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Electromagnetic Imaging for an Imperfectly
Conducting Cylinder by the

Genetic Algorithm
Chien-Ching Chiu and Wei-Ting Chen

Abstract—This paper presents a computational approach to the
imaging of an imperfectly conducting cylinder by the genetic al-
gorithm (GA). A conducting cylinder of unknown shape and con-
ductivity scatters the incident wave in free space and the scattered
field is recorded outside. Based on the boundary condition and
the measured scattered field, a set of nonlinear integral equations
is derived and the imaging problem is reformulated into an opti-
mization problem. The GA is then employed to find out the global
extreme solution of the cost function. Numerical results demon-
strated that, even when the initial guess is far away from the exact
one, good reconstruction has been obtained. In such a case, the gra-
dient-based methods often get trapped in a local extreme. In addi-
tion, the effect of Gaussian noise on the reconstruction results is
investigated. Numerical results show that multiple incident direc-
tions permit good reconstruction of shape and, to a lesser extent,
conductivity in the presence of noise in measured data.

Index Terms—Conductors, electromagnetic scattering inverse
problems, genetic algorithms, image reconstruction.

I. INTRODUCTION

T HE image problem of conducting objects has been a
subject of considerable importance in noninvasive mea-

surement, medical imaging, and biological application. In the
past 20 years, many rigorous methods have been developed to
solve the exact equation. However, inverse problems of this
type are difficult to solve because they are ill posed and non-
linear. As a result, many inverse problems are reformulated as
optimization problems. Generally speaking, two main kinds of
approaches have been developed. The first is based on gradient
search approach such as the Newton–Kantorovitch method
[1]–[3], local shape function method [4], Levenberg–Marguart
algorithm [5]–[7], and successive-overrelaxation method [8]
since these approaches apply the gradient search method to
find the extreme of the cost function. This method is highly
dependent on the initial guess and tends to get trapped in a
local extreme. In contrast, the second approach is based on
the genetic algorithm (GA) [9]–[11]. The GA is a well-known
algorithm that uses the stochastic random choice to search
through a coding of a parameter space. Compared to gradient
search optimization techniques, the GA is less prone to con-
vergence to a local minimum, which, in turn, renders it an
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ideal candidate for global optimization. It usually converges to
the global extreme of the problem, no matter what the initial
estimate is [12]. However, the aforementioned GA merely deals
with the case of perfectly conducting objects, and there is still
no research for the case involving lossy or imperfect metallic
scatterers.

In this paper, the electromagnetic imaging of an imperfectly
conducting (i.e., lossy) cylinder in free space is investigated.
The GA is used to recover not only the shape, but also the con-
ductivity, of a scatterer by using only the scattered field. The
method is potentially important in medical imaging and bio-
logical application. In Section II, a theoretical formulation for
the electromagnetic imaging is presented. The general principle
of GAs and the way we applied them to the imaging problem
are described. Numerical results for objects of different shapes
and conductivities are given in Section III. Finally, some con-
clusions are drawn in Section IV.

II. THEORETICAL FORMULATION

A. Imaging Problem

Let us consider an imperfectly conducting cylinder with con-
ductivity located in free space, and let ( ) denote the
permittivity and permeability, respectively, of free space. The
metallic cylinder with a cross section described in polar coordi-
nates in the -plane by is illuminated by an incident
plane wave whose electric-field vector is parallel to the–axis

(i.e., TM polarization). Let denote the incident plane wave
with an incident angle , as shown in Fig. 1. The scattered field

can then be expressed by

(1)

with

where is the Hankel function of the second kind of order
zero, and is the induced surface current density. The
boundary condition for an imperfectly conducting scatterer
with finite conductivity can be approximated by assuming that
the total tangential electric field on the scatterer surface is
related to surface current density through a surface impedance
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Fig. 1. Geometry of the problem in the(x; y)-plane.

[3], [13], [14]. This boundary condition yields an integral
equation for

(2)

where

For the direct scattering problem, the scattered fieldis cal-
culated by assuming that the shape and conductivity of the ob-
ject are known. This can be achieved by first solvingin (2)
and calculating in (1). For numerical calculation of the di-
rect problem, the contour is first divided into sufficiently small
segments so that the induced surface current density can be con-
sidered constant over each segment. The moment method [15]
is then used to solve (1) and (2) with a pulse basis function for
expanding and the Dirac delta function for testing.

Let us consider the following inverse problem: given the
scattered field measured outside the scatterer, determine
the shape and conductivity of the object. Assume the
approximate center of the scatterer (which, in fact, can be any
point inside the scatterer) is known. The shape function
can then be expanded as

(3)

where and are real coefficient to be determined, and
is the number of unknowns for shape function. In the

inversion procedure, the GA is used to minimize the following
cost function:

(4)

where is the total number of measured points.
and are the measured and calculated scattered fields,
respectively. Note that the regularization term was
added in (4). Please refer to [3] and [9] for further detail.

B. Genetic Algorithm

Genetic algorithms are the global numerical optimization
methods based on genetic recombination and evolution in
nature [12]. They use the iterative optimization procedures
that start with a randomly selected population of potential
solutions, and then gradually evolve toward a better solution
through the application of the genetic operators, i.e., reproduc-
tion, crossover, and mutation operators. In our problem, both
parameters and are coded by the following equation:

or or (5)

(6)

The or , or or (gene) is the -bit
string of the binary representation of (or ), and and

are the minimum and maximum values admissible for
(or ), respectively. Similarly, , is the -bit
string of the binary representation of, and and are
the minimum and maximum values admissible for, respec-
tively. Here, , , , and can be determined by
prior knowledge of the object. Also, the finite resolution with
which (or ), can be tuned in practice is reflected in the
number of bits assigned to it. The total unknown coefficients in
(3), (5), and (6) would then be described by an
bit string (chromosome). The basic GA for which a flowchart is
shown in Fig. 2 starts with a large population containing a total
of candidates. Each candidate is described by a chromosome.
The initial population can then simply be created by taking
random chromosomes. Finally, the GA iteratively generates a
new population, which is derived from the previous population
through the application of the reproduction, crossover, and mu-
tation operators. The new populations will contain increasingly
better chromosomes and will eventually converge to an optimal
population that consists of the optimal chromosomes. As soon
as the cost function changes by 1% in two successive
generations, the algorithm will be terminated and a solution is
then obtained.

III. N UMERICAL RESULTS

By numerical simulation, we illustrate the performance of the
proposed inversion algorithm and its sensitivity to random error
in the scattered field. Let us consider an imperfectly conducting
cylinder in free space and a plane wave of unit amplitude inci-
dent upon the object, as shown in Fig. 1. The frequency of the
incident wave is chosen to be 3 GHz, i.e., the wavelengthis
0.1 m. In the examples, the size of the scatterer is about one-third
the wavelength, thus, the frequency is in the resonance range.
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Fig. 2. Flowchart for the GA.

In our calculation, three examples are considered. To recon-
struct the shape and conductivity of the cylinder, the object is
illuminated by four incident waves with incident angles ,

, , and , and the measurement is taken on a circle
of radius at equal spacing. In our cases, is chosen much
larger than , corresponding to the far-field measurement,
where is the largest dimension of the scatterer. Note that for
each incident angle, eight measurement points at equal spacing
are used, and there are a total of 32 measurement points in
each simulation. The number of unknowns is set to ten (i.e.,

) to save computing time. The population size is
chosen as 300 (i.e., ). The binary string length of un-
known coefficient (or ) is set to be 16 bits (i.e., ).
The binary string length of conductivityis also set to be 16 bits
(i.e., ). In other words, the bit number of a chromo-
some is 160 bits. The search range for unknown coefficient of
the shape function is chosen to be from 0 to 0.1. The search
range for unknown conductivity is chosen from 310 to 7
10 . The extreme value of the coefficient of the shape function
and conductivity can be determined by the prior knowledge of
the objects. The crossover probability and mutation proba-
bility are set to be 0.8 and 0.04, respectively. The value of
is chosen to be 0.001.

In the first example, the shape function is chosen to be
m

with aluminum material (i.e., s/m). The re-
constructed shape function for the best population member
(chromosome) is plotted in Fig. 3(a) with the error shown in

(a)

(b)

Fig. 3. (a) Shape function for example 1. The solid curve represents the exact
shape, while the dashed curves are calculated shape in iteration process. (b)
Shape-function error and conductivity error in each generation.

Fig. 4. Relative error of shape and conductivity as a function of noise.

Fig. 3(b), while the error for the reconstructed conductivity is
also given in Fig. 3(b). Here, and , which are the
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(a)

(b)

Fig. 5. (a) Shape function for example 2. The solid curve represents the exact
shape, while the dashed curves are the calculated shape in the iteration process.
(b) Shape function error and conductivity error in each generation.

shape function and conductivity discrepancies, respectively,
are defined as

where is set to 60. The quantities and provide
measures of how well approximate and approx-
imates , respectively. From Fig. 3, it is clear that the reconstruc-
tion of the shape function and conductivity is quite good. The
quantity is 1.7 10 in the final generation. In addi-
tion, we also see that the reconstruction of conductivity does not
change rapidly toward the exact value until is small enough.
This can be explained by the fact that the shape function makes a
stronger contribution to the scattered field than the conductivity
does. In other words, the reconstruction of the shape function
has a higher priority than the reconstruction of the conductivity.
To investigate the sensitivity of the imaging algorithm against
random noise, two independent Gaussian noises with zero mean

(a)

(b)

Fig. 6. (a) Shape function for example 3. The solid curve represents the exact
shape, while the dashed curves are the calculated shape in the iteration process.
(b) Shape function error and conductivity error in each generation.

have been added to the real and imaginary parts of the simulated
scattered fields. Normalized standard deviations of 10, 10 ,
10 , 10 , and 10 are used in the simulations. The normal-
ized standard deviation mentioned earlier is defined as the stan-
dard deviation of the Gaussian noise divided by the rms value of
the scattered fields. Here, the signal-to-noise ratio (SNR) is in-
versely proportional to the normalized standard deviation. The
numerical result for this example is plotted in Fig. 4. It is under-
stood that the effect of noise is negligible for normalized stan-
dard deviations below 10 .

In the second example, we selected the peanut shape function
m with silver material (i.e.,

s/m). The purpose of this example is to show that
our method is able to reconstruct a scatter whose shape function
has two concavities. Satisfactory results are shown in Fig. 5.

In the third example, the shape function is selected to be
m, where copper

material is selected (i.e., s/m). Note that the
shape function is not symmetrical about either the– and -axis.
This example has further verified the reliability of our algorithm.
Refer to Fig. 6 for details.
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IV. CONCLUSIONS

In this paper, we have presented a study of applying the GA
to reconstruct the shape and conductivity of a metallic object
through knowledge of a scattered field. Based on the boundary
condition and measured scattered field, we have derived a set
of nonlinear integral equations and reformulated the imaging
problem into an optimization problem. By using the GA, the
shape and conductivity of the object can be reconstructed. Even
when the initial guess is far from exact, the GA converges to
a global extreme of the cost function, while the gradient-based
methods often get stuck in a local extreme. Good reconstruc-
tion has been obtained from the scattered fields both with and
without the additive Gaussian noise. Numerical results also il-
lustrate that the conductivity is more sensitive to noise than the
shape function is. According to our experience, the main diffi-
culties in applying the GA to this problem are how to choose
the parameters, such as the population size (), bit length of
the string ( ), crossover probability ( ), and mutation prob-
ability ( ). Different parameter sets will affect the speed of
convergence, as well as the computing time required. From the
numerical simulation, it is concluded that a population size from
300 to 600, a string length from 8 to 16 bits, and aand
in the ranges of and are
suitable for imaging problems of this type.
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