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Determination of Electromagnetic Phased-Array
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Abstract—Electromagnetic phased arrays can be used to
preferentially heat tumors, potentially providing clinical benefit
in oncological applications. Synthesizing a temperature field that
exposes cancerous cells to sufficiently elevated temperatures while
not harming healthy cells is not a trivial problem, and can often
be assisted by the use of computational models of the patient. In
this paper, a method for determining phased-array driving signals
that result in a clinically favorable temperature distribution is
presented. It is shown by example that simply focusing the power
deposited over the tumor is not sufficient to guarantee that the
peak temperature elevation occurs in the tumor in biological
media. To remedy this, the temperature is predicted by a simple
computational model and directly optimized as a function of
the phased-array driving signals. To facilitate this optimization,
superposition principles are used for both the electromagnetic
and thermal models to minimize the number of computationally
intensive forward problems that must be solved.

Index Terms—Computational electromagnetics, hyperthermia,
phased-array synthesis.

I. INTRODUCTION

H YPERTHERMIA, or selective temperature elevation, can
be used to treat cancerous tumors. It has been found that

cancerous cells subjected to elevated temperatures are rendered
more sensitive to chemical toxins and x-irradiation [1]. Hyper-
thermia can, therefore, be used to reduce the amount of conven-
tional surgery, chemotherapy, and radiation necessary to treat
cancer, reducing their associated undesirable side effects. In
order to achieve these beneficial effects, a hyperthermia system
must be able to preferentially heat the tumor, increasing the tem-
perature in the majority of the tumor volume above 43C. In
addition, the hyperthermia system should not raise the temper-
ature of surrounding healthy tissue above 42C [2].

Electromagnetic radiation may be used to induce hyper-
thermia via ohmic heating of the tumor. A good deal of research
over the past two decades has been conducted on the modeling
of the electromagnetic and thermal aspects of RF hyperthermia.
One of the problems for which the existing research has not yet
provided a satisfactory solution is the focusing of electromag-
netic radiation to preferentially heat “deep-seated” (located
more than 7 cm below the surface of the skin) tumors. Focusing
of energy through inhomogeneous patient tissue itself is a
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Fig. 1. Schematic representation of an APA of dipole antennae surrounding
a patient volume(
) containing a tumor(�). A water bolus usually fills the
volume between the APA elements and patient.

difficult problem since the specific inhomogeneities vary from
patient to patient. Additionally, the amount of power that can
be deposited in the tumor is frequently limited by the formation
of undesired “hot spots” or auxiliary focal points, which can
create patient discomfort.

Currently, the most popular approach for providing hyper-
thermia to deep-seated tumors noninvasively is to use an array
of applicators placed around the periphery of the patient, al-
lowing constructive wave interference to be exploited in heating
the tumor. Devices designed on this principle are usually re-
ferred to as annular phased arrays (APAs) [3]. In an APA, the
individual array elements are placed in a regular concentric pat-
tern around the patient. Fig. 1 schematically depicts an APA
of dipole antennae. A bolus filled with deionized water gener-
ally fills the space between the antennae and the patient to pro-
vide impedance matching and superficial cooling. The ability to
choose the excitation amplitudes and phases of the elements of
the array provides considerable flexibility in shaping the resul-
tant power distribution pattern. However, the difficulty in non-
invasively monitoring power deposition and temperature eleva-
tion together with the risk of damaging healthy tissue in a living
patient mandate that the operator begin the treatment session
with a set of parameters that preferentially heat the tumor. Due
to inter-patient variability, even the most experienced operators
do not have sufficient intuition to determine such a set of pa-
rameters before the treatment begins.
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In response to this difficulty, a number of works have
appeared which proposed systematic methods for determining
phased-array driving signals in order to synthesize a favorably
deposited power distribution. Two early pioneers in clinical
applications of this type of procedure [4], [5] described in
detail a procedure in which medical images (usually computed
tomography (CT) images) of a specific patient are used to
construct a computational electromagnetic model of the patient
[6], [7]. The hyperthermia applicator to be used in the treatment
session is then also incorporated into the model. Numerical
optimization procedures could then be used to determine the
driving phases and amplitudes of the array in order to optimally
preferentially heat the tumor. Significant extensions and refine-
ments of this idea have also been reported recently [8]–[10].
However, it is well known that the clinical effectiveness of a
hyperthermia treatment depends on the temperature elevation
achieved inside the tumor, not the power deposited. Complex
thermodynamic effects, the most significant of which is blood
flow, may render a promising power deposition distribution
useless in terms of the resultant temperature elevation.

In order to overcome this difficulty, a number of researchers
have proposed the direct optimization of the temperature field
itself. The work presented in [11]–[13] suggested using tem-
perature measurements along with a model-fitting procedure in
order to find a linear state-space dynamical model of the hyper-
thermia process. Once this model is found, the resultant tem-
perature field may be optimized in a straightforward manner.
An alternative approach is presented in [2], [4], and [14]–[16],
in which a detailed electromagnetic and thermal model of the
patient is constructed based on medical images, and the opti-
mization process is carried out on this computational representa-
tion of the patient. The advantage of the former approach is that
feedback control may be used in order to continually monitor
and adjust the treatment. The advantage of the latter approach is
that it can incorporatea priori information about the patient and,
therefore, eliminate the need for amodel-identificationstage of
the treatment process, which may be intolerably long [11]. Ad-
ditionally, the assumption of linear dynamics, which is typically
necessary for model identification, is not rigorously justifiable
for phased-array applicators.

In this paper, a method for the determination of APA driving
signals is proposed, which makes use of a (possibly patient-spe-
cific) computational model of the APA and patient. Once such
a model is obtained, a nonlinear optimization problem is for-
mulated based on the requirement that the steady-state temper-
ature field be clinically beneficial. This optimization problem
is then solved numerically in conjunction with the computa-
tional model. This procedure may be used to determine a set of
driving parameters to provide acceptable hyperthermia without
exposing the patient to the risks of tuning the parameters once
the treatment has begun. Additionally, the same patient model
may be used with several different applicators in order to deter-
mine the relative merits of each applicator.

The finite-difference time-domain (FDTD) [17] method is
used in this work to numerically model the electromagnetics of
the hyperthermia applicator and patient. The use of the FDTD
in hyperthermia treatment planning has been widely reported

[18]–[21] and validation of the predictions made by the FDTD
in this context has been performed [22]. Since the FDTD has
modest computational requirements, a full three-dimensional
model of the patient and applicators can easily be simulated.
This is in contrast to the volume-surface integral-equation
(VSIE) technique used in [2], which required that the water
bolus of the applicator be approximated as an homogeneous
background medium to ease computational requirements. It has
recently been shown that surface-wave phenomena along the
bolus–air interface may play a significant role in the behavior
of the APA [23] and can be captured by the FDTD. It should
also be noted that, as in [9], it is possible to model the effects
of array element coupling in the FDTD.

Finite differences are also used in this work to numerically
model the steady-state bio-heat transfer equation (BHTE)
[24]. The limitations of the BHTE are well known, but for
the relatively large tumors, which are candidates for deep RF
hyperthermia, its ability to predict temperature elevations is still
useful. The BHTE has been used and validated to some extent
previously in the modeling of electromagnetic hyperthermia
devices [25], [26]. Numerical solution of the BHTE provides
the capability to model arbitrary three-dimensional inhomo-
geneities in thermal constitutive parameters of the patient. This
is in contrast to the approach used in [14], in which a detailed
three-dimensional model of the electromagnetics was used in
conjunction with the half-space Green’s function solution of
the BHTE. Such a thermal model is necessarily approximate
and wastes information about tissue inhomogeneity obtained
in the formation of the patient-specific electromagnetic tissue
model.

Special emphasis is placed in this paper on the efficient opti-
mization of the temperature field. To achieve an efficient opti-
mization, a superposition principle is introduced similar to that
recently proposed in other works [15], [16]. However, unlike
the Monte Carlo search procedure used in [15], this work em-
ploys a gradient-descent scheme to optimize the temperature
field. To facilitate the efficient evaluation of both the objective
function and its gradient, this paper provides the extension sug-
gested in [16] of the superposition principle to the evaluation
of partial derivatives of the temperature field with respect to the
phased-array driving signals.

This paper provides a detailed account of the formulation and
implementation of the proposed method along with illustrative
numerical examples of its use. Section II motivates the use of an
optimization criterion and describes the efficient numerical de-
termination of optimal driving parameters. Section III provides
examples of the use of the method using an anatomically de-
tailed two-dimensional patient model. An example is provided
in which the point of peak temperature elevation does not co-
incide with the point of peak power absorption, evidencing the
need for direct optimization of the temperature field. A three-di-
mensional example involving a muscle-equivalent phantom is
included to illustrate the efficiency of the method when ap-
plied to computationally intensive three-dimensional models.
Section IV discusses possible refinements of the method, in-
cluding the use of alternate thermal models and various numer-
ical methods for modeling and optimization.
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II. M ETHOD

In this section, the details of the proposed method are
presented. Motivation is provided for the formulation of an
optimization problem whose solution corresponds (when
possible) to an idealized temperature field. An electromagnetic
and thermal superposition principle is introduced to reduce the
computational cost of numerically performing the optimization.

A. Formulation of an Optimality Criterion

Let denote the volume of the body of the patient andde-
note the volume of the tumor, as depicted in Fig. 1. A reasonable
goal for hyperthermic treatment of the tumor is to find a set of
APA driving parameters such that the resultant steady-state tem-
perature field satisfies the following inequalities:

(1)

where is the minimal desired temperature in the tumor and
is the maximum temperature allowed in healthy tissue. In this

way, temperature elevations high enough to facilitate cytotoxia
are experienced only in the tumor.

As a practical matter, the above specifications (1) are en-
forced only at a finite number of points

for

for (2)

where are points inside the tumor volume and
are points inside healthy tissue. However, even with the less
stringent requirement that the inequalities be met at a discrete
number of points, the possibility exists that no set of driving
parameters can be found that satisfies (2).

As an alternative, consider the goal of the minimization of the
performance index

(3)

where is a vector representing the set of array driving param-
eters (which will be defined more precisely in Section II-B) and

is a free parameter used to adjust the relative importance of
heating the tumor and protecting healthy tissue. It is clear that
the minimal value is achieved if and only if (2) is exactly
satisfied. Additionally, it should be clear that increased values
of correspond to more serious violations of (2).

The adoption of the minimization of (3) as the goal of the pro-
cedure has in essence accomplished two things. First, minimiza-
tion of implies that the inequalities (2) are enforced “softly,”
i.e., that they are met as closely as possible. In fact, the function

can be interpreted as a penalty function [27], which frequently
appears in the conversion of constrained optimization problems
into unconstrained problems. Secondly, the minimization of
can be accomplished systematically by taking an initial set of

driving parameters for which and using an unconstrained
search procedure in order to try to achieve , whereas
no systematic approach is immediately apparent for trying to
achieve (2) directly.

In summary, it is desired to find a set of APA driving param-
eters that satisfy

(4)

where the performance index is as defined in (3). In the
above, is any vector (not necessarily unique) that achieves
the minimum of .

B. Numerical Modeling and Optimization

In order to solve the optimization problem (4) without actu-
ally applying many different driving signals to an array and mea-
suring the result on a patient, it is necessary to have a model that
can predict the steady-state temperature field resulting from a
given input. In this paper, this is accomplished by the numerical
FDTD [17] model of the electromagnetics and a finite-differ-
ence–BHTE (FD–BHTE) model [28]. Together these two tech-
niques give the capability to predict the steady-state temperature
field due to a given array excitation.

The state of the APA may be defined by the real and imag-
inary parts of each of the excitations. These can be lumped
together into a vector

(5)

where the notation and refer to thereal andimaginary
parts of the driving signal of theth element of the array, respec-
tively. Note that it is only necessary to use parameters to
characterize the array, e.g., theamplitudes and relative
phases. Definition (5) adds one unnecessary dimension to the
state of the applicator. However, this will serve to considerably
simplify notation in the developments that follow. In this formu-
lation, it is immediately clear that the excitation parameters need
not be restricted in any way. Additionally, the use of the real
and imaginary parts instead of the amplitudes and phases of the
driving signals (as in [14] and [16]) has been found through ex-
perience to render the optimization problem better conditioned
numerically.

A naive way to begin the minimization of (3) would be to use
the FDTD and FD-BHTE models and directly compute the tem-
perature distributions and estimate the gradients in the course
of a numerical search procedure. However, due to the consider-
able expense of resolving the electromagnetic [5] and thermal
models [4], an alternative method is pursued here which mini-
mizes the number of uses of the FDTD and FD–BHTE numer-
ical procedures.

Since the electromagnetic field is linear in terms of individual
element excitations, it may be computed as

(6)

where is the electric field produced by unitary excitation
of the th element of the array in solitude.
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In a similar way, the total specific absorption rate (SAR), or
time-average power deposited per unit mass of tissue, can be
computed

(7)

It is convenient at this point to define the cross correlation of the
electric fields due to theth and th array elements

(8)

where denotes conjugate transposition. Notice that this is a
complex-valued scalar whose value varies with position inside
the patient. It will be apparent later that it is advantageous to
express the SAR in terms of the cross correlation

(9)

In order to predict the steady-state temperatures once the SAR
field is known, it is necessary to have some type of thermal
model. One of the simplest thermal models that can adequately
describe the evolution of temperature in biological media is the
BHTE [24] due to Pennes. The steady-state form of the BHTE
is given by

SAR (10)

where (Wm K ) is the local thermal conductivity,
(Wm K ) is the product of the specific heat of blood and its
local mass flow rate per unit volume, and (K) is the arterial
blood temperature. The effect of metabolic heat generation
has been neglected since the heat generated by hyperthermia
applicators is typically an order of magnitude greater than this.

Equation (10) requires a set of boundary conditions in order to
have a well-defined solution. Typically, a convective boundary
condition is imposed at the tissue–bolus interface and a Dirichlet
(fixed-temperature) boundary condition is imposed on the axial-
plane surfaces where the patient model is artificially truncated.
In this paper, only inhomogeneous Dirichlet boundary condi-
tions are used for simplicity (as in [15])

(11)

where the boundary is taken as union of the tissue–bolus inter-
face and the surfaces at which the human model is artificially
truncated. It is assumed that the temperature of the tissue–bolus
interface is fixed at 10C, and that of the body (used at the arti-
ficial truncation boundary) is fixed at 37C.

No matter what type of boundary conditions are assumed,
the differential operator in (10) can be approximated by finite
differences, yielding (together with the boundary conditions) a
linear system for the temperature at a discrete set of points

(12)

In the above expression, is an vector of temperatures at
distinct points in space, is a vector related to the local

heat deposited, which depends on the input,is a forcing term

related to perfusion and boundary conditions, andis an
matrix generated from the finite-difference approximation of

the differential operator. For Dirichlet boundary conditions, the
th element of each of these vectors may be expressed as

(13)

(14)

(15)

where is equal to one if the point is on the boundary
and zero if it is not. When the point is on the boundary, the

th row and column of are empty, except for a unit diagonal
element. Otherwise, the matrix consists of entries related to the
finite-difference approximation of the differential operator [28],
[32].

At first glance, it would seem that the system (12) needs to be
solved each time any component of the input vector is changed.
This could quickly lead to a computational bottleneck in an opti-
mization procedure [4], because many temperature field evalua-
tions are typically necessary in the course of a numerical search
procedure. However, closer examination of (12) reveals two im-
portant facts. Firstly, the vectordoes not depend on the input,
thus, the temperature vector can be computed once
and stored. Secondly, the definition of the vectortogether with
the compact expression (9) for computing the SAR at any point
reveals that any element ofmay be expressed

(16)

This, in turn, implies that the vectorcan be expressed

(17)

where a set of weighted correlation “basis” vectors have
implicitly been defined, which have
as their th element. If the basis vectors are formed and the
temperature distribution due to each of them
is found and stored, then the temperature due to an arbitrary set
of excitation parameters can be readily calculated as follows:

(18)

When using gradient-based search procedures to numerically
minimize (3), it is also necessary to repeatedly compute partial
derivatives with respect to the excitation parameters. These can
be computed from the following formula:

if
else

if
else.

(19)
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The evaluation of the gradients in the above expression can
be accomplished in an efficient manner by manipulating (18) to
arrive at

(20)

(21)

where and denote the real and imaginary parts of
their arguments, respectively, andis a vector consisting of all
zeros, except for one in the position corresponding to. It is as-
sumed that the discrete positions ( ) involved in the com-
putation of the performance index coincide with points at which
the temperature field is known from the FD-BHTE ().

The evaluation of the performance index and its gradient re-
quires the one-time cost of evaluating the basis vectors. It
then costs very little to compute gradients and function values
on the fly. In a naive implementation, where the FDTD and
FD-BHTE are continually used to compute function values and
gradients as the driving signals are changed, each iteration of
a search procedure would be considerably more expensive. In
practice, for detailed three-dimensional computational models,
the number of unknowns required for detailed modeling makes
this a considerable hindrance to optimization.

In summary, the proposed procedure is: 1) use the FDTD to
compute the electric fields due to each of the in-
dependent array elements; 2) compute using the
FD-BHTE; 3) form the basis vectors and compute the

quantities ; and 4) begin a numerical search
procedure to minimize . In this paper, the Fletcher–Reeves
variant of the conjugate-gradient (CG) method of unconstrained
nonlinear optimization, as described in [27], is used to try to
drive the performance index to zero.

III. N UMERICAL EXAMPLES

In this section, two numerical examples of application of the
method are presented. The first example employs an anatomi-
cally realistic model of a human trunk to illustrate the ability of
the method to deal with inhomogeneities in the patient model
and the importance of thermal inhomogeneities in treatment
planning. The second example employs a three-dimensional
model of a tissue-like phantom designed by the Center for
Devices and Radiological Health (CDRH) Division, United
States Food and Drug Administration (FDA). The discretization
of the three-dimensional model leads to a computationally
intensive optimization problem. It is shown that the method
proposed in this paper is considerably more efficient than a
naive optimization in this case.

A. Two-Dimensional Analysis of a Realistic Human Trunk

In this section, examples of the optimization technique are
considered that involve two-dimensional anatomically realistic
models of the human trunk region. When conditions of strong

Fig. 2. Two-dimensional model of an APA and human trunk. The APA has
four independent elements (quadrants), each composed of two dipoles.

axial symmetry exist, two-dimensional models, although ap-
proximate, can provide valuable insight. In the axial midplane
of a patient surrounded by an APA of-directed dipoles, some
axial symmetry does exist.

Fig. 2 depicts the axial midplane of the APA enclosing a water
bolus and the human trunk. The radius of the APA is taken to be
30 cm, which corresponds to that of a commercially available
device [23]. The elements of the APA are dipoles, which are
modeled in the two-dimensional FDTD by-directed line cur-
rent sources. Each independent element of the array is composed
of two adjacent dipoles, leading to four independent quadrants.

Fig. 3 depicts two anatomically realistic models, which have
been obtained based on the segmented human model presented
in [30]. Each model is composed of six distinct tissue types:
bone, colon, fat, muscle, spinal nerve, and tumor. The spatial
resolution of these models is 8 mm, which is also the spa-
tial resolution used for both the FDTD and FD-BHTE models.
The temperature at the tissue–bolus interface was assumed to be
10 C, which corresponds to the case when the deionized water
in the bolus is used for cooling the patient. The electromagnetic
operating frequency was chosen to be 85 MHz, which is within
the operating range of available devices and avoids possible res-
onances in the FDTD model recently reported [23]. The compu-
tational domain of the FDTD is truncated by five cells of the per-
fectly matched layer (PML) [31] in each direction. For further
details of the numerical modeling used, the reader is referred to
[32].

In each model, a circular tumor of radius 2 cm has been
placed. The position of the tumor is not meant to mimic any
specific type of cancer. The two tumor locations were chosen
for the challenge they pose to achieving acceptable tempera-
ture distributions. In the first model [Fig. 3(a)], the tumor is in
the immediate vicinity of unperfused tissues, which creates dif-
ficulty in achieving a favorable temperature distribution in the
tumor even if the SAR can be focused there. In the second model
[Fig. 3(b)], the tumor is offset 10 cm away from the center of the
APA, requiring careful phase and amplitude selection to focus
the SAR in the appropriate position. The electromagnetic and
thermal properties of the various tissue types used in the simu-
lations in this paper are summarized in Table I and have been
adapted from [33]–[35].
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Fig. 3. Realistic tissue models of the human trunk used in the two-dimensional
modeling. (a) Central tumor. (b) Tumor offset 10 cm from center.

TABLE I
ELECTRICAL AND THERMAL PROPERTIES OFTISSUES AT85 MHz

Fig. 4 shows the result of uniform phase and amplitude (
) excitation of the array. (All vec-

tors reported in this section have been normalized such that
. The overall power level is left as a degree

of freedom for the optimization, but the nature of the two-di-
mensional approximation makes it difficult to estimate the true
power level needed in practice.) The tumor is located in the
center of the array, thus, this is the most intuitive excitation to
use, and it is clear from Fig. 4 that the SAR is indeed focused
on the tumor. It is evident, however, that the unperfused colon
and bone tissues experience the highest temperature elevations.

Fig. 5 shows the result obtained when the optimization tech-
nique described in this paper is used. Here, the parameters for
optimization used were C, C, ,

, and . All of the points available from
the FD-BHTE have been incorporated into the computation of
the performance index, resulting in large values ofand .
It is noted that in this case , so that approximately
equal weight is given to any violation inside the tumor and
any violation in the healthy tissue. The optimal relative driving
signals obtained were ,

. It is seen from Fig. 5 that
although the result does not heat the tumor completely uni-
formly and heats some of the healthy tissue to above

C, the result is certainly much more acceptable than the
unoptimized result of Fig. 4. This is a case where, due to the

(a)

(b)

Fig. 4. Result for equal phase and amplitude driving of the APA on all four
quadrants. The center of the 2-cm-radius tumor is indicated by a cross(�).
The operating frequency is 85 MHz. The tissue–bolus interface is indicated by
a solid line. (a) Steady-state temperature. (b) SAR.

Fig. 5. Temperature field resulting from optimized driving signals for centrally
located tumor. The center of the 2-cm-radius tumor is indicated by a cross(�)
and the tissue–bolus interface is indicated by a solid line.
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Fig. 6. Temperature field resulting from optimized driving signals for tumor
offset 10 cm along the major axis of the patient. The center of the 2-cm-radius
tumor is indicated by a cross(�) and the tissue–bolus interface is indicated by
a solid line.

inhomogeneity in perfusion rates, detailed thermal modeling is
essential to obtaining an acceptable solution.

Next, the preferential heating of the tumor offset 10 cm
from the center of the trunk, as depicted in Fig. 3(b), is
considered. Fig. 6 depicts the optimal result obtained in
this case, where the parameters for the optimization have
been selected as in the previous example. It is clear that a
strong focus in the temperature field is possible in this case,
generating a desirable result. It should be noted that, in this
case, the tumor is surrounded by muscle, which has similar
thermal constitutive parameters. The optimal relative excitation
vector obtained was ,

.
Fig. 7 shows the optimal result obtained when attempting

to heat the same tumor, but with the tumor assumed to be
much more well perfused ( Wm K ). It can
be seen that, although a focus is still obtainable in the tem-
perature field, it is more diffuse since the perfusion tends
to remove heat away from regions of elevated tempera-
ture. The optimal relative excitation vector obtained was

, which is, as expected, quite similar to the
one obtained in the last example.

B. Three-Dimensional Analysis of a Phantom

In this section, results of application of the proposed method
to a three-dimensional model of the CDRH phantom are pre-
sented. Fig. 8 depicts the CDRH phantom, which is an elliptical
cylinder, 57 cm in length, with major and minor axes of 32 and
22 cm, respectively [23]. It is mostly composed of muscle, with
a thin superficial fat layer 1 cm in thickness around its circum-
ference. Once again, spherical tumors 2 cm in radius have been
placed in various positions in the phantom. It is noted that, in
the results of this section, the tumors have been assumed to be
well perfused exclusively since the homogeneous background
(muscle) of the tumor makes achieving a focus in the tempera-

Fig. 7. Temperature field resulting from optimized driving signals for a
well-perfused tumor offset 10 cm along the major axis of the patient. The center
of the 2-cm-radius tumor is indicated by a cross(�) and the tissue–bolus
interface is indicated by a solid line.

Fig. 8. Cross section of the 57-cm-long CDRH phantom.

ture field considerably easier than in the case where the back-
ground is heavily inhomogeneous.

The APA considered here is the same as that in the two-di-
mensional modeling. The dipoles are 44 cm in length and are
modeled simply as-directed current sources with a sinusoidal

dependence in the FDTD. Again, the RF operating frequency
was chosen to be 85 MHz. The thermal boundary conditions
assumed were C at the tissue–water interface,

C at the tissue–air interface, and C at the upper
and lower surfaces of the phantom.

In the three-dimensional case, the number of unknowns in the
thermal model rises from 1185 for the two-dimensional model
to 39 584. If detailed highly accurate temperature information is
required, this number could be even larger. Table II evidences
the savings in computation time made possible by precomputing
the 16 basis temperatures and superposing them via (18), (20),
and (21) to evaluate the objective function and its gradients (re-
ferred to as the superposition method in the table) rather than
resolving the FD-BHTE system for each function and gradient
evaluation (referred to as the direct method in the table). In prac-
tice, it was found that for a relative functional tolerance of 10,
10–20 iterations of the CG are needed for convergence of the
optimization problem. The line minimization in the nonlinear
CG method requires about five function evaluations per itera-
tion. This implies that 50–100 function evaluations and 10–20
gradient evaluations were needed in the course of a typical op-
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TABLE II
AVERAGE CPU TIME REQUIRED ON A 500-MHz DEC ALPHA FOR ONEFUNCTION AND GRADIENT EVALUATION

timization. The CPU times in Table II (for a 500-MHz DEC
Alpha) show that the time to compute the objective function is
reduced by a factor of approximately two and the time to com-
pute the objective function’s gradient is reduced by a factor of
approximately ten when the superpositioning technique is used.
Considering the large number of function and gradient evalua-
tions needed, this leads to a considerable savings in computation
time when the superposition method is employed.

Fig. 9 shows the temperature distribution obtained when
the tumor is located centrally in the phantom. Here, the
parameters for the optimization used were C,

C, , , and . All of
the points available from the FD-BHTE in the axial mid-
plane have been incorporated into the computation of
the performance index. The optimal relative driving sig-
nals obtained were ,

. The estimated powers
delivered to each quadrant in this case were 46.7, 48.5, 45.3,
and 46.3 W for quadrants 1–4, respectively.

Fig. 10 shows the temperature distribution obtained
when the tumor is offset 10 cm along the major axis of the
phantom. The parameters for optimization used were the
same as the previous example. The optimal relative driving
signals obtained were ,

. The estimated powers
delivered to each quadrant in this case were 32.4, 15.6, 21.3,
and 15.9 W for quadrants 1–4, respectively.

IV. EXTENSIONS

It should be noted that the gradient-based search procedure
used in this paper is not a robust global optimizer. Many superior
techniques, especially combinatorial ones such as genetic algo-
rithm and simulated annealing, exist for finding true global ex-
trema in nonconvex optimization problems. The technique pro-
posed in this paper can still be used, however, to accelerate the
many function evaluations required in these techniques.

Nikita et al. [14] and Langet al. [16] have both used stabi-
lized Newton-type techniques successfully for steady-state tem-
perature optimization. Expressions for the Hessian similar to
(19), (20), and (21) can also be derived in terms of thebasis
temperature vectors. It is, therefore, also possible to accelerate
a Newton-type optimization scheme using the techniques pro-
posed in this paper.

Note that the ability to find explicit expressions for the value
and gradient of the objective function relies on only two essen-
tial features of the underlying physical models. First, the elec-
tromagnetic field must dependlinearly on the excitation param-
eters. This is generally the case, even when aperture applicators
are used. Secondly, the steady-state temperature field must de-
pendlinearlyon the SAR, implying a kind of “quadratic” depen-

Fig. 9. Temperature field resulting from optimized driving signals for a
well-perfused tumor embedded in the CDRH phantom. The center of the
2-cm-radius tumor is indicated by a cross(�). (a) Axial midplane. (b) Coronal
midplane.

dence on the excitation parameters. If these two requirements
are met, the temperature field can be decomposed into a sum of
temperature fields due to each independent element of the cross
correlation of the electric fields. Convective boundary condi-
tions and alternative thermal models to the BHTE may, there-
fore, be used in conjunction with the techniques of this paper to
provide enhanced efficiency in temperature field optimization.

V. CONCLUSIONS

A simple and efficient method has been presented for
synthesizing steady-state temperature fields that satisfy clinical
requirements for hyperthermia. Electromagnetic and thermal
models, which can incorporate arbitrary inhomogeneities, have
been used to predict steady-state temperature fields. The goal
of maintaining temperatures above a threshold inside the tumor
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Fig. 10. Temperature field resulting from optimized driving signals for a
well-perfused tumor embedded in the CDRH phantom. The center of the
2-cm-radius tumor is indicated by a cross(�) and is offset 10 cm along the
major axis of the phantom. (a) Axial midplane. (b) Coronal midplane.

and below a different threshold outside the tissue has been
converted into a numerical optimization problem, which can be
approximately solved algorithmically. Numerical results have
been presented which illustrate the ability of the technique
to deal with realistic inhomogeneities and computationally
burdensome models.

The method as described can be used to find a good set of
array driving parameters for a patient-specific model (“prospec-
tive” dosimetry) as part of a treatment planning procedure. Ad-
ditionally, various applicators can be simulated on the same pa-
tient model (“comparative” dosimetry) in order to evaluate the
merits of each in a quantitative way. It has been shown that the
method can easily accommodate alternative thermal models to
the BHTE, as well as alternative numerical modeling and op-
timization techniques. It is the hope of the authors that devel-
opment of the next generation of electromagnetic APAs will be
eased by methods such as the one presented herein.
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