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Abstract—In this paper, the complete set of four spatial-domain
electromagnetic dyadic Green’s functions are rigorously derived
for the parallel-plate chirowaveguide. These dyadic Green’s func-
tions are presented in the cylindrical coordinates, which are found
to facilitate numerical calculations. An electric-field integral equa-
tion for the coaxial-probe excitation problem is formulated using
the dyadic Green’s functions, and the moment-method solution is
sought. The probe admittance and current distribution along the
probe at different chiral levels are obtained. Results show that a
substantially higher admittance level is obtained, but the admit-
tance bandwidth decreases with the chiral parameter. Stopbands
at which no net power input into the waveguide are observed. This
characteristic is found to have no match in the nonchiral wave-
guide. The computed current distribution along the probe shows
a greater current magnitude than that of the nonchiral waveguide.
The validity of the numerical solution is checked with the measured
values for the nonchiral case.

Index Terms—Chirowaveguide, dyadic Green’s function, excita-
tion method.

I. INTRODUCTION

DYADIC GREEN’S functions are important tools for
solving electromagnetic boundary value problems. They

are necessary for the moment method in computational elec-
tromagnetics. In recent years, much research effort has been
devoted to the derivation of the electromagnetic dyadic Green’s
functions for chiral media, which, unfortunately, has only
been successful for some simple cases, e.g., dyadic Green’s
functions in an unbounded chiral medium have been derived
by Bassiriet al. [1] and Lindell et al. [2], the dyadic Green’s
function in the presence of a chiral sphere by Engheta and
Kowarz [3], the spectral dyadic Green’s function formulation
for a grounded chiral slab by Toscano and Vegni [4], the
spectral-domain dyadic Green’s function in layered chiral
media by Ali et al. [5], and the dyadic Green’s function for
radially multilayered chiral media by Liet al. [6]. All these
dyadic Green’s functions are either involved with chiral/chiral,
chiral/dielectric interfaces, or the chiral/perfect electric con-
ductor (PEC) interface, but with spectral-domain formulations.
In [7]–[9], the spatial-domain dyadic Green’s functions for
the cylindrical and parallel-plate chirowaveguides were first
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formulated by Hui and Yung, and an alternative formulation for
the cylindrical chirowaveguide was more recently seen in [10].

In this paper, we generalize the method developed in [7] to
derive the complete set of dyadic Green’s functions for the par-
allel-plate chirowaveguide. This set of dyadic Green’s functions
can be used simultaneously or independently to find both the
electric and/or magnetic fields produced by an arbitrary dis-
tribution of electric and/or magnetic current sources. All the
dyadic Green’s functions are derived in the cylindrical coor-
dinates, which leave the expressions with infinite series rather
than infiniteimproperintegrals, as in [9]. This reduces the dif-
ficulty encountered in the numerical calculations. In Section II,
the dyadic Green’s functions derived are used to analyze the
problem of a coaxial probe inside the waveguide. The coaxial
probe is to serve as an excitation method. Although investiga-
tions of the coaxial-probe excitation method for the nonchiral
parallel-plate waveguide have been well researched [11]–[13],
the investigation for the chiral parallel-plate waveguide is re-
searched here for the first time. The coaxial probe will be mod-
eled as a thin wire and the moment method is used to obtain
numerical solutions. The presence of thin wire in an unbounded
chiral medium has been studied by Jaggardet al. [14]. Peculiar
characteristics such as the rapid decay in currents and the for-
bidden zone in radiation patterns were observed. In this paper,
the admittance seen by the coaxial line and the current dis-
tribution along the coaxial probe will be obtained. The varia-
tions of the admittance and current distribution with the levels
of chirality, length of the probe, and excitation frequency are
all shown. The theoretical admittance for the case with a van-
ishing chirality is compared with measured values. Our analysis
shows that there are significant deviations of the admittance and
current distribution from the nonchiral case. For example, stop-
bands at which the admittance virtually vanishes are observed.
These stopbands are found to be located near the cutoff frequen-
cies. The admittance and current distribution are, in most of the
cases, substantially larger than the nonchiral case.

II. FORMULATIONS FOR THEELECTROMAGNETIC DYADIC

GREEN’S FUNCTIONS

The parallel-plate chirowaveguide and the coordinate system
are shown in Fig. 1. The constitutive equations to characterize
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Fig. 1. Parallel-plate chirowaveguide and the coordinate system.

the chiral medium are

(1a)

(1b)

where , , and are, respectively, the permittivity, perme-
ability, and chiral parameter of the chiral medium Note that
, , and are complex numbers in the most general case,

but we consider only the lossless case. Equation (1) is the
Drude–Born–Fedorov (DBF) form of constitutive equations
[15]. For time–harmonic (with the convention ) fields
and sources, by putting (1) into the Maxwell’s equations, we
obtain the following vector wave equations for the electric and
magnetic fields:

(2a)

(2b)

where and are, respectively, the magnetic and electric cur-
rent densities and , . Unique
solutions for the electromagnetic field can be obtained by spec-
ifying the following boundary condition on the electric field:

(3)

where is a unit normal outward-pointing vector defined on the
conducting plates of the waveguide. The right-hand side of (2)
implies that we can divide the electric or magnetic field into two
parts: one is due to the electric current, denoted byand ,
and the other is due to the magnetic current, denoted by
and . That is, we can separate (2) into the following four
equations:

(4a)

(4b)

(4c)

(4d)

Note that since the electric and magnetic currents are, in general,
independent of each other, thepartial electric fields in (4a) and
(4c) must satisfy the same boundary conditions as (3), namely,

(5)

The total electric and magnetic fieldsand will be the sum
of the partial fields in (4a)–(4d).

We notice from (4b) and (4c) that and
. This is an important consequence of the partial-field

expression, and this gives us a great convenience in deriving the
dyadic Green’s functions because the fact that these two partial
fields are divergenceless allows us to expand them completely
by using only the solenoidal vector wave functions. In view of
(4), the equations for the dyadic Green’s functions and boundary
conditions can be written as

(6a)

(6b)

(6c)

(6d)

(7)

where is the unit dyadic, is the three-dimensional
delta function, is the field coordinate point, and is the
source coordinate point. Note that although and

are governed by the same equation, the boundary
conditions for them are different. Therefore, solutions to
them must be different. The same inference also applies to

and . Furthermore, the four dyadic
Green’s functions in (6) are not all independent. They are
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connected by the following relations:

(8a)

(8b)

These two relations can be obtained by considering similar re-
lations between the electric and magnetic fields.

By using the linearity property of the operators
and , and right-multiplying an elementary current source to
(6a)–(6d) and integrating, we can establish the integral relations
between the dyadic Green’s functions and the field quantities,
i.e.,

(9a)

(9b)

where is the volume containing the current sources. From
(9a) and (9b), is identified as the electric dyadic
Green’s function for an electric current source,
as the electric dyadic Green’s function for a magnetic current
source, as the magnetic dyadic Green’s function
for an electric current source, and as the magnetic
dyadic Green’s function for a magnetic current source. These
dyadic Green’s functions are of great importance to solving
waveguide problems. It is obvious from (9) that none of these
dyadic Green’s functions alone can yield a complete solution to
the electric or magnetic fields.

To find these dyadic Green’s functions, we use the similar
technique as in [9] or [7] and [8]. We first seek expressions of the
electric and magnetic fields in a source-free region expanded in
terms of their eigenfunctions. This can be done by transforming
the electric and magnetic fields into two fields and , which
satisfy the nonchiral isotropic vector wave equation. The trans-
formed fields and are divergenceless and, hence, can be
expanded by the solenoidal vector wave functions. In this way,
the eigenfunctions of the electric and magnetic fields can be ex-
pressed as linear combinations of the and vector wave
functions. The complete eigenfunction expansions of the elec-
tric and magnetic fields can then be obtained by further deter-
mining the expansion coefficients. It is from the expansion of the
magnetic field that we finally recover the expression of the mag-
netic dyadic Green’s function. This is possible because of the
condition that the expansion of the purely solenoidal magnetic
field is complete. In the present case, since we have expressed
the electric and magnetic fields aspartial fields, we have two
purely solenoidal fields and , i.e., the magnetic field due

to an electric current and the electric field due to a magnetic cur-
rent. Thus, by the same token, we can derive and

. Without going into the detailed steps (which are
similar to those laid out in [9]), we just spell out the final results
of the derivation shown in (10) and (11), at the bottom of the
following page, where

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)

(13a)

(13b)
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and is the Kronecker delta defined with respect to. The
transformed fields are expanded in terms of the vector wave
functions as

(14a)

(14b)

(14c)

(14d)

where

(15a)

(15b)

(15c)

(15d)

and

(16a)

(16b)

In (15), is the Bessel function of the first kind and order
. The propagation constants in (16) are given by [9]

(17a)

(17b)

In the expressions of , the primed
eigenfunctions are defined with respect to the source coordi-
nates . The superscript “(1)” in (12) is to indicate that
the Bessel function in the transformed fields are replaced with

(10)

(11)
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the Hankel function of the first kind. This is for the case for ex-
pressing the fields for . The index in the double sum-
mation counts over all the roots of the dispersion equations, i.e.,

and . The relations of to and

to are [16]

(18)

(19)

where and are two unit step functions defined
as in [16, pp. 107] With and , the
remaining two dyadic Green’s functions can be found from the
relations in (8a) and (8b). They are shown in (20) and (21) at the
bottom of this page. Thus, all the four dyadic Green’s functions
in (6a) and (6b) have been obtained. In the following section,
we shall apply two of these dyadic Green’s functions to analyze
the problem of the coaxial-probe excitation for the waveguide.

III. A PPLICATION TO THECOAXIAL -PROBEEXCITATION

Consider the parallel-plate chirowaveguide excited by a
coaxial probe, as shown in Fig. 2. The chiral medium filling
the waveguide is assumed to be lossless and , .
The coaxial probe has a lengthand radius . The radius of
the outer conductor of the coaxial line is. A thin probe (with

Fig. 2. Coaxial-feed excitation method of the parallel-plate chirowaveguide.

where is the excitation wavelength), as commonly
used for the excitation of the nonchiral parallel-plate wave-
guide, is considered in this paper. This allows us to use the
thin-wire approximation in the following analysis. We can
identify two current sources in this problem: the electric current

on the coaxial probe and the magnetic currentover the
coaxial aperture. A TEM mode distribution for is assumed
as follows:

(22)

where is the voltage applied across the inner and outer con-
ductors of the coaxial line.

(20)

(21)
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TABLE I
CONVERGENCE OF THEPROBE ADMITTANCE WITH RESPECT TOm, THE

NUMBER OF ROOTS OF THEDISPERSIONEQUATIONS (d = 1 cm,
a = 0:015 cm,b = 2:25a, ` = d, ka = 0:0664, kd = 4:42)

By using the electric dyadic Green’s function for an elec-
tric current source and the electric dyadic Green’s
function for a magnetic current source , an elec-
tric-field integral equation (EFIE) on the surface of the probe
can be formulated

(23)

where is the component of
and is the com-

ponent of . We need these two components
because the electric current on the probe runs only in the-di-
rection, while the magnetic current over the coaxial aperture
has only the -direction. The expressions of these two dyadic
components and some computation techniques are presented in
the Appendix.

IV. NUMERICAL RESULTS AND DISCUSSION

The current along the probe is expanded by the piece-
wise sinusoidal function and the integral equation in (23) is
matched using the Galerkin method. As explained in the Ap-
pendix, all the integrations and the infinite series with respect
to can be carried out in closed forms, leaving only the infinite
series with respect to . The convergence of the probe input
admittance with respect to , i.e., the number of roots of the
dispersion equations, is shown in Table I. We see that, for both
cases of m and m, the difference of
the imaginary part of the admittance obtained at and

has been less than 0.5% and that for the nonchiral
case is about 0.2%. Hence, we take in our subsequent
calculations.

In Fig. 3, we compare the probe admittance of two weak
chiral cases with the nonchiral one for , ,

cm, and . We see from this figure that the nonchiral
admittance (with ) agrees quite well with the measure-
ment values obtained by Rao [11]. The chiral admittance of
the two weak chiral cases approaches that of the nonchiral one
asymptotically. The difference between the chiral admittance at

m and the nonchiral admittance is very small in
the range of values shown in this figure. Note that the chiral

Fig. 3. Comparison of the probe admittances of two weak chiral cases with
the nonchiral one.

parallel-plate waveguide always lacks a TEM mode [17] and,
thus, the same observation may not be generalized to all ranges
of values. Nevertheless, the results in Fig. 3 confirm the va-
lidity of our method.

The variations of the probe admittance with the excitation
frequency are shown in Fig. 4(a)–(c) for three different chiral
parameters of m, m, and
m. The geometric parameters are cm, cm,

, and . The case for is also plotted in Fig. 4(a)
for comparison. The following observations are obtained from
Fig. 4.

1) The chiral admittance (both real and imaginary parts) is
generally greater than that of the nonchiral case and in-
creases with the chiral parameter.

2) A greater chiral parameter causes more rapid variations of
the admittance, i.e., more ripples can be seen in the same
frequency range.

3) There are two frequencies, i.e., 27 GHz in Fig. 4(b) and
25.1 GHz in Fig. 4(c), at which the admittance vanishes.
That means the coaxial probe is actually equivalent to
an open circuit at these two frequencies. For frequencies
close to these two frequencies, the waveguide becomes
a very large capacitive or reactive load. That means no
net power can be transmitted into waveguide in these
frequency bands, which may be termed thestopbands.
Furthermore, we see from Fig. 4(b) and (c) that a greater
chiral parameter gives a widerstopband. This is a
new phenomenon, which does not find a match for the
nonchiral case. We find that these stopbands are located
very near the second-lowest cutoff frequencies of the
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(a) (b)

(c)

Fig. 4. Variations of the probe admittance with excitation frequency: (a) for� = 0:0003 m, (b) for� = 0:0005 m, and (c) for� = 0:0007 m.

waveguide, which are 27.5 GHz for m and
25.7 GHz for m.

The combined effect of these observations is that the admit-
tance bandwidth shrinks in favor of a higher admittance level.

In Fig. 5, the variation of the probe admittance with the length
of the coaxial probe (as a fraction of the waveguide separation
) is shown for m, m, and

m, and for cm, cm, , and GHz,
where is the excitation frequency. We see that the chiral pa-
rameter has a significant effect on the resonant length of the
coaxial probe (length at which the imaginary part of the admit-
tance vanishes). All the three chiral cases give longer resonant
probe lengths than the nonchiral one.

Finally, in Fig. 6, we show the computed current distributions
along the coaxial probe for several chiral parameters and for

cm, cm, , , and GHz.

It can be seen that, for all the chiral cases, the current magni-
tudes are greater than the nonchiral one, but all show a similar
distribution.

V. CONCLUSIONS

The eigenfunction expansions of the complete set of four
spatial-domain dyadic Green’s functions for the parallel-plate
chirowaveguide are derived rigorously and expressed in terms
of the cylindrical vector wave functions. Using these dyadic
Green’s functions, both electric and magnetic fields due to ar-
bitrarily distributed electric or magnetic or both current sources
can be found. The coaxial-probe excitation method for the par-
allel-plate chirowaveguide is specifically analyzed by an EFIE
formulated using the dyadic Green’s functions. Solutions are
obtained by the moment method. The probe input admittance
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(a)

(b)

Fig. 5. Variation of the probe admittance with the length of the coaxial probe.
(a) Real part. (b) Imaginary part.

and current distribution along the probe at different chiral levels
are calculated. Results show that a substantially higher admit-
tance level is obtained, but the admittance bandwidth decreases
with an increasing chiral parameter. Stopbands at which no net
power can be input into the waveguide are observed. These stop-
bands are found to be located near the cutoff frequencies. This
new characteristic is found to have no match in the nonchiral
waveguide. The computed current distribution along the probe
shows that the current magnitude is greater than that of the
nonchiral case.

APPENDIX

The expressions of two components of the dyadic Green’s
functions in the EFIE in (23) are presented in this sec-
tion. As the electric current along the probe is considered

Fig. 6. Computed current distributions along the coaxial probe.

to be running along the central axis of the probe, we

need only , i.e., that part of
for . From (20), it is given by

(A1)

where is the Hankel function of the first kind and order.
The meanings of all other symbols are the same as those already
discussed in Section II.
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For computing the electric field due to the magnetic
current over the coaxial aperture, we need only

since lies entirely outside
the probe surface. From (11), the nonvanishing terms of

contributing to (23) are

(A2)

We notice that by putting (A1) and (A2) into (23), we end
up with two integrations and two infinite summations involved

with . (An additional integration
is introduced by the matching procedure.) Fortunately, we
find that the two integrations with respect toand can
be carried analytically, while the infinite summation with
respect to can be done by using theaddition theoremfor
Hankel functions [18, pp. 232], which yields a single term.
For , we find that the integrations
with respect to and can be carried out analytically, yielding
the following results:

(A3)

Thus, all the integrations and the infinite summation with re-
spect to vanish, leaving only the infinite summation with re-
spect to . This allows very efficient numerical codes to be
written.
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