SAR10 4 ), AND SAR VALUE AVERAGED
where the antenna is mounted, and another building is present’ oyer THe WHoLE Boby (SARwn) FOR THE THREE EXPOSURE

at his back [see Fig. 3(c)]. The subject is positioned within the CONDITIONS CONSIDERED
beam of the last lateral lobe of the radiation pattern. The grounc
H _ _ E E SAR SAR SAR

ele_ctrlcal parameters aeg = 2.0 ands = 0.001 S/m [22], Vi Vi (mwnlé) (mw/;;) @ Wik
while the building wall parameters are the same previously con-
sidered. Casel 42 2.8 53 3.0 0.12

Table | shows the results obtained for the three examined ex Casell 8.1 5.5 13.2 8.5 0.46
posure conditions. The first two columns report the spatial max- case 111 13 1.1 0.26 0.17 0.01

imum( Ervax ) and spatial averadés sy i ) of the electric field
rms value over the entire FDTD total field domain when the sub-
ject is not present (incident field). The last three columns refat least 0.9 g have been examined. As concernsSttig, ,

to the case when the subject is present and report the maximeatues, a cube with a volume of 10 &rhas been considered.
specific absorption rate (SAR) (power absorbed per unit mads)is volume has been obtained starting from an inner cube made
averaged over 1 (AR, ), and over 10 SAR1 ), and the of 64 FDTD cells (8 cmi) and adding an external shell of 2 &€m
SAR averaged over the whole body (SAR_{WB}). TRaR, , realized with a fraction of the FDTD cells surrounding the inner
values have been computed considering a cube with a volumeobe. In this case, only cubes weighing at least 9 g have been
1 cn? corresponding to eight FDTD cells. Only cubes weighingxamined.
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Fig. 4. Case I: electric field rms amplitud€..,..) and SAR distributions on the vertical plane containing the antenna maximum radiation directiBh,.(a)
when the subject is absent. (B}, when the subject is present. (c) SAR inside the subject.
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Fig. 5. Case II: electric field rms amplitudé, .. ) and SAR distributions on the vertical plane containing the antenna maximum radiation directibp,.(a)
when the subject is absent. (B),.,; when the subject is present. (c) SAR inside the subject.

From Table |, it appears that, due to the high directivity on tHamits proposed in the main international protection standards
vertical plane of the base-station antenna considered, the higli23}—[26]. The field value§ Fivax, Eiave) in Table | are well
field levels are not obtained on the roof of the building where theelow the safety levels reported in the standards, which, at the
antenna is located, but rather on the nearby building placedfiaquency of 947.5 MHz, are 48.7 [23], [24] and 42.3 VV/m [25],
the direction of the maximum antennaradiation. The differencpg6]. As concerns the SAR, all the considered safety standards
between maximum and average values (up to 50% in caseed¢ommend a basic limit on tiA Ry 5 of 0.08 W/kg, while
and Il) evidence the nonuniformity of the field distribution. Adimits on local SAR are 1.6 W/kg averaged over 1 g [23], [24]
expected, the lowest field levels are experienced by the subjec®.0 W/kg averaged over 10 g [25], [26]. A glance at Table |
standing in the street due to the high distance from the anters@ws that all the computed SAR values are at least two order
and to the angled position with respect to the antenna pointiafmagnitude lower than the above cited limits.
direction. The field and SAR distributions obtained in the three consid-
The obtained results, both in terms of incident field anedred situations are shown in Figs. 4(a)—(c)—6(a)—(c). Each figure
SAR values, can be compared with reference levels and bastows the distribution of the rms amplitude of the electric field
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Fig. 6. Case lll: electric field rms amplitudé®, ... ) and SAR distributions on the vertical plane containing the antenna maximum radiation directibp,,(a)
when the subject is absent. (B}, when the subject is present. (c) SAR inside the subject.

on the vertical plane containing the antenna maximum radia- TABLE I

ton direction: 2) in the absence of the subject, (b) in the presg! {51 A% U es emot O L9 O, L OIS 08
ence of the subject, and (c) the SAR distribution inside the sub-  oréans FOR THETHREE EXPOSURECONDITIONS CONSIDERED
ject in the same plane. In Figs. 4(a)-6(a), the position where
the subject will be placed is outlined. The field distributions CASEIL CASEN CASEIII
when the subject is absent [see Figs. 4(a)—6(a)] reflect both tf SARy,| SAR1og SARwa] SARy,] SAR1eg SARwol SARs| SARug SARwo
position of the examined area with respect to the antenna ar
the characteristics of the surrounding environment. In Fig. 4(a
the secondary lobe of the antenna, together with the vertical ir Eyes 167 | - | 12713441 - 2451007 - 006
terference pattern due to roof reflections, are clearly eviden Heart | 039|021 | 006|157 | 082|021 ] 002001 | <
Figs. 5(a) and 6(a) show the presence of vertical and horizont
interferences resulting from the two orthogonal reflecting sur
faces. Figs. 4(b)-6(b) show the strong alterations that the fiel

Brain 1.38 | 072 | 0.33 | 2.71 | 1.40 | 0.63 | 0.13 | 0.07 | 0.04

Kidney 0.04 | 0.01 < |013}003]003] < < <

Liver 0511027 [005]142 (079|017 ]003]|002| <

undergoes when the subject is present. The analysis of the S/ Pancreas | 010 | - 10037035 - 010001 - | <
distributions reported in Figs. 4(c)-6(c) shows that the powe spleen | 0.06 | 0.01 [ 0.01 [ 0.14 | 007 [ 004 |00l | < | <
absorption characteristics vary considerably in the three consit “resc 080 | - | 041 | 231 | - | 1.10] 004 | - | 002

ered cases. In case |, absorption takes place mainly in the he
and chest [see Fig. 4(c)], which are directly exposed to the re¢ SARisinmWhg.
"<" means less than 0.01.

diated field. In case Il, significant absorption takes place alsu

in the back of the subject [see Fig. 5(c)] due to the reflections .
coming from the rear building wall. Case Ill is the one in whicifarious body organs are well below the peak values reported in

absorption is more confined, being mainly limited to the heatPle I. In fact, body organs are generally protected by tissue
region [see Fig. 6(c)] due to the antenna positioning with respd@Y€rs, such as skin and muscle, where most of the power is ab-
to the exposed subject and to the low ground reflections. ~ Sorbed. o _ _

In order to better identify the power absorbed inside the main” reléevant point is the influence of the environment on
body organs, the SAR values averaged ove($4R; ,), 10 g !nC|dent f|eld levels a}nd power absorption. To get some m&g_ht
(SARy0 ), and the organ whole masSARw o) are reported into this issue, the simulations performed for case I, which is
in Table II. the “worst case,” have been repeated neglecting the presence

Results obtained for case | show that power absorptionk the two reflecting walls (free-space conditiorase Il5,).
mainly confined to the organs placed in the upper part of tHd1€ £invax and Erave values found are 5.4 and 5.3 V/m,
body. This kind of behavior is strictly correlated to the charadeSPectively. These new values, compared with those pre-
teristics of the incident field that, as already shown, imping&dusly evaluated (see Table I, second row), show that the
essentially on the head region [see Fig. 4(a)]. In case I, po\,\f@ld distribution b_ecomes more umform_wnh the maximum
absorption is instead distributed more uniformly among the dffé!d level decreasing by about 33%, while the average value

ferent body organs. In all cases, the SAR values computed in {f§8'ains almost unchanged. The SAR values evaluated in
case Il areSAR, , = 12.9 mW/kg, SAR o s = 8.2 mW/kg,
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andSARwp = 0.41 mW/kg. These results, compared withinduced in each of these places can be evaluated by using the
those obtained in case Il, show that both the average figddoposed hybrid method and, hence, used for a statistical char-
level and SAR values remain almost unchanged. It must beterization of the exposure.

noted, however, that this result is dependent upon the dielectric

characteristics of the building walls that give rise to rather low
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