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Electromagnetic Imaging for an Imperfectly
Conducting Cylinder by the
Genetic Algorithm

Chien-Ching Chiu and Wei-Ting Chen

~ Abstract—This paper presents a computational approach to the ideal candidate for global optimization. It usually converges to
imaging of an imperfectly conducting cylinder by the genetic al- the global extreme of the problem, no matter what the initial
gorithm (GA). A conducting cylinder of unknown shape and con- agtimate is [12]. However, the aforementioned GA merely deals

ductivity scatters the incident wave in free space and the scattered . . . . .
field is recorded outside. Based on the boundary condition and with the case of perfectly conducting objects, and there is still

the measured scattered field, a set of nonlinear integral equations NO research for the case involving lossy or imperfect metallic
is derived and the imaging problem is reformulated into an opti- scatterers.

mization problem. The GA is then employed to find out the global |n this paper, the electromagnetic imaging of an imperfectly
extreme solution of the cost function. Numerical results demon- conducting (i.e., lossy) cylinder in free space is investigated.

strated that, even when the initial guess is far away from the exact .
one, good reconstruction has been obtained. In such a case, the gra--rhe GA is used to recover not only the shape, but also the con-

dient-based methods often get trapped in a local extreme. In addi- ductivity, of a scatterer by using only the scattered field. The
tion, the effect of Gaussian noise on the reconstruction results is method is potentially important in medical imaging and bio-

investigated. Numerical results show that multiple incident direc- |ogical application. In Section II, a theoretical formulation for
tions permit good reconstruction of shape and, to a lesser extent, g glectromagnetic imaging is presented. The general principle
conductivity in the presence of noise in measured data. . . .
of GAs and the way we applied them to the imaging problem
Index Terms—Conductors, electromagnetic scattering inverse are described. Numerical results for objects of different shapes
problems, genetic algorithms, image reconstruction. and conductivities are given in Section Ill. Finally, some con-
clusions are drawn in Section IV.

. INTRODUCTION

. . . Il. THEORETICAL FORMULATION
HE image problem of conducting objects has been a

subject of considerable importance in noninvasive me&- Imaging Problem

surement, medical imaging, and biological application. In the | et us consider an imperfectly conducting cylinder with con-
past 20 years, many rigorous methods have been developedigtivity + located in free space, and lety( 110) denote the
solve the exact equation. However, inverse problems of thisrmittivity and permeability, respectively, of free space. The
type are difficult to solve because they are ill posed and nofretallic cylinder with a cross section described in polar coordi-
linear. As a result, many inverse problems are reformulated @ges in thery-plane byp = F(6) is illuminated by an incident
optimization problems. Generally speaking, two main kinds fane wave whose electric-field vector is parallel to feaxis
approaches have been developed. The first is based on grag&gg_t’ TM polarization). LetZ, denote the incident plane wave
ith

search approach such as the Newton—Kantorovitch met incid - '
. t e, h Fig. 1. Th ttered field
[1]-[3], local shape function method [4], Levenberg—Marguart an incident anglé, as shown in Fig © scatieredtie

algorithm [5]-[7], and successive-overrelaxation method [iﬁs = E — E; can then be expressed by

since these approaches apply the gradient search method to g @)

find the extreme of the cost function. This method is highl)Es(% y) = —/ ZHO

dependent on the initial guess and tends to get trapped in a 0 i

local extreme. In contrast, the second approach is based on | (k\/(x_F(el)COS(Q')VJF(?/_F(QI)Sm(el))2)

the genetic algorithm (GA) [9]-[11]. The GA is a well-known S J() do’ (1)

algorithm that uses the stochastic random choice to search

through a coding of a parameter space. Compared to gradhé’ﬁh

search optimization techniques, the GA is less prone to con- o \/ﬁ 2_ 2

vergence to a local minimum, which, in turn, renders it an JO0) = —jonoV I2(6) + F2(0):(6), k™ = weono
whereHé” is the Hankel function of the second kind of order
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y where M, is the total number of measured poinfSP( )
T and E*(r) are the measured and calculated scattered fields,
respectively. Note that the regularization tesi¥”(6)|> was

added in (4). Please refer to [3] and [9] for further detail.

P W B. Genetic Algorithm
X Genetic algorithms are the global numerical optimization
methods based on genetic recombination and evolution in
nature [12]. They use the iterative optimization procedures

»\¢ that start with a randomly selected population of potential

solutions, and then gradually evolve toward a better solution

through the application of the genetic operators, i.e., reproduc-

E tion, crossover, and mutation operators. In our problem, both
parameterd3,, andC,, are coded by the following equation:

Fig. 1. Geometry of the problem in tife:, y)-plane.

L—-1
- ) Pmax — Pmin B, (0O C,) 0
Bn(or Cn) = Pmin + 9L _ | Z bz 2 (5)

[3], [13], [14]. This boundary condition yields an integral =0
equation for.J ()
27 j @) ¢ ¢ N;—1
_ 2 . / / _ . max — Ymin o
Ez(F(9)7 9) - /0 ZHO (]WO)J(Q ) de 0 = Qmin + 2NI _1 ; dz2 . (6)

g J(0)
7 wioo \/F2(0) + F2(6) @ ThebOB”(orC”),bf”(orc”), ey bfi(lorc”) (gene) is the.-bit
string of the binary representation 8%, (or C,,), andp.,;, and

where Pmax are the minimum and maximum values admissibleBqr
1/2 (or C,,), respectively. Similarlyy, d1, . .., dy,—1is theN;-bit
- string of the binary representation f andq,,,;, andg,,,. are

For the direct scattering problem, the scattered fie)ds cal- t_he minimum and maximum values admissible iﬁorre_spec
. . tively. Here,puin, Pmaxs Gmin, @Ndgmax €an be determined by

culated by assuming that the shape and conductivity of the ob- X e . :
. . : . g prior knowledge of the object. Also, the finite resolution with

ject are known. This can be achieved by first solvihdn (2) ; : S .

. . . . . which B,, (or C,), ¢ can be tuned in practice is reflected in the

and calculating?; in (1). For numerical calculation of the di- . i . S :
g:mber of bits assigned to it. The total unknown coefficients in

ro(8, 8) = [F(6) + F2(8) — 2F(0)F(¢') cos(6 — ¢)]

sggments so that the induced surface current density can be tring (chromosome). The basic GA for which a flowchart is
sidered constant over each segment. The moment method

) . . . wn in Fig. 2 starts with a large population containing a total
is then gsed o solve .(1) and (2) W'th apulse b.aS'S function 8FM candidates. Each candidate is described by a chromosome.
expanding and the Dirac delta function for testing.

: L . The initial population can then simply be created by takirdg
Let us consider the following inverse problem: given the . . .

. . .random chromosomes. Finally, the GA iteratively generates a
scattered fieldE, measured outside the scatterer, determing

the shaper*(6) and conductivityo of the object. Assume the néw population, which is derived from the previous population
: o through the application of the reproduction, crossover, and mu-
approximate center of the scatterer (which, in fact, can be

point inside the scatterer) is known. The shap@) function apa¥ion operators. The new populations will contain increasingly
can then be expanded as ' better chromosomes and will eventually converge to an optimal
P population that consists of the optimal chromosomes. As soon

rect problem, the contour is first divided into sufficiently sma 8@1—(5)' and (6) would then be described by(@f+1) x L+ Ny

N/2 N/2 as the cost functioqC'F") changes by 1% in two successive
F(0) = Z B,, cos(nf) + Z Cy, sin(nf) (3) generations, the algorithm will be terminated and a solution is
n=0 n=1 then obtained.

where B,, and C,, are real coefficient to be determined, and
N + 1 is the number of unknowns for shape function. In the
inversion procedure, the GA is used to minimize the following By numerical simulation, we illustrate the performance of the

IIl. NUMERICAL RESULTS

cost function: proposed inversion algorithm and its sensitivity to random error
M, in the scattered field. Let us consider an imperfectly conducting

CF = € Z |ESP(7 ) — B (7)) cylinder in free space and a plaqe wave of unit amplitude inci-
M, ~ dent upon the object, as shown in Fig. 1. The frequency of the

1/2 incident wave is chosen to be 3 GHz, i.e., the wavelengih
|ESP (7 0) 2 4 af F'(8))? (4) 0.1m.Inthe examples, the size of the scatterer is about one-third
the wavelength, thus, the frequency is in the resonance range.



CHIU AND CHEN: ELECTROMAGNETIC IMAGING FOR IMPERFECTLY CONDUCTING CYLINDER BY GA 1903

parameters 0.08f exact

encodmng { 1 (g=e=-- initial
& 0.06} * 4 loth ||

-—— 210t

_

Y E
g
generate M random s 0.02¢
chromosomes g,
S L
(5]
fg .02}
A 4 e
decoding of dl 0.04f ]
d chromosomes
0.06 | d
0.08} 4
Cross-over v ) . ) . .
and mutation - 0.1 0.05 0 0.05 0.1
i cost fimction horizontal co-ondinate,m
calculations
(@)
. 1 T T
reproduction L —
A 0.9 4+—+ DSG |-
stop os}
criterion
07k 1

06k g

Relative Error

Fig. 2. Flowchart for the GA.

In our calculation, three examples are considered. To recor
struct the shape and conductivity of the cylinder, the object is Generations
illuminated by four incident waves with incident angles- 0°, (b)
907, 1800’ and270°, and the measurement I.S taken on a CII’C||_e|g. 3. (@) Shape function for example 1. The solid curve represents the exact
of radiusR’ at equal spacing. In our casés, is chosen much shape, while the dashed curves are calculated shape in iteration process. (b)
larger thar2D’2 /A, corresponding to the far-field measuremenghape-function error and conductivity error in each generation.
whereD’ is the largest dimension of the scatterer. Note that for
each incident angle, eight measurement points at equal spacin~ _ . i
are used, and there are a total of 32 measurement points it G—a DR
each simulation. The number of unknowns is set to ten (i.e., °%[ —+ DSE
N 4+ 2 = 10) to save computing time. The population size is  oc.os}
chosen as 300 (i.eld = 300). The binary string length of un-
known coefficientB,, (or C,,) is set to be 16 bits (i.el, = 16).
The binary string length of conductivityis also set to be 16 bits
(i.e., Ny = 16). In other words, the bit number of a chromo-
some is 160 bits. The search range for unknown coefficient of &
the shape function is chosen to be from 0 to 0.1. The searct”
range for unknown conductivity is chosen fromx3107 to 7 x 0.03p
107. The extreme value of the coefficient of the shape function 0.}
and conductivity can be determined by the prior knowledge of
the objects. The crossover probabilgty and mutation proba- a
bility p,,, are setto be 0.8 and 0.04, respectively. The value of 30_ . - . ~

. 10° 10" 10° 10 10"
is chosen to be 0.001. Noise Level

In the first example, the shape function is chosen to bFe 4 Relat fsh d conductivit function of noi
F(9) _ (0.034_0.0025 cos 6—0.005 cos 294_0.005 cos 39) m 19. 4. elative error of shape ana conductivity as a tunction of noise.
with aluminum material (i.e.g = 3.54 x 107 s/m). The re-
constructed shape function for the best population memb&g. 3(b), while the error for the reconstructed conductivity is
(chromosome) is plotted in Fig. 3(a) with the error shown ialso given in Fig. 3(b). HereDR and DSIG, which are the
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(a) Shape function for example 3. The solid curve represents the exact

shape, while the dashed curves are the calculated shape in the iteration prosgpe, while the dashed curves are the calculated shape in the iteration process.
(b) Shape function error and conductivity error in each generation.

(b) Shape function error and conductivity error in each generation.

shape function and conductivity discrepancies, respectively e heen added to the real and imaginary parts of the simulated

are defined as

DR =

DSIG =

cal_o_

g

1 X
N D) — PP

=1

1/2

/F2(9z‘)

scattered fields. Normalized standard deviations 0’1004,
1073,1072, and 10! are used in the simulations. The normal-
ized standard deviation mentioned earlier is defined as the stan-
dard deviation of the Gaussian noise divided by the rms value of
the scattered fields. Here, the signal-to-noise ratio (SNR) is in-
versely proportional to the normalized standard deviation. The
numerical result for this example is plotted in Fig. 4. It is under-

where N’ is set to 60. The quantitie®@R and DSIG provide stood that the effect of noise is negligible for normalized stan-
measures of how wel<*! approximate?'(§) ando<®! approx- dard deviations below 1.

imatess, respectively. From Fig. 3, itis clear that the reconstruc- In the second example, we selected the peanut shape function
tion of the shape function and conductivity is quite good. ThE(f) = (0.026 + 0.009 cos 26) m with silver material (i.e.,
quantityDSIG is 1.7 x 10~2 in the final generation. In addi- ¢ = 6.17x 107 s/m). The purpose of this example is to show that
tion, we also see that the reconstruction of conductivity does ramtr method is able to reconstruct a scatter whose shape function
change rapidly toward the exact value ubtit is small enough. has two concavities. Satisfactory results are shown in Fig. 5.
This can be explained by the fact that the shape function makes & the third example, the shape function is selected to be
stronger contribution to the scattered field than the conductivify(6) = (0.02+0.004 sin 26+ 0.008 sin 36) m, where copper

does. In other words, the reconstruction of the shape functioraterial is selected (i.eq =

5.8 x 107 s/m). Note that the

has a higher priority than the reconstruction of the conductivitghape function is not symmetrical about eitherth@ndy-axis.
To investigate the sensitivity of the imaging algorithm againdthis example has further verified the reliability of our algorithm.
random noise, two independent Gaussian noises with zero m&aafer to Fig. 6 for details.



IV. CONCLUSIONS

In this paper, we have presented a study of applying the GA
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[8] R.E. Kleinman and P. M. van den Berg, “Two-dimensional location and

shape reconstructionRadio Sci, vol. 29, pp. 1157-1169, July/Aug.
1994.

to reconstruct the shape and conductivity of a metallic object[®] C.C.ChiuandP.T. Liu, “Image reconstruction of a perfectly conducting

through knowledge of a scattered field. Based on the boundary
condition and measured scattered field, we have derived a sgbj
of nonlinear integral equations and reformulated the imaging
problem into an optimization problem. By using the GA, the[11
shape and conductivity of the object can be reconstructed. Even
when the initial guess is far from exact, the GA converges to
a global extreme of the cost function, while the gradient-base
methods often get stuck in a local extreme. Good reconstruc-
tion has been obtained from the scattered fields both with anid3l
without the additive Gaussian noise. Numerical results also il-
lustrate that the conductivity is more sensitive to noise than thg4)
shape function is. According to our experience, the main diffi-
culties in applying the GA to this problem are how to choosd!®
the parameters, such as the population sig, (bit length of

the string (), crossover probabilityy(.), and mutation prob-

ability (p,,). Different parameter sets will affect the speed of

convergence, as well as the computing time required. From f
numerical simulation, itis concluded that a population size fro
300 to 600, a string length from 8 to 16 bits, and.aandp,,

in the ranges 00.7 < p. < 0.9 and0.0005 < p,, < 0.05 are
suitable for imaging problems of this type.
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