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Comparison of Performances of Electrical Impedance
Tomography Evaluated with 2-D and 3-D Models

Jean-Francois Chateaux and Mustapha Neéimber, IEEE

Abstract—This paper describes electrical impedance tomog-
raphy (EIT) sensitivity evaluation using two models. The first
is the classical circular two-dimensional (2-D) model used by
past authors. The second is a three-dimensional (3-D) cylindrical
model, which takes into account the height of the object under
study. Having reported the analytical expression of the potential
field of the 2-D model, we derive an equivalent solution for the
3-D case. Having analyzed the convergence of the solutions, we
compute for different conductivity perturbations the ratio of
the sensitivities obtained with the two models. Results indicate
that the 2-D model, as compared with the 3-D model, generally
overestimates sensitivity by a factor of two unless the conductivity
perturbation is extensive and more conductive than the principal
medium. In such a case, the 2-D model tends to underestimate
EIT sensitivity.

. ) ) ) . . ) Fig. 1. 2-D (heterogeneous) model, adjacent injecting mode, eight electrodes.
Index Terms—Biomedical engineering, biomedical impedance

imaging, electromagnetic fields, error analysis, simulation.
Il. NUMERICAL MODELS

A. 2-D Model

. INTRODUCTION Two different numerical models are compareid, a 2-D and

LECTRICAL impedance tomography (EIT) is an imaging3-D one. Each of these models can be homogeneous or hetero-
method reconstructing conductivity and/or permittivitgeneous, depending on the presence or nonpresence of a central
distribution in a slice through the body [1]. Data are colconductivity perturbation. The purpose of the models is to eval-
lected noninvasively by means of impedance measurementsiaie the capability of an EIT system to detect the presence of a
frequencies up to 1 MHz [2]. Since the firstimpedance tomogonductivity perturbation to determine EIT sensitivity.
raphy, obtained in 1982 by Brown and Barber [3], many clinical In the 2-D case (Fig. 1), the computational domain is a disc
applications were and are still being investigated such as bre@stwith a boundaryl';, radius R, and uniform conductivity
tumor imaging [4], hyperthermia monitoring [5], or gastricp—l(s-mfl). In the heterogeneous case, a central circular con-
emptying monitoring [6]. Most of the biomedical applicationgluctivity perturbationt2; with a boundaryl;, radiusr,, and
are under investigation and numerous teams are concerfegductivityo, (S - m™!) is added. A set of electrodes, usu-
worldwide [7]. The technique’s theoretical performance hawlly 16 or 32, is attached o, . Two of these electrodes are used
been studied by Isaacson [8] and Seagal. [9], the latter for currentinjection through boundaky; . The remaining elec-
having defined the concept of sensitivity, resolution, and cotiodes measure the potential profile aldhg Depending on the
trast as related to EIT. Both have used a two-dimensional (2-8)gular positiong; and¢, of the two injecting electrodes, one
model, i.e., a disc with a circular conductivity perturbatiorcan differentiate the following two configurations:
Nevertheless, unlike classical tomography devices (e.g., X-ray « adjacent injecting mode, where the two current electrodes
tomographs), images are adversely affected by out-of-plane are side by side;
objects as currents injected for impedance measurement do no# polar injecting mode, where these two electrodes aré 180
remain confined to this plane. Since the 2-D model does not  apart.
take the phenomenon into account, the aim of this paper is to
estimate the limitations of the 2-D model by comparing thg Extension to 3-D Model

results obtained with a three-dimensional (3-D) model. _ _ )
With the 3-D model (Fig. 2), the discs of the 2-D model are re-

placed with cylinders with a heiglt , which results in a coaxial

setup. As the boundariés andl'; become surfaces, the poten-
Manuscript received November 12, 1999; revised May 3, 2000. tial field generated by the current electrodes can extend out of
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terest. Details about the derivation of the problem can be found
in [8], and one obtains on thé, boundary

¢F1(9):_Z SR Pn(Oé, /3)

o1 NI

2,650,
Q.0 —> H

n=1

-[Cn cos(nb) + S, sin(nb)]  (5)

within the homogeneous cagg,(«, 8) = 1, and within the
heterogeneous case

o —

+1 ﬁQn
P, B) = g——l
1 . [32n

+ a+1 f

In both cases(,, and.S,, are given by

Fig. 2. 3-D (heterogeneous) model, polar injecting mode.

C,, = cos(nby) — cos(nh2) S, = sin(nbr) — sin(nh2)
[ll. COMPUTATION OF POTENTIAL PROFILES i ) )
and(«, ) are defined in Section I1I-D.
A. EIT Performance Evaluation Method

In order to evaluate EIT sensitivity to the presence of cor(1:—' 3-D Problem Derivation

ductivity heterogeneity, the potential along boundgryn both ~ In the 3-D model, computations were extended to a cylinder
homogeneous and heterogeneous cases is computed. The péfenheight. Boundaried™; andl’; become surfaces. In order
tial profile obtained in the homogeneous case is used as a retersimplify the derivation of the problem, a Dirichlet condition
ence and any difference between this reference and the profiehosen for the top and bottom of cylinder, applying a zero
obtained with the heterogeneous model is caused by the perfifitential to these surfaces. Dimensiéinshould be large for

bation€. these boundaries conditions to be realistic. Then, with the same
Calling ¢r, the potential profile along boundaty, an ana- notations as in the 2-D case, the problem can be formulated as
lytical description ofér, can be obtained because of the axial V2¢(r )=0 ©6)
symmetry of the problem. Such an analytical solution has t o
following two main advantages over a numerical one. Apy(r, 8, =
gtwom 9 | ey 2B S A e 61)— 56— 6)
» Computations are generally much faster, as an iteratije on R
process is not necessary. Moreover, the potential may lpe (7)
computed just at the points that are of interest. Dby (r ) Oepa(r, 0, )
« An analytical solution contains more information on| —gy - = 57 =0y - % (8)
system behavior. " r=rs " r=rs
(/)1(7)27 97 Z) = (/)2(7)27 97 Z) (9)
B. 2-D Problem Derivation
, . : . ¢(r, 0,0) = ¢(r, 8, H) = 0. (10)
With these notations and in the 2-D case (Fig. 1), the problem
can be formulated as Equations (8) and (9) are specific to the heterogeneous

problem. As we can observe in Fig. 2, the electrodes are located
at height H/2 along contourC. Computational details are

( 2 . —
Vi(r, 6) =0 @) given in the Appendix, and one obtains for the potential profile
b1 (r, 0 along theC’ contour in the homogeneous case
—o1 - % =J-[6(0—61)—-6(06-62)] (2 o -
r=R
Hom(gy — C cos(n#) + S, sin(né
B . (9(/)1(7’, 9) _ . 8(7)2(7,’ 9) (3) d)C ( 017r 2:: 2:: ) ( )]
' on ="y -7 o’ r=rg I (MR)
.sin (ﬁ) N H T (11)
\ d)l (7)27 9) = (7)2(7)27 9) (4) 2 )\nrn
whereg; and¢, are, respectively, the potential through and  With
Q,, J is the current density4 - m~!) andé is the Dirac delta oI (@ )
function. Of course, when computing potential in the homoge- PN “\Hg’
neous casese = o1), (3) and (4) have no signification. The n or
problem is solved by the classical method of variable separa- r=R

tion. Variabler, which gives the radial position of a point is set n o mnR mm mnR
tor = R because only the potential along boundApyis of in- rin\g )Ty i lg
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wherel,, is the modified Bessel's function of the first kind and 2.5
ordern, and in the heterogeneous case

Het 4 N ; ’ ~
aet(g) = p—— Z Z [Cy, cos(nb) + S, sin(nd)] v \\ |

n=1 m=1

S(2D)/ S(3D)
o
I

mmn mmn r3
. (mW) L (57 R) = v+ In (? %)
ssm | —— ) -

2 )\nrn + Y Ham 1+
12)
with 0'8.01 0.1 ' ‘ 1
v = a—1 resolution (beta)
a+1 % alpha =0.01
-+ alpha=0.1
and alp
& alpha=10
mnrs [nHR mm T3 mm T3 < alpha=100
Hnm = F57 55 _In —_— +In+1 —_ = .
HR? | mmnr? H R H R

Fig. 3. ROS versus resolutighin polar injecting mode.

D. 3-D Parameters Evaluated For Comparison Purposes

2.5
According to Seagaet al. [9], the contrasty, resolution,
and sensitivityS are defined as follows:
* contrast: _ 2
2
Q@ = 02/01 ? 13
. jm]
* resolution: S
/3 = 7’2/R 1
* sensitivity: L
5 0301 0.1 1
1 = 2 .
S = . / ¢Hom(9) _ ¢Het(9) do. resolution (beta)
\/27r 0 ( ) % alpha = 0.01
. . =+ alpha=0.1
Contrast and resolution are then parameters describing th < alpha = 10
domain’s level of nonhomogeneity. Sensitivity appears as the - alpha = 100

guadratic mean of the difference between potential profiles cal-
culated in the homogeneous caseg £ o1) and heterogeneouskig. 4. ROS versus resolutighin adjacent injecting mode.
case {2 # o1). This provides a value for the alteration of the

potential profile alond’, (or C) due to the presence of PEr"R of O, injected current density and conductivityo; were
turbation(2,. Of course#f**(¢) is dependent on contrast and i en as equal to one

resolution, and sensitivity is also a function of and/5. In order to compare the sensitivities evaluated by the two
models, we used the ratio of sensitivity computed with the 2-D
IV. RESULTS model over the sensitivity obtained with the 3-D model. Com-

A. Convergence Speed putation for various contrast valuesranging from 0.01 to 100

Practical computation ofr (), i.e., the potential profile were performed to simulate the dynamic commonly encoun-

alongT’; in the 2-D case, shows that convergence depends ied in body imaging. Resolutioh ranges from 0.01 to 0.9.
resolutiong: convergence is slower whehapproaches unity. COmputation is limited tg7 = 0.9 because of the dependence
Nevertheless, whefi = 0.9, the first 20 terms of the sum giving on the speed of conv_er_ger?ce/io _ _

¢r, (8) suffice. With the 3-D model, a similar phenomenon is For the polar injecting mode, Fig. 3 gives the

observed, but convergence is much slower. In (11) and (12), F%ZD(O" /3)/5313(0‘,’ p) ratio, i.e., the ratio of sensitivi_ties
volving infinite sum, we have taken in practieanax — 70, (ROS), for four different values ak. The same computations

i.e., the first 70 orders of the modified Bessel's function, arff© Made in the adjacent current injecting mode, and Fig. 4
mmax = 4000 when = 0.9. presents the results obtained in this case.

B. Computational Results V. DISCUSSION ANDCONCLUSION

We performed computations using 16 electrodes alonm It clearly appears that the ROS calculated with the two models
the 2-D case and along tiiécontour in the 3-D case. The radiusdepends on the contrast and resolution values. In both the polar



CHATEAUX AND NADI: COMPARISON OF PERFORMANCES OF EIT 1877

and adjacent modes, the ROS decreases when conti@sd standard form of a Bessel's equation using modified (or hyper-
resolutions increase. Whe is small, i.e., near the homoge-bolic) Bessel's functions as solutions. We then have

neous case, the 2-D model tends to overestimate EIT sensitivity ]

(as compared to the 3-D model) by a factor close to two. When R(r) = { %(kk 7))

increases, overestimation drops to become less than unity when n(k-r)

perturbation(2, is more conductive thaf; (o > 1). In this wherel,, is the modified Bessel's function of the first kind and
case, the 2-D model will underestimate EIT sensitivity, espgrdern, whereask’,, is the modified Bessel's function of the
cially in the adjacent injecting mode. second kind. Withk,, becoming infinite on zero and the domain
One can conclude that if the radius of the central conductivigif calculus containing the origin, we do not consefg.
perturbation is small{ < 0.1), the sensitivity predicted by  Due to (A5) forcing the potential to null on the top and bottom

the 2-D model should be divided by two. Of course, the precigg the cylinder, and because of the periodicity imposed by the
value of this correction factor is valid only for a central circulagurrent density Fourier expansion, one has

perturbation. In actual practice, this never occurs, but the 2-D
model nevertheless provides a good approximation of sensitivity Z(z) = sin(k - z), with £ =
overestimation. The possibility to use the 2-D model is inter-

esting compared to the 3-D model. Indeed, convergence of #iéh m being an integer.

2-D model is much faster and requires less computation time.One deduces from (A7) that the current density should be
Moreover, as regards 2-D formulation, it appears that the infljrade periodical along the-axis according to an odd function.
ence of the conductivity perturbatiof{) is fully included in Now, by deriving the Fourier expansion of current density dis-
a single simple term#, («, 3)). Analysis would then be much tribution onl';, one obtains

easier than with the complex 3-D formulation.

m-m

H

(A7)

J(6, z) = j—}]] > ) [Cncos(nb) + Sy, sin(nf)]

n=1 m=1

APPENDIX
. . . . mm . mT
With the 3-D model, and with the presence of heterogeneity + Sl (—) sin (—7) .
. 2 H
2, the problem can be expressed through the following set of ) )
equations: We now have all the elements required for the resolution of
the homogeneous problem, and the potential ontrentour
R is then given by (11).
Vig(r, 0, 2) =0 (A1) To solve the heterogeneous problem, one tries a solution of
by (r, 6, 2 the form [10]
—oy - % =J-[6(60—61)—68(6—6)] )
r=R T2
- 6) = 0) — - —=.,40
"2 br O =t = (26) o
L LI O L ] bl 6) = (1)l )
n r=ry n r=ry where~ is a constant ang, is the potential computed in the
b1 (r2, 0, 2) = $a(ra, 0, 2) (A4) homogeneous case. This solution has the advantage of ensuring
T T that (A4) is verified. We then find (12), which gives the potential
Lo(r, 8,0)=¢(r, 8, H) = 0. (A5) ontheC contour for the heterogeneous case.
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