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The Complete Set of Dyadic Green’s Functions for
the Parallel-Plate Chirowaveguide and the
Application to the Coaxial-Probe
Excitation Method

Hon-Tat Hui Member, IEEEEdward K. N. Yung Senior Member, IEEEand Xin-Qing Sheng

Abstract—in this paper, the complete set of four spatial-domain formulated by Hui and Yung, and an alternative formulation for
electromagnetic dyadic Green’s functions are rigorously derived the cylindrical chirowaveguide was more recently seen in [10].
for the parallel-plate chirowaveguide. These dyadic Green’s func- In this paper, we generalize the method developed in [7] to
tions are presented in the cylindrical coordinates, which are found . ' . , .
to facilitate numerical calculations. An electric-field integral equa- derive the co'mplete Set, of dygdlc Green’s fP“Ct'O”S for the.par-
tion for the coaxial-probe excitation problem is formulated using allel-plate chirowaveguide. This set of dyadic Green’s functions
the dyadic Green’s functions, and the moment-method solution is can be used simultaneously or independently to find both the
sought. Th_e probe aplmittance and curr_ent distribution along the glectric and/or magnetic fields produced by an arbitrary dis-
probe at different chiral levels are obtained. Results show that a tribution of electric and/or magnetic current sources. All the
substantially higher admittance level is obtained, but the admit- . , . . . A
tance bandwidth decreases with the chiral parameter. Stopbands d}’ad'c Gfe‘?” s functions are derlved |n the _CY"“d“C,a' coor-
at which no net power input into the Waveguide are observed. This d|nates, Wh|Ch |eaVe the eXpreSS|0nS W|th |nf|n|te series I’ather
characteristic is found to have no match in the nonchiral wave- than infiniteimproperintegrals, as in [9]. This reduces the dif-
guide. The computed current distribution along the probe shows ficulty encountered in the numerical calculations. In Section I,
a greater current magnitude than that of the nonchiral waveguide. the dyadic Green’s functions derived are used to analyze the
The validity of the numerical solution is checked with the measured - - . .
values for the nonchiral case. problem of a coaxial probe .|ns.|de the waveguide. Th.e coaxlal

probe is to serve as an excitation method. Although investiga-
tions of the coaxial-probe excitation method for the nonchiral
parallel-plate waveguide have been well researched [11]-[13],
the investigation for the chiral parallel-plate waveguide is re-
I. INTRODUCTION searched here for the first time. The coaxial probe will be mod-
YADIC GREEN'’S functions are important tools foreled as a thin wire and the moment m.ethc.)d IS used to obtain
solving electromagnetic boundary value problems. Th merical solutions. The presence of thin wire in an unbounded

are necessary for the moment method in computational el iral medium has been studied by Jaggetrel. [14]. Peculiar

tromagnetics. In recent years, much research effort has bg ﬁracteristic_s suc_h as the rapid decay in currents an(_j the for-
devoted to the derivation of the electromagnetic dyadic Gree @den zone in radiation patterns were observed. In this Paper,
functions for chiral media, which, unfortunately, has only € qdmntance seen by the CoaX'al line anq the current .dls_
been successful for some simple cases, e.g., dyadic Gre HbSUIIOH along the coaxial probe will be obtained. The varia-

functions in an unbounded chiral medium have been deriv%?ns of the admittance and current distribution with the levels

by Bassiriet al. [1] and Lindellet al. [2], the dyadic Green’s chirality, length of the probe, and excitation frequency are
i q%shown. The theoretical admittance for the case with a van-
P

function in the presence of a chiral sphere by Engheta afiy’ o . )
Kowarz [3], the spectral dyadic Green’s function formulatio ing chirality is compargq with mgaspred values. Ogranaly3|s
for a grounded chiral slab by Toscano and Vegni [4], th owsthgttherg are S|gn|f|cantde\{|at|ons of the admittance and
spectral-domain dyadic Green’s function in layered chir%lurremd'sm.bUtlon from 'the nonthral case..For example, stop-
media by Aliet al. [5], and the dyadic Green’s function for ands at which the admittance virtually vanishes are observed.
These stopbands are found to be located near the cutoff frequen-

radially multilayered chiral media by Lét al. [6]. All these . The admitt q ¢ distributi . t of th
dyadic Green'’s functions are either involved with chiral/chiraf'®S- 1h€ admittance and current distrioution are, in most ottne
ases, substantially larger than the nonchiral case.

chiral/dielectric interfaces, or the chiral/perfect electric corf?

ductor (PEC) interface, but with spectral-domain formulations.

In [7]-[9], the spatial-domain dyadic Green’s functions for

the cylindrical and parallel-plate chirowaveguides were first Il. FORMULATIONS FOR THE ELECTROMAGNETIC DYADIC
GREEN'S FUNCTIONS

Index Terms—Chirowaveguide, dyadic Green'’s function, excita-
tion method.
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V xV x If_iK —272/3V X If_iK—’y2IT_iK
= jwe (’7//{;)2 [I?—F/JV X Iﬂ . (4d)

Note that since the electric and magnetic currents are, in general,
independent of each other, thartial electric fields in (4a) and
(4c) must satisfy the same boundary conditions as (3), namely,

—

i x E x Ex =0. 5
Fig. 1. Parallel-plate chirowaveguide and the coordinate system. 7 4_ﬂ:1/2d z=%1/2d ©)

The total electric and magnetic fieldsand A will be the sum
of the partial fields in (4a)—(4d).
. _ _ We notice from (4b) and (4c) tha¥ - H; = 0andV -
D=e [E + BV x E} (128) 2. — 0. This is an important consequence of the partial-field
_ Iz 73 expression, and this gives us a great convenience in deriving the
B=un [H +AV x H} (1b) dyadic Green'’s functions because the fact that these two partial
fields are divergenceless allows us to expand them completely
wheree, 11, and 3 are, respectively, the permittivity, perme+y ysing only the solenoidal vector wave functions. In view of

ability, and chiral parameter of the chiral medium Note thak) the equations for the dyadic Green’s functions and boundary
g, u, and 3 are complex numbers in the most general casgynditions can be written as

but we consider only the lossless case. Equation (1) is the o o
Drude—Born—Fedorov (DBF) form of constitutive equationsy x V x G (}? }?’) — 2428V x GEy (}?, }?’)
[15]. For time—harmonic (with the conventiam/«*) fields N

and sources, by putting (1) into the Maxwell's equations, we ~ — 7 ey (R )

obtain the following vector wave equations for the electricand 2 (Ts(R_ B = /= =
magnetic fields: =(/k) {Ié - ) +BV X [Ié (R - )}} (63)

the chiral medium are
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— jop (v/k)? [f+/3fo] (/B Vx K (2a) (
. . . . A2 7 34
= jwe (v/k)> [I?Jrﬁvuﬂ + (kY xJ  (2b) VXVXéEK(*,E) — 228V x Gri (R R)
\%

whereK and.J are, respectively, the magnetic and electric cur-

rent densities ané = w. /e, v2 = k2/(1 — k23?). Unique =—(7/k)*V x [—75 (E— E’)} (6¢)
solutions for the electromagnetic field can be obtained by spe =, = _—
ifying the following boundary condition on the electric field: ¥ x v x G ( ) =277V X G (R R)
. - ’YQ@HK (R: é’)
i E = 0 3 = — — = — —
i RSV @) = (v/k)? {15( - R’) 1BV x [15 (R - R’)}} (6d)
wherer: is a unit normal outward-pointing vector defined on the i x Gpg }?, ﬁ/) amt1/24

conducting plates of the waveguide. The right-hand side of (2) = I
implies that we can divide the electric or magnetic field intotwo = X GEx (R, R )
parts: one is due to the electric current, denotetﬁbwndl@, 0 @)
and the other is due to the magnetic current, denoted by

and Hyc. That is, we can separate (2) into the following foufyhere7 is the unit dyadic§( — &) is the three-dimensional

z==%1/2d

equations: delta function,R is the field coordinate point, an#’ is the
B B B source coordinate point. Note that although. (R, K') and
VXV xE;—2y8V x E; —+’E; Gr (R, R') are governed by the same equation, the boundary
= jwp (v/k)? [f—i- BV x ﬂ (4a) conditions for them are different. Therefore, solutions to
. . . them must be different. The same inference also applies to
VXV xHy—2y3V x Hy—+*H; Gus(R, By andGgy (R, R). Furthermore, the four dyadic

= (fy/k)QV x J (4b) Green’'s functions in (6) are not all independent. They are
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connected by the following relations: to an electric current and the electric field due to a magnetic cur-
= N = I — I gnt. TDUE, by the same token, we can defiegx (R, i) and
Gy (R’ R) - ?V x Gr (R’ R) —PGus (R’ R) Ggs(R, R"). Without going into the detailed steps (which are
l= /4 = similar to those laid out in [9]), we just spell out the final results
- ﬁf‘s (R - R) (82)  of the derivation shown in (10) and (11), at the bottom of the

o ()5 s 1) i )

1= /= =
- lo (R-R). (80) = cos(kz2:1/2d)GE, (e, Kar)
These two relations can be obtained by considering similar re- — cos(k.1.1/2d) “gpm(% E.2e) (12a)

lations between the electric and magnetic fields.
By using the linearity property of the operatovs x Vx Ef,n(Mo, koo, a2o)

andV x, and right-multiplying an elementary current source to = sin(k.2,1/2d) *ﬁ)on()\o, k.10)

(6a)—(6d) and integrating, we can establish the integral relations .

son

in(k 3L .
between the dyadic Green’s functions and the field quantities, ~ sin(k:101/2 d) Q3o (Ao; K220) (12b)
|.e., een()\ea kzlea kz?e)
E() =jun [[[ Grs (R 1) 7 () v = cos(lzzel/2d)Grgenh, Kaso
— co8(kz101/2d)@ocen(Ne, Eoze) (12c)

B /// Gox (B R)-E (&) a0 () Eonhor b ko)

= Sln( 2201/2 d)c_jlgon()\oa kzlo)

I'_j (E) = ///5HJ (E, El) . f(é/) dvl - Sin( 4101/2 d)é?gon()\oa kz?o) (12d)
v Fen()\ea kzlea kz?e)
+ juwe / / G ()R () 0/ (@) _ % [cos(hea1 /2L, (0, Banc)
A ‘ -
where is the volume containing the current sources. From +cos(k=11/2 d) gg)en()\ﬁ’ kz%)} (12e)

(9a) and (9b),GEJ(R R’) is identified as the electric dyad|CH+ oy &

zlos szo)
Green’s function for an electric current sourceg i (R R )

E . ~
as the electric dyadic Green’s function for a magnetic current = —— |:Sln(kz201/2 d) glg)on()‘ov k.10)
source, Gy s(R, R') as the magnetic dyadic Green’s function a _ (1)
for an electric current source, aft} x (R, K') as the magnetic +sin(kz101/2d)Q50n (Ao, szo):| (12)

dyadic Green’s function for a magnetic current source. Theg& ey Fate, kane)
dyadic Green’s functions are of great importance to solving®

waveguide problems. It is obvious from (9) that none of these = — [cos(kﬁel/z d)@lien()\e, ka1e)

dyadic Green’s functions alone can yield a complete solution to JWR

the electric or magnetic fields. +cos(kz11/2 d)@;en()\e, Ime)} (129)
To find these dyadic Green’s functions, we use the similas _

technique asin[9] or [7] and [8]. We first seek expressions of ti{&on()‘(” ks1o, ka2o)

electric and magnetic fields in a source-free region expanded in ~ _ i [sin(lm 1/2 d)@le Doy Fato)

terms of their eigenfunctions. This can be done by transforming Jwp = oA e

the electric and magnetic fields into two fiel@s andQ., which +sin(kr1/2d)Gaeon (A, k~20):| (12h)

satisfy the nonchiral isotropic vector wave equation. The trans-
formed fields@}, and@), are divergenceless and, hence, can be I =

2k
expanded by the solenoidal vector wave functions. In this way, w

14 8,0)A2
u( )AL

the eigenfunctions of the electric and magnetic fields can be ex- _ { cos?(k.2.1/2d) {d n Sin(kzled):|

pressed as linear combinations of the and N vector wave ky k.1e

functions. The complete eigenfunction expansions of the elec- cos?(k.1.1/2d) sin(k.ocd)

tric and magnetic fields can then be obtained by further deter- +k—2 [ ﬁ} }

mining the expansion coefficients. Itis from the expansion of the ' (13a)

magnetic field that we finally recover the expression of the mag- ) 9, .
netic dyadic Green’s function. This is possible because of the I, = ﬁ(1+6n0))\§ {Sm (ko201/2) {d — Sm(kﬁod)}
condition that the expansion of the purely solenoidal magnetic Wi k1 k10
field is complete. In the present case, since we have expressed sin(k.101/2d) [d— Sin(kz2od):| }
the electric and magnetic fields partial fields, we have two ' ko k.20
purely solenoidal field&f ; andEy, i.e., the magnetic field due (13b)
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andé, is the Kronecker delta defined with respecttoThe

transformed fields are expanded in terms of the vector wave*

functions as

ngen(Aev kzle) :M(“;en()‘ey kzle) + N(“;en()‘ev kzle)

(14a)
ngon()\ov kzlo) :Mgon()‘ov kzlo) + Ngon()‘ov kzlo)
(14b)
QQien()\ea kz?e) :Mgen()\ea kz?e) - Ngen()\ea kz?e)
(14c)
Qngn(on kz?o) :Mgon()‘ov kz?o) - Ngon()‘ov kz?o)
(14d)
where
v ]n )‘e ) i ~
Meern(Ae, kzic) = F M s;r; ng cos(koie )
A, (Aer) cos .
_ T sin ng cos(kziez)d (15a)
- ] _ 1 ] 8Jn( )cos
Ngen()\ev kzie) - k_z _kzzeT sin (/)Slll( 4267)7
ndp(Aer) sin N
ikZie—co ngsin(k,ez)

+)\§Jn()\er) sin m/)cos( vie? )2

(15b)
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nd, (A7) sin

o8 n sin(k.;o2)7

M‘fon()\ov kzzo) =+

T
AT (Aer) co . R
-8 sn nd)sm(kzioz)d) (15c)
= 1 AJp(AoT) cos .
Ngon()\ov kzio) - k_z kzioT sin d)COS( 4102)7
:szio an(,)\(ﬂ) zgl (/)COS( 4207)(;)
+A20, (Ao 7) 'n nd)sin(/ﬂzioz)é
(15d)
and
R (162)
N4k, =k, i=1,2 (16b)

In (15), .J,, is the Bessel function of the first kind and order
n. The propagation constants in (16) are given by [9]

k
ki = - &3 (17a)

k
ko =———. 17b
*T1+kB (17b)
In the expressions o (R, B') Gpx (R, R'), the primed
eigenfunctions are defined with respect to the source coordi-
natesr’, ¢', z’. The superscript “(1)” in (12) is to indicate that
the Bessel function in the transformed fields are replaced with

—+ - =
GHJ(R7 R/)
(14 R
{I_ ;;,n()\ev kzlev kz?e) |: een()\ea kzlea kz?e)_jw/vLﬁH/gen()\ea kzlea kz?e):|
1 -
"’T f;on()\ov kzlov szo) |: E/e_on()\oa kzloa szo) quﬁH/eon()\o, kzloa szo):| }7 > 7)/
=S Y amr
mon {I—Hg_e,n()‘ev kz167 kz?e) |: Elj—en()‘ev k;:167 k;«?e)_lwuﬁH/een()‘ev kz167 kz?e):|
1~ .
+I—Hg_0n()\o’ kzloa k ) |: Elj—on()\oa kzloa kz?o)_jw//LﬁH/;—on()\oa kzloa kz?o):| }a < T/
(10)
—+ -
EK(R7 R/)
4 1 —
{I_ ;— ()\ev kzlev kz?e)[_jweﬁElgen()\ea kzlea kz2€)+H/:en()\€7 kzlea kz?e)]
1 -
+I_E;:;n()\ov kzlov kz?o)[ JweﬁEleon()\oa kzloa kz?o) + H/f;on()\oa kzloa kz?o)]}a T > 7)/
=— k)2 ‘
2200 (1 ”
) ) I_ cen ()‘ev k zle, kz?e)[ 1WE[3E cen ()‘67 kZl€7 kz26)+H ggn()‘e; kZl€7 kz?e)]
1
+I_Eeon()\07 k zlo> kz?o)[ 1‘*)5[3Eleon()‘ov k,:/107 k,.?o) + H/eon()\ov k,:/107 kz?o)]}v T < T/

(11)
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the Hankel function of the first kind. This is for the case for ex
pressing the fields for > '. The indexm in the double sum-
mation counts over all the roots of the dispersion equations, i.

—+ - = — RN
)\eiand Ao- The relations of7, (R, R') to Gy s(R, R') and
Gpi(R, B') 10 Ggr(E, R') are [16]

Gus(R, B =Go (R, YU =)

+ Gy (R, BYU( =) (18)
Gox(R, B) = G (R, BYU(r —+")

+ Gpp(R, RYUG —7) (19)

wherel (r—7') andU(T/_;) areiwclunit step funcﬂonf’ definedFig. 2. Coaxial-feed excitation method of the parallel-plate chirowaveguide.
as in [16, pp. 107] WithGy (R, R') and Gek (R, R'), the

reme_lining two dyadic Green'’s functions can be found fromthe .\ \yhere ) is the excitation wavelength), as commonly
relations in (8a) and (8b). They are shown in (20) and (21) attfigeq for the excitation of the nonchiral parallel-plate wave-
_bottom of this page. Thus, all the_fourdyadlc Green_sfunctlprb%ide, is considered in this paper. This allows us to use the
in (6a) and (6b) have been obtained. In the following sectiofyin_wire approximation in the following analysis. We can

we shall apply two of these dyadic Green'’s functions to analyzgg. ity two current sources in this problem: the electric current
the problem of the coaxial-probe excitation for the waveguider , the coaxial probe and the magnetic curr&hiover the

coaxial aperture. A TEM mode distribution féf is assumed
I1l. A PPLICATION TO THE COAXIAL -PROBE EXCITATION

as follows:
Consider the parallel-plate chirowaveguide excited by a . Vi R
coaxial probe, as shown in Fig. 2. The chiral medium filling K= Tog(b/a) (22)

the waveguide is assumed to be losslessand 1o, € = 9.
The coaxial probe has a lengthand radiuse. The radius of whereV,, is the voltage applied across the inner and outer con-
the outer conductor of the coaxial linelisA thin probe (with ductors of the coaxial line.

Gps(R, R)
— e~ )+ ﬁ Emjznjw/k)“‘
. {%Ej;n(Ae, aies kze) [—E’gen(Ae, ote, kzoe) _jwﬁ‘/3ﬁ/g_en()\e, Fote, kz2e):|
+IiOEgon(Ao, koo, k20) [—E’gon(Ao, Kotor kano) — jwpBH' S0 (Mo, Fato, szo)} } .
(20)
{Ii ﬁg_en(Ae, koie, ko) [—E’;n(Ae, ote, kage) _‘jwﬁﬁ/;n( Ao, ot km)}
\ +Iioﬁg(,n(xo, Bator he20) [~ B Ohos ator hezo) = jwpBHE, (Ao, o, o) } C ew
Guk (R, R
= —%m(é - R+ J%s zn: En:(,y/k)?
. {I%H;,,,(Ae, Eate, ko2e) [—waﬁE_”g—m(Ae, Eote, kaoe) + ﬁlg_en()‘€7 ke, kz?e):|
+Iioﬁitm(% Fatos kazo) |—JweBE T (Nos Kotor azo) + B/ oy Kt Fan)] } o
(21)

1 — =3 —
+I_H§_on()\07 kzlov szo) [—waﬁEl;n()\o, kzlov szo) + H/g—on()‘ov kzlov szo):| } ’ T < 7)/
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TABLE | Admittance (mS)
CONVERGENCE OF THEPROBE ADMITTANCE WITH RESPECT TOm, THE 30 —_
NUMBER OF ROOTS OF THEDISPERSIONEQUATIONS (d = 1cm,
a =0.015cm,b = 2.25a, ¢ = d, ka = 0.0664, kd = 4.42) 20
m Admittance (mS) for Admittance (mS) for Admittance (mS) for 10
B = 0.0003m A =0.0007m B =0
46 3.439-j0.780 1.918+j22.791 2.4614j1.973 0
62 3.437-0.766 1.917+j22.807 2.461+{1.986 10l
78 3.437-j0.755 1.917+22.821 2.461+j1.996
95 3.437-j0.736 1.917+j22.842 246142015 -20
100 3.437-0.733 1.917+j22.846 2.4614{2.019
30 f
By using the electric dyadic Green’s function for an elec- 44 | e 3=0,0001M
) = L , . St I S [—— =0.00001M
tric current sourc& g7 (12, R') and the electric dyadic Green’s E=0
function for a magnetic current sour€eg (R, '), an elec- 50 [ ] measured value for
. . . . H LK N )
tric-field integral equation (EFIE) on the surface of the probe 5 B=0[11]
can be formulated 60
VAN
/ (Gestr b0 0.2y d 70
0 2z
2 b . Y ) M S N N N S S RN R S R B
Val / / / / / / /
—/ / [GEK(r,d),z; 'z )}&-K(r yr' dr’ dg 3.0 3.4 3.8 42 46 5.0 5.4
0 a ~
kd
=0 (23)

= . N Fig. 3. Comparison of the probe admittances of two weak chiral cases with
where [Gg;(r, ¢, 27", ¢', 2')]:2 is the 22 component of & onchiral one.

Gei(R, ) and [Gex(r, ¢, 27", ¢/, 2')],; is the 2 com-

ponent of Gex (K, K'). We need these two component$ara|lel-plate waveguide always lacks a TEM mode [17] and,
because the electric current on the probe runs only it thys, the same observation may not be generalized to all ranges

rection, while the magnetic current over the coaxial apertugg 1.4 values. Nevertheless, the results in Fig. 3 confirm the va-
has only thep-direction. The expressions of these two dyadiggity of our method.

components and some computation techniques are presented ifhe variations of the probe admittance with the excitation
the Appendix. frequency are shown in Fig. 4(a)—(c) for three different chiral
parameters of = 0.0003 m, 3 = 0.0005 m, and$ = 0.0007

m. The geometric parameters afe- 1 cm,a = 0.01 cm, b =

The current along the probé ') is expanded by the piece-20a, and/ = d. The case fop = 0 is also plotted in Fig. 4(a)

wise sinusoidal function and the integral equation in (23) for comparison. The following observations are obtained from
matched using the Galerkin method. As explained in the Apig- 4.

pendix, all the integrations and the infinite series with respect 1) The chiral admittance (both real and imaginary parts) is

IV. NUMERICAL RESULTS AND DISCUSSION

ton can be carried out in closed forms, leaving only the infinite
series with respect tex. The convergence of the probe input
admittance with respect ta, i.e., the number of roots of the

dispersion equations, is shown in Table |. We see that, for both

cases ofy = 0.0003 m and3 = 0.0007 m, the difference of
the imaginary part of the admittance obtainedrat= 95 and

m = 100 has been less than 0.5% and that for the nonchiral

case is about 0.2%. Hence, we take= 95 in our subsequent
calculations.

generally greater than that of the nonchiral case and in-
creases with the chiral parameter.

2) Agreater chiral parameter causes more rapid variations of

the admittance, i.e., more ripples can be seen in the same
frequency range.

3) There are two frequencies, i.e., 27 GHz in Fig. 4(b) and

25.1 GHz in Fig. 4(c), at which the admittance vanishes.
That means the coaxial probe is actually equivalent to
an open circuit at these two frequencies. For frequencies

In Fig. 3, we compare the probe admittance of two weak
chiral cases with the nonchiral one fot = 0.0664, b = 2.25a,
d =1cm, and! = d. We see from this figure that the nonchiral
admittance (with3 = 0) agrees quite well with the measure-
ment values obtained by Rao [11]. The chiral admittance of
the two weak chiral cases approaches that of the nonchiral one
asymptotically. The difference between the chiral admittance at
£ = 0.00001 m and the nonchiral admittance is very small in
the range okd values shown in this figure. Note that the chiral

close to these two frequencies, the waveguide becomes
a very large capacitive or reactive load. That means no
net power can be transmitted into waveguide in these
frequency bands, which may be termed #iepbands
Furthermore, we see from Fig. 4(b) and (c) that a greater
chiral parameter gives a widestopband This is a
new phenomenon, which does not find a match for the
nonchiral case. We find that these stopbands are located
very near the second-lowest cutoff frequencies of the
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Fig. 4. Variations of the probe admittance with excitation frequency: (a} fer 0.0003 m, (b) for 3 = 0.0005 m, and (c) for3 = 0.0007 m.

waveguide, which are 27.5 GHz fgr = 0.0005 m and It can be seen that, for all the chiral cases, the current magni-
25.7 GHz forg = 0.0007 m. tudes are greater than the nonchiral one, but all show a similar
The combined effect of these observations is that the admdistribution.
tance bandwidth shrinks in favor of a higher admittance level.
In Fig. 5, the variation of the probe admittance with the length
of the coaxial probe (as a fraction of the waveguide separation
d) is shown fors = 0.0003 m, 8 = 0.0005 m, and3 = 0.0007 The eigenfunction expansions of the complete set of four
m, and ford = 1 cm,a = 0.01 cm, b = 20a, andf = 22 GHz, spatial-domain dyadic Green’s functions for the parallel-plate
where f is the excitation frequency. We see that the chiral pahirowaveguide are derived rigorously and expressed in terms
rameter has a significant effect on the resonant length of tbethe cylindrical vector wave functions. Using these dyadic
coaxial probe (length at which the imaginary part of the admiGreen'’s functions, both electric and magnetic fields due to ar-
tance vanishes). All the three chiral cases give longer resonhittarily distributed electric or magnetic or both current sources
probe lengths than the nonchiral one. can be found. The coaxial-probe excitation method for the par-
Finally, in Fig. 6, we show the computed current distributionallel-plate chirowaveguide is specifically analyzed by an EFIE
along the coaxial probe for several chiral parameters and formulated using the dyadic Green’s functions. Solutions are
d=1cm,a =0.01cm,b = 20a, ¢ = 0.5d, andf = 22 GHz. obtained by the moment method. The probe input admittance

V. CONCLUSIONS
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to be running+ along the central axis of the probe, we
need only [Gp,(r, ¢, z;7', ¢/, 2')]:z, i.e., that part of
[Ges(r, ¢, 237", @', 2")]z2 forr > r'. From (20), it is given by

[5;( 5 b 2 ¢ 7/)} X
= = o 2 D OO sl = )

TN AL (1 + kB
0 - . {I_e {% cos?(k.2e1/2 d) cos(k.1e2) cos(k.ic2')
............. , g
+ (@ [)COS( kz2.1/2d) cos(k.1.1/2d)
k1ka
»0 - cos(k.1ez) cos(k.oe2')
R 1+k3
+ ( /:_k/) cos(k.1.1/2d) cos(k,2.1/2 d)
2/
[— . ; L
0 02 04 06 08 1 - cos(k, /i 7) cos(kz107')
Length of the probe £/d _i_# COSQ(/Czle]./Z d) COS(]CZQGZ)
k2
(b)
Fig. 5. Variation of the probe admittance with the length of the coaxial probe. . COS(’%%Z’)}
(a) Real part. (b) Imaginary part.
X ((A4EB) .,

o . . -2 ——"2sin"(k.o,1/2d) sin(k.1,2 ko107
and current distribution along the probe at different chiral levels 1, { k3 sin” (k22 1/2d) sin(kzio7) sin(he107)
are calculated. Results show that a substantially higher admit- (1-kB) . )
tance level is obtained, but the admittance bandwidth decreases + “hik sin(k.o,1/2d)sin(k.1,1/2d)
with an incregsing c;hiral paramete_r. Stopbands at which no net - sin(ka1o2) sin(kas02')
power can be input into the waveguide are observed. These stop- (1+&p)
bands are found to be located near the cutoff frequencies. This + ———sin(k1,1/2d) sin(k.2,1/2d)

new characteristic is found to have no match in the nonchiral

kaoky

. . p
waveguide. The computed current distribution along the probe sin(kazoz) sin(kz102')
shows that the current magnitude is greater than that of the +ﬂ sin?(k.101/2 d) sin(k.202)
nonchiral case. k3
-sin(k,0,2" Al
APPENDIX sin(kz07 )}} (A1)

The expressions of two components of the dyadic GreemereHS" is the Hankel function of the first kind and order

functions in the EFIE in (23) are presented in this sedhe meanings of all other symbols are the same as those already

tion. As the electric current along the probe is consideratiscussed in Section II.
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For computing the electric field due to the magneti@hus, all the integrations and the infinite summation with re-
current K over the coaxial aperture, we need onlgpectton vanish, leaving only the infinite summation with re-
[GEA( ¢, 2, ¢, 2., since K lies entirely outside SPect tom. This allows very efficient numerical codes to be
the probe surface From (11), the nonvanishing terms Wfitten.

[GEK(Ta ¢, 21, ¢, )], contributing to (23) are

REFERENCES
|:GEK (7” b, 2; 7’/’ </)/’ Z/)} [1] S. Bassiri, N. Engheta, and C. H. Papas, “Dyadic Green'’s function and
2¢ dipole radiation in chiral mediaAlta Freq, vol. 55, pp. 83-88, 1986.
aH(l) PN [2] 1. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. ViitaneRJec-
_ Z Z ’y/k ) n ( el ) COS[H((/)—(/)/)] tromagnetic Waves in Chiral and Bi-Isotropic MediaNorwood, MA:
Jw or! Artech House, 1994.

[3] N. Engheta and M. W. Kowarz, “Antenna radiation in the presence of a

A2 (1+k/3) 5 , chiral sphere,J. Appl. Phys.vol. 67, no. 2, pp. 639-647, 1990.
: I_ — COs (kz2€1/2 d) COS(/leeZ) COS(/leeZ ) [4] A.Toscano and L. Vegni, “Spectral dyadic Green'’s function formulation
€

ki for planar integrated structures with a grounded chiral sldbElec-
(1-kp) tromag. Waves Applicatvol. 6, pp. 751-769, 1992.
+T COS(szel/Q d) COS(kzle 1/2 d) [5] S. M. Ali, T. M. Habashy, and J. A. Kong, “Spectral-domain dyadic
1 , Green'’s function in layered chiral media]” Opt. Soc. Amer. A, Opt.
-cos(ky1e7) cos(kaoe ') Image Sci.vol. 9, pp. 413-423, 1992.
(1 +/€/3) 1 [6] L.W.Li, P.S. Kooi, M. S. Leong, and T. S. Yeo, “A general expression
47 COS(kzle,l/z d) Cos(k;/?e 1/2 d) _ of dyadic Green'’s functions in radially multilayered chiral medI&EE
ko ko Trans. Antennas Propagatiol. 43, pp. 232-238, Feb. 1995.
. COS(]fZQGZ) COS(kzleZ/) [7] H. T. Hui and E K. N. Yung, “The eig_enfunction expansio_n of dyadic
(1 kﬁ) 1 Green’s functions for chirowaveguidesEEE Trans. Microwave
- 2 L Theory Tech.vol. 44, pp. 1575-1583, Sept. 1996.
ko cos (kZ1€'1/2 d) ko COS(kZ?eZ) [8] —, “Corrections to ‘The eigenfunction expansion of dyadic Green’s
functions for chirowaveguides'JEEE Trans. Microwave Theory Tech.
-Cos(k./g z’) vol. 45, p. 561, Apr. 1997.
mae [9] ——, “The eigenfunction expansion of dyadic Green'’s functions for the
parallel-plate chirowaveguidesProc. Inst. Elect. Eng.vol. 145, pp.
A2 [ (1+kS
A [ (A+kB) sin? (k0012 d) 273-278, 1998. o , _ _
I, ky [10] E.L.Tanand S. Y. Tan, “Dyadic Green'’s functions for circular waveg-
. . ; uides filled with biisotropic media,|IEEE Trans. Microwave Theory
-sin(kz107) sin(kz102") Tech, vol. 47, pp. 1134-1137, July 1999.
(1 — k/}) . . [11] B. R. Rao, “Current distribution and impedance of an antenna in a par-
B sin(k.2,1/2d)sin(k.1,1/2 d) allel-plate region,Proc. Inst. Elect. Engvol. 112, pp. 259-268, 1965.
1 [12] D.V.Otto, “The admittance of cylindrical antennas driven from a coaxial
-sin(k.1,7) sin(k.2,2") line,” Radio Sci. vol. 2, pp. 1031-1042, 1967.
(1+k/) [13] Z. Shen and R. H. MacPhie, “Modal expansion analysis of monopole
Sin(kzlol/Q d) Sin(/ﬂzgol/Q d) antennas driven from a coaxial lind¥adio Sci.vol. 31, pp. 1037-1046,
ko 1996.
L ain(l inf k. / [14] D.L.Jaggard, J.C. Liu, A. Grot, and P. Pelet, “Radiation and scattering
Sl(li(kf;;) sin(kz102") from thin wires in chiral media,JEEE Trans. Antennas Propagatol.
40, pp. 1273-1282, Nov. 1992.
L — ko ( 2101/2d) sin(k2,7) [15] A.Lakhtakia,Beltrami Fields in Chiral Media Singapore: World Sci-
entific, 1994.
o / [16] C. T. Tai, Dyadic Green Functions in Electromagnetic
Sm(kZQ(’Z )} } ) (A2) Theory Piscataway, NJ: IEEE Press, 1994,

. . . 17] N. Engheta and P. Pelet, “Modes in chirowaveguid@pt. Lett, vol.
We notice that by putting (A1) and (A2) into (23), we end a 14, pp9 593-595, June 1989. i chifowaveguices Y

up with two |ntegrat|ons and two infinite summations involved[18] R.F. HarringtonTime-Harmonic Electromagnetic Fields New York:
McGraw-Hill, 1961.

with [GFJ( b, 21, @, Z)]z2. (An additional integration

is introduced by the matching procedure.) Fortunately, we

find that the two integrations with respect toand 2’ can

be carried analytically, while the infinite summation with

respect ton can be done by using thaddition theoremfor

Hankel functions [18, pp. 232], which yields a single term.

For[Grr(r, ¢, z;7, &, z’)]Q;M, we find that the integrations

with respect to’ and¢’ can be carried out analytically, yielding

the following results:

/%/ Aer) aH(l)( O ) cosfns - ) dr df

20y (Asa) [Hél) (A\b) — HSY (Aga)} . n=0
0
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