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Abstract—This paper describes electrical impedance tomog-
raphy (EIT) sensitivity evaluation using two models. The first
is the classical circular two-dimensional (2-D) model used by
past authors. The second is a three-dimensional (3-D) cylindrical
model, which takes into account the height of the object under
study. Having reported the analytical expression of the potential
field of the 2-D model, we derive an equivalent solution for the
3-D case. Having analyzed the convergence of the solutions, we
compute for different conductivity perturbations the ratio of
the sensitivities obtained with the two models. Results indicate
that the 2-D model, as compared with the 3-D model, generally
overestimates sensitivity by a factor of two unless the conductivity
perturbation is extensive and more conductive than the principal
medium. In such a case, the 2-D model tends to underestimate
EIT sensitivity.

Index Terms—Biomedical engineering, biomedical impedance
imaging, electromagnetic fields, error analysis, simulation.

I. INTRODUCTION

E LECTRICAL impedance tomography (EIT) is an imaging
method reconstructing conductivity and/or permittivity

distribution in a slice through the body [1]. Data are col-
lected noninvasively by means of impedance measurements at
frequencies up to 1 MHz [2]. Since the first impedance tomog-
raphy, obtained in 1982 by Brown and Barber [3], many clinical
applications were and are still being investigated such as breast
tumor imaging [4], hyperthermia monitoring [5], or gastric
emptying monitoring [6]. Most of the biomedical applications
are under investigation and numerous teams are concerned
worldwide [7]. The technique’s theoretical performance have
been studied by Isaacson [8] and Seagaret al. [9], the latter
having defined the concept of sensitivity, resolution, and con-
trast as related to EIT. Both have used a two-dimensional (2-D)
model, i.e., a disc with a circular conductivity perturbation.
Nevertheless, unlike classical tomography devices (e.g., X-ray
tomographs), images are adversely affected by out-of-plane
objects as currents injected for impedance measurement do not
remain confined to this plane. Since the 2-D model does not
take the phenomenon into account, the aim of this paper is to
estimate the limitations of the 2-D model by comparing the
results obtained with a three-dimensional (3-D) model.
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Fig. 1. 2-D (heterogeneous) model, adjacent injecting mode, eight electrodes.

II. NUMERICAL MODELS

A. 2-D Model

Two different numerical models are compared,viz. a 2-D and
3-D one. Each of these models can be homogeneous or hetero-
geneous, depending on the presence or nonpresence of a central
conductivity perturbation. The purpose of the models is to eval-
uate the capability of an EIT system to detect the presence of a
conductivity perturbation to determine EIT sensitivity.

In the 2-D case (Fig. 1), the computational domain is a disc
with a boundary , radius , and uniform conductivity

( ). In the heterogeneous case, a central circular con-
ductivity perturbation with a boundary , radius , and
conductivity ( ) is added. A set of electrodes, usu-
ally 16 or 32, is attached to . Two of these electrodes are used
for current injection through boundary . The remaining elec-
trodes measure the potential profile along. Depending on the
angular positions and of the two injecting electrodes, one
can differentiate the following two configurations:

• adjacent injecting mode, where the two current electrodes
are side by side;

• polar injecting mode, where these two electrodes are 180
apart.

B. Extension to 3-D Model

With the 3-D model (Fig. 2), the discs of the 2-D model are re-
placed with cylinders with a height , which results in a coaxial
setup. As the boundaries and become surfaces, the poten-
tial field generated by the current electrodes can extend out of
the plane of the electrodes. Previous computations have shown
that the potential field in and differs greatly when com-
puted with the 2-D or 3-D model.
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Fig. 2. 3-D (heterogeneous) model, polar injecting mode.

III. COMPUTATION OF POTENTIAL PROFILES

A. EIT Performance Evaluation Method

In order to evaluate EIT sensitivity to the presence of con-
ductivity heterogeneity, the potential along boundaryin both
homogeneous and heterogeneous cases is computed. The poten-
tial profile obtained in the homogeneous case is used as a refer-
ence and any difference between this reference and the profile
obtained with the heterogeneous model is caused by the pertur-
bation .

Calling the potential profile along boundary , an ana-
lytical description of can be obtained because of the axial
symmetry of the problem. Such an analytical solution has the
following two main advantages over a numerical one.

• Computations are generally much faster, as an iterative
process is not necessary. Moreover, the potential may be
computed just at the points that are of interest.

• An analytical solution contains more information on
system behavior.

B. 2-D Problem Derivation

With these notations and in the 2-D case (Fig. 1), the problem
can be formulated as

(1)

(2)

(3)

(4)

where and are, respectively, the potential through and
, is the current density ( ) and is the Dirac delta

function. Of course, when computing potential in the homoge-
neous case ( ), (3) and (4) have no signification. The
problem is solved by the classical method of variable separa-
tion. Variable , which gives the radial position of a point is set
to because only the potential along boundaryis of in-

terest. Details about the derivation of the problem can be found
in [8], and one obtains on the boundary

(5)

within the homogeneous case , and within the
heterogeneous case

In both cases, and are given by

and are defined in Section III-D.

C. 3-D Problem Derivation

In the 3-D model, computations were extended to a cylinder
of a height . Boundaries and become surfaces. In order
to simplify the derivation of the problem, a Dirichlet condition
is chosen for the top and bottom of cylinder, applying a zero
potential to these surfaces. Dimensionshould be large for
these boundaries conditions to be realistic. Then, with the same
notations as in the 2-D case, the problem can be formulated as

(6)

(7)

(8)

(9)

(10)

Equations (8) and (9) are specific to the heterogeneous
problem. As we can observe in Fig. 2, the electrodes are located
at height along contour . Computational details are
given in the Appendix, and one obtains for the potential profile
along the contour in the homogeneous case

(11)

with
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where is the modified Bessel’s function of the first kind and
order , and in the heterogeneous case

(12)

with

and

D. 3-D Parameters Evaluated For Comparison Purposes

According to Seagaret al. [9], the contrast , resolution ,
and sensitivity are defined as follows:

• contrast:

• resolution:

• sensitivity:

Contrast and resolution are then parameters describing the
domain’s level of nonhomogeneity. Sensitivity appears as the
quadratic mean of the difference between potential profiles cal-
culated in the homogeneous case ( ) and heterogeneous
case ( ). This provides a value for the alteration of the
potential profile along (or ) due to the presence of per-
turbation . Of course, is dependent on contrast and
resolution, and sensitivity is also a function of and .

IV. RESULTS

A. Convergence Speed

Practical computation of , i.e., the potential profile
along in the 2-D case, shows that convergence depends on
resolution : convergence is slower whenapproaches unity.
Nevertheless, when , the first 20 terms of the sum giving

suffice. With the 3-D model, a similar phenomenon is
observed, but convergence is much slower. In (11) and (12), in-
volving infinite sum, we have taken in practice ,
i.e., the first 70 orders of the modified Bessel’s function, and

when .

B. Computational Results

We performed computations using 16 electrodes alongin
the 2-D case and along thecontour in the 3-D case. The radius

Fig. 3. ROS versus resolution� in polar injecting mode.

Fig. 4. ROS versus resolution� in adjacent injecting mode.

of injected current density and conductivity were
taken as equal to one.

In order to compare the sensitivities evaluated by the two
models, we used the ratio of sensitivity computed with the 2-D
model over the sensitivity obtained with the 3-D model. Com-
putation for various contrast valuesranging from 0.01 to 100
were performed to simulate the dynamic commonly encoun-
tered in body imaging. Resolution ranges from 0.01 to 0.9.
Computation is limited to because of the dependence
on the speed of convergence to.

For the polar injecting mode, Fig. 3 gives the
ratio, i.e., the ratio of sensitivities

(ROS), for four different values of . The same computations
are made in the adjacent current injecting mode, and Fig. 4
presents the results obtained in this case.

V. DISCUSSION ANDCONCLUSION

It clearly appears that the ROS calculated with the two models
depends on the contrast and resolution values. In both the polar
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and adjacent modes, the ROS decreases when contrastand
resolution increase. When is small, i.e., near the homoge-
neous case, the 2-D model tends to overestimate EIT sensitivity
(as compared to the 3-D model) by a factor close to two. When
increases, overestimation drops to become less than unity when
perturbation is more conductive than ( ). In this
case, the 2-D model will underestimate EIT sensitivity, espe-
cially in the adjacent injecting mode.

One can conclude that if the radius of the central conductivity
perturbation is small ( ), the sensitivity predicted by
the 2-D model should be divided by two. Of course, the precise
value of this correction factor is valid only for a central circular
perturbation. In actual practice, this never occurs, but the 2-D
model nevertheless provides a good approximation of sensitivity
overestimation. The possibility to use the 2-D model is inter-
esting compared to the 3-D model. Indeed, convergence of the
2-D model is much faster and requires less computation time.
Moreover, as regards 2-D formulation, it appears that the influ-
ence of the conductivity perturbation () is fully included in
a single simple term ( ). Analysis would then be much
easier than with the complex 3-D formulation.

APPENDIX

With the 3-D model, and with the presence of heterogeneity
, the problem can be expressed through the following set of

equations:

(A1)

(A2)

(A3)

(A4)

(A5)

In order to cancel Dirac distribution, the right-hand-side term
of (A2) is expanded along the surface using the Fourier se-
ries. This leads to an expression involving a double sum and
enforces periodicity along theaxis.

A solution to (A1) is found using the classical method of vari-
able separation

Taking the and periodical due to a current distribu-
tion Fourier expansion, one obtains

(A6)

where and are the constants of separation about
and , respectively. and are second and first deriva-
tives with respect to variable. One recognizes in (A6) a non-

standard form of a Bessel’s equation using modified (or hyper-
bolic) Bessel’s functions as solutions. We then have

where is the modified Bessel’s function of the first kind and
order , whereas is the modified Bessel’s function of the
second kind. With becoming infinite on zero and the domain
of calculus containing the origin, we do not conserve.

Due to (A5) forcing the potential to null on the top and bottom
of the cylinder, and because of the periodicity imposed by the
current density Fourier expansion, one has

with (A7)

with being an integer.
One deduces from (A7) that the current density should be

made periodical along the-axis according to an odd function.
Now, by deriving the Fourier expansion of current density dis-
tribution on , one obtains

We now have all the elements required for the resolution of
the homogeneous problem, and the potential on thecontour
is then given by (11).

To solve the heterogeneous problem, one tries a solution of
the form [10]

(A8)

where is a constant and is the potential computed in the
homogeneous case. This solution has the advantage of ensuring
that (A4) is verified. We then find (12), which gives the potential
on the contour for the heterogeneous case.
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