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On the Feasibility of Detecting Flaws in
Artificial Heart Valves
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Abstract—In this paper, we investigate the feasibility of detecting
defects in certain artificial heart valves by determining the electro-
magnetic behavior of some simple models with the aid of thin-wire
integral equations. The idea is to use the stationary current that
occurs at late times after the excitation of a closed loop as a dis-
criminator. This current exhibits an exponential decay when a re-
sistive load is included that is representative of fatigue or a partial
fracture. The decay rate is indicative of the severity of the defect.
For a wire with an opening, which is representative of a complete
fracture, the late-time current is completely absent. As a simpli-
fied model of remote detection by a small loop antenna that could
be introduced via a catheter, we consider the coupling between two
parallel circular wires. In all cases, the dispersive environment of
the valve is taken to be homogeneous and filled with blood since
this medium exhibits a representative dispersion.

Index Terms—Heart valves, integral equations, loop antennas,
nondestructive testing, transient electromagnetics.

I. INTRODUCTION

I N RECENT years, it has been established that the minor
outlet closure strut in certain artificial heart valves may

suffer from mechanical defects. These defects appear as cracks
or fractures near the junction of a leg of this strut with the
main ring of the device. As a consequence, the valve occluder
may escape from the device, which subjects the patient to a
lethal risk. In The Netherlands, from 1979 to 1986, the heart
valve of 2303 patients was replaced by this type of artificial
heart valve. At present, approximately 1500 of these patients
are still alive. In the U.S., between 30 000 and 40 000 patients
use such a device. An epidemiological study in 1992 [1] found
42 strut fractures during mean follow-up of 6.6 years, while a
nondestructive evaluation of 24 representative explanted valves
[2] showed single-leg fractures in seven and fatigue changes
in two of them. Fig. 1 shows a typical valve. Fig. 2 shows an
image of applying scanning electron microscopy (SEM) to a
fractured leg.

In view of this development, several research groups were
approached with the question whether, from their expertise,
it would be possible to develop techniques for assessing the
quality of existing heart valves implanted in patients. This paper
presents the first steps toward using pulsed electromagnetic
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Fig. 1. Typical heart valve, where the occluder and minor strut are clearly
visible.

Fig. 2. SEM image of a typical heart valve with a fractured leg.

waves for this purpose. The principal difficulty with generating
electromagnetic effects in a biological environment is that blood
and live tissue are highly dispersive and, therefore, extremely
lossy. This means that any measurement will definitely have to
be invasive, e.g., via a catheter. Even in such circumstances, it
seemed doubtful whether a significant electromagnetic effect
canbegeneratedandmeasured.To investigate this, itwasdecided
to first model a simplified, but representative, configuration
with the aid of computational techniques.

In our opinion, the model should have at least the following
characteristic features of an artificial heart valve:

1) loop of highly conducting material representing the metal
parts;

2) choice between closing the loop completely (perfect
valve), including a resistive load (fatigue, partial frac-
ture) or an interruption (complete fracture);

0018–9480/00$10.00 © 2000 IEEE



2166 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 11, NOVEMBER 2000

3) environment with representative material properties.

A simple model satisfying these conditions is a circular wire em-
bedded in a homogeneous dielectric medium. An electric cur-
rent along the wire is excited by a delta-gap voltage pulse
or by an incident field , both of finite duration. The wire
is assumed to be thin enough that the thin-wire approximation
may be applied. We consider voltage excitation directly on the
wire, and remote excitation by a pulsed magnetic point dipole.
Both these sources induce an almost stationary current at late
times, with a decay rate that is indicative of the quality of the
loop.

The model of a single loop is a considerable simplification of
the actual situation. In particular, the problem of detecting the
late-time behavior of the current is not addressed. A logical next
step is to replace the magnetic dipole, which may be envisaged
as a small current loop with an externally impressed current, by
a larger loop excited by a delta-gap voltage source, and to study
the current in both loops. The secondary loop is excited by a
Gaussian voltage pulse. Since this loop is assumed to be perfect,
a step-like current is generated, which causes an electric field
resembling the dipole field used above. The results indicate that
it indeed may be possible to use a secondary loop for the remote
induction and detection of the desired current.

The paper is organized as follows. In Section II, we describe
the three single-wire models and specify the relevant integral
equations. The numerical solution of these equations and the
results obtained are discussed in Section III. The principle of
detection by a second loop is addressed in Section IV. Finally,
the most important conclusions are stated in Section V.

II. SINGLE-WIRE MODELS

A simple model that represents the characteristic features of
an artificial heart valve is a circular wire embedded in a homo-
geneous dielectric medium. In this section, three specific con-
figurations containing such a circular wire are considered. First,
we represent a completely broken heart valve by a perfectly con-
ducting circular wire with an interruption. Second, we close the
circular wire to obtain a simple model representing a perfect
valve. Third, we include an impedance in the circular wire to
model fatigue or a partial fracture. For each configuration, the
relevant integral equation is formulated. Finally, we consider the
dielectric properties of the surrounding medium.

A. Open Loop

We consider a perfectly conducting thin wire, whose central
axis is circular, with radius, placed in the plane of a
three-dimensional cylindrical coordinate system. The center of
this circle coincides with the origin of a cylindrical coordinate
system with . The cross section of the wire is cir-
cular with radius . The wire has an interruption for

and is excited by a delta-gap source at or by an
incident field generated by external sources. The configuration
is illustrated in Fig. 3.

The electromagnetic behavior of the wire is completely deter-
mined by the integral equation for the total current in the angular
direction. This equation can be obtained from the integral rep-
resentation for the electric field due to a surface current in three

Fig. 3. Open circular loop and coordinate system.

dimensions, by considering on the central axis of the wire.
Since the surrounding medium is highly dispersive, it is con-
venient to formulate the equation in the time-Laplace domain.
After a few straightforward approximations, we obtain

(1)

In (1), is a complex frequency, denotes the

total current along the wire, ,
and are the permittivity and the complex wave velocity of the
surrounding medium, is the voltage across the delta gap,
and is the component of the incident electric field along
the central axis. In analogy with the definitions for a straight
wire [3], we refer to this equation asPocklington’s equation.

Numerically evaluating the differentiations with respect to
in (1) would strongly magnify the almost singular behavior of
the kernel at . This may give rise to numerical problems.
As an alternative, the operator is inverted in closed form. To this
end, we use the one-dimensional Green’s function that can be
expressed as the solution of the inhomogeneous second-order
differential equation

(2)

with , which satisfies the radiation condition as
. This solution is given by

(3)

Extracting the behavior of the term for in (1)



LEPELAARSet al.: ON THE FEASIBILITY OF DETECTING FLAWS IN ARTIFICIAL HEART VALVES 2167

and substituting the proper value ofthen results in

(4)

where denotes the wave admittance of the
medium surrounding the wire. The yet unknown signals

and
represent two independent homogeneous solutions
of the differential equation (2). These signals can
be determined by imposing the boundary conditions

. The subscripts “” and
“ ” refer to the direction of propagation of the wave in the
positive and negative -directions, respectively. In analogy
with the case of the single wire [3], (4) is referred to asHallén’s
equationfor a circular wire with an interruption.

B. Closed Loop

As a model of a perfect valve, we consider a completely
closed circular wire. Pocklington’s equation (1) also holds for
this configuration, with . In the derivation of Hallén’s
equation, however, different boundary conditions must be
applied. The most convenient procedure is to impose periodic
boundary conditions on the Green’s function. If we choose
the angular domain as , the boundary conditions
can be expressed as

and

(5)

The solution of (2) that satisfies the boundary conditions (5) is
given by

(6)

By comparing the second expression with (3), it is obvious that
this is the -periodic solution of (2) with .
This leads to the conclusion that imposing periodic boundary
conditions on is equivalent with a -periodic extension of
the source over the infinite interval . To keep
the expressions comparable to the case of the interrupted wire,
we write where is again
a dimensionless quantity. Following a similar procedure as in
Section II-A, we then arrive at Hallén’s equation for the closed
circular loop

(7)

with .

C. Partial Fracture

Finally, we create a simple model that can be used to represent
a partial fracture or fatigue. Suppose that we place an impedance

in the gap between the end faces of a broken wire at
and . The electric field over the

impedance may be considered as pointing in the-direction.
By taking the limit for , we then obtain

(8)

This term may be incorporated in the integral equations in the
same way as the delta-gap voltage. In Hallén’s equation (7) for
the closed wire, this amounts to adding the term

(9)

to the left-hand side.

D. Surrounding Medium

In the actual situation, the surrounding medium is strongly in-
homogeneous. However, its most important property is the dis-
persive behavior of the permittivity. To obtain a qualitative in-
dication of the influence of that behavior, we assume that the
curved wires specified in the previous sections are embedded
in a homogeneous dielectric with the properties of blood. For
the frequency-range of interest, the permittivity of blood for

can be represented by fitting a four-term Debye model
[4], [5] to the permittivity data from [6]. The results are shown in
Fig. 4, where the imaginary part . From this
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Fig. 4. Real part of the relative permittivity and conductivity as a function of
frequency. Dots: experimental data. Solid lines: Debye model.

figure, we observe that we can realistically only hope to pene-
trate blood with an electromagnetic field up to

MHz.

III. N UMERICAL SOLUTION AND RESULTS

The integral equations for the three model configurations can
only be solved numerically. In this section, the method of solu-
tion is summarized and numerical results are presented.

A. Computational Approach

We first consider the solution of Hallén’s equation (4) for the
open wire. We normalize all space coordinates with respect to

and all time coordinates with respect to the corresponding
free-space travel time, i.e., and . Next,
we discretize in space. The interval is di-
vided into equally spaced subintervals with mesh size

. The points of observation are limited to
, with . The integrals are now

approximated. The almost singular behavior of the factor of
for should be accounted for in the

approximation. Therefore, we write

(10)

where is a triangular expansion function over the interval
. The boundary conditions at the

ends of the wire are automatically satisfied in this approxima-
tion. This restricts the integration to the closed-form evaluation
of a set of weighting coefficients. The remaining integrals in
(4) are approximated by a simple trapezoidal rule. The resulting
discretized equation is second-order accurate as and has
the same convolution symmetry as the continuous equation (4).
This makes the discretized form extremely suitable for the appli-
cation of the so-called conjugate-gradient fast Fourier transform
(CGFFT) method [7], [8].

For theloaded wire, we essentially follow the same approach
as described above. The main difference is that the current

no longer vanishes at . Therefore,
the summation over in (10) must be augmented by a term
with . Further, the sampled current and the
discretized kernels are now periodic functions ofand .
Therefore, there is no need to avoid aliasing effects in the
evaluation of the convolution terms in the discretized integral
equation and its adjoint. This means that these terms can now
be evaluated with fast Fourier transform (FFT) operations of
order .

For theclosed wire, we again use the same space discretiza-
tion. The inversion is now even more simple. Subjecting the dis-
cretized equation to a discrete Fourier transformation directly
leads to an expression for each of the Fourier coefficients of the
discretized current in terms of the voltage and the Fourier coeffi-
cients of the incident field and the discretized kernel. An inverse
FFT then directly produces the discretized current. Again, both
transformations are of order .

Finally, we want to display the results as a function of time.
The necessary transformation is carried out via Bromwich in-
version over with , where . We
truncate the integral at some maximum frequency ,
and choose the time and frequency steps such that

. A straightforward trapezoidal rule then reduces the inte-
gral over into a sum that can be evaluated by an FFT of order

. The only possible complications are that, from a numerical
point-of-view, may not be too large, and that the Debye model
mentioned in Section II-D must be generalized to complex fre-
quencies by replacing by .

B. Results and Discussion

We first consider the situation where the circular wire is ex-
cited by an impressed delta-gap voltage. In Fig. 5, we look
at two configurations that represent the extremes: namely, a
perfect artificial heart valve and a completely fractured arti-
ficial heart valve. Further, we consider loads of 2.0, 8.0, and
10 . The loads and gap are located at . The dimen-
sions are chosen such that they are representative of an actual
artificial heart valve. The opening representing complete frac-
ture is set at 1, i.e., .
The wire is excited with a Gaussian voltage pulse of the form

, with ns and
at . In the computations, the wires were subdivided
into segments.

By comparing the results in Fig. 5, it is observed that, as long
as the reflections at the end faces of the open wire do not influ-
ence the currents, both signals are identical. However, a signif-
icant difference is observed at later times. Namely, the current
along the closed wire contains a stationary component, which
is not present along the open wire. It can be shown in closed
form that the magnitude of this stationary component is inde-
pendent of the permittivity of the surrounding medium [5]. For

and , the current exhibits an ex-
ponentially decaying behavior at late times, with a decay rate
that is indicative of the value of . Provided that a partial
fracture can indeed be modeled by a resistive load, this means
that the quality of the loop can be assessed from this late-time
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Fig. 5. Current along a closed, loaded, or open circular wire. Dimensions of
the loop:a = 0:5 mm,b = 2:0 cm. Number of segments: 64, excitation point:
� = ��=4, observation point:� = 0, position of load or opening:� = �.

Fig. 6. Current along a circular wire, excited by a magnetic point dipole,
located in the origin and pointing in the negativez-direction. Dimensions of
the loop:a = 0:5 mm, b = 2:0 cm. Number of segments: 64, observation
point: � = �=8.

behavior or, equivalently, from the low-frequency behavior of
the generated current. Finally, the results for an open wire and
for a wire loaded with an impedance of 10 are graphically
indistinguishable. This shows that we may also treat a broken
wire as a closed wire with a large load.

Although a delta-gap voltage excitation can be approximated
by a coil wound around a ferrite ring, the problem remains
whether such a device can be positioned around the minor strut
of an artificial heart valve. The same question arises for the
detection of the current along the wire. A possible alternative is
to remotely excite a current via a small antenna. In particular,
we consider the current generated by a magnetic point dipole
in an arbitrary point and pointing in an arbitrary direction. A
magnetic current is a fictitious source, but the same effect can
be generated by a small loop of electric current. The results for
the same configuration as considered in Fig. 5 are shown in
Fig. 6. Again, we observe a stationary current along the wire
for the perfect loop. The introduction of an impedance causes
an exponential decay in that current, with a decay rate that
increases as the impedance increases.

IV. TWO COUPLED WIRES

Finally, we investigate whether it is possible to simultane-
ously excite and detect the current along the wire representing
the artificial heart valve by using a second wire as a transmitting
and receiving antenna. Such a wire could then be brought close
to the valve via a cathether. In Section III-B, it was observed
that a magnetic point dipole generates a current that strongly
depends upon the status of the circular wire. Since the magnetic
dipole is equivalent with a small current loop, it should be pos-
sible to generate similar effects with a second circular wire. The
behavior of the current on the first wire, which represents the
artificial heart valve, will then still depend on the status of that
wire. This current, in turn, will induce a radiated field that will
influence the current along the second wire. Based on the shape
of the current along that “detection” wire, it should, therefore,
be possible to determine the status of the wire “under test.”

A. Formulation of the Problem

We consider two perfectly conducting circular wires with ra-
dius and , placed in the planes and , and
centered around the-axis. The cross sections are circular with
radius and . The wires are embedded in a homogeneous,
dielectric medium with permittivity , permeability , and wave
velocity . Both wires can be excited by a delta-gap
voltage and contain an impedance.

To derive the integral equation for the current on wire 1, we
consider the electric field radiated by wire 2. When the distance
between both wires is large compared to the thickness of wire
2, the current along that wire may be considered as being con-
centrated on the central axis. The integral representation for the

-component of the radiated field on the axis of wire 1 can then
be written as

(11)

with

(12)

The field given in (11) is now considered as an additional in-
cident field in Pocklington’s equation (1) for the current along
wire 1. This changes (1) into

(13)
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where , is the position of
the delta gap in which the impedance is located, andis the
position of the delta gap across which the voltage is impressed.
The extra subscript “” indicates that these positions pertain to
wire 1.

Analogously, we can substitute the radiated field from wire 1
into Pocklington’s equation wire for 2. This results in an inte-
gral equation that can also be obtained by interchanging the sub-
scripts “ ” and “ ” in (13), and realizing that .
These two coupled integral equations determine the behavior of

and .

B. Results and Discussion

The coupled integral equations derived in Section IV-A are
solved by the procedure explained for the single-wire models
in Section III-A. Successively, equivalent Hallén-type equations
are derived, dimensionless variables are introduced, the equa-
tions are discretized in space, and the discretized form is solved
by the CGFFT method. Details can be found in [5].

In Fig. 7, we consider the situation where the second wire, i.e.,
the antenna, is excited by a delta-gap voltage. Since measure-
ments of this type have to be invasive, the diameter of this ring
is chosen smaller than the diameter of the ring representing the
artificial heart valve. Both wires were subdivided into 64 equal
segments. The second wire, which was driven by a Gaussian
voltage pulse with parameters ns and , was
placed 0.25 cm above the first one. Fig. 7 shows plots of the cur-
rent along that second wire in case the first wire is loaded with
0, 2.0, 8.0, and 10 , respectively. Since we are interested in
the possibility of detecting a partial interruption on the basis of
the shape of the current along the second wire, we only consider
this current.

From Fig. 7, it is observed that the magnitude of the sta-
tionary component in the current along the wire representing
the antenna is influenced by the status of the wire representing
the heart valve. When the “valve” is intact, the stationary cur-
rent component on the “antenna” is larger than for a completely
broken “valve.” Introducing an impedance results in an expo-
nential decay superimposed on a constant current. This effect is
observed more clearly when one of the configurations is used as
a reference. As an illustration, Fig. 7(b) shows the differences
with the case where .

V. CONCLUSIONS

In this paper, we have studied the possibility of detecting me-
chanical defects in certain artificial heart valves by investigating
a simple model configuration via computational simulations.
The model consists of a circular thin-wire segment embedded in
a homogeneous dispersive dielectric medium. To represent the
characteristic features of an artificial heart valve, three specific
configurations were considered, representing a perfect valve, a
completely fractured valve, and fatigue or a partial fracture. In
all three cases, the mathematical formulation proceeded in the
same way. We started from a one-dimensional Pocklington-type
integral equation for the current along the wire. To avoid nu-
merical problems, we used a one-dimensional Green’s function

(a)

(b)

Fig. 7. Current along wire 2. Dimensions of the loops:a = a = 0:5 mm,
b = 2:0 cm, b = 1:5 cm. Distance between the wires: 2.5 mm. Number
of segments: 64, excitation point (wire 2):� = 0, observation point (wire 2):
� = �=2, position of load (wire 1):� = �. (a) No reference used. (b) Reference
Z = 10 
.

technique to obtain an equivalent Hallén form. Since these in-
tegral equations could not be solved analytically, the unknown
currents were determined numerically.

For the excitation, two possibilities were considered. First,
we investigated a delta-gap voltage excitation. A significant dif-
ference was observed in the late-time behavior of the currents
in the three configurations. On the basis of these characteristic
differences, it seems possible to distinguish a perfect heart valve
from a broken one. Since a delta-gap voltage may not be realiz-
able from a physical point-of-view, we subsequently considered
the case where the circular wire was excited by a more realistic
source like a magnetic point dipole. The same significant effect
in the late-time behavior of the current along the wire was no-
ticed, as in the case of a delta-gap excitation. This means that,
with this source, a current can be generated along the wire with
a late-time behavior that depends strongly on the status of the
wire.

Finally, the problem of detecting this difference in late-time
behavior was addressed. A magnetic point dipole can also be
envisaged as a small loop in which a current is switched on.
Such a current can also be generated by exciting this small loop
with a delta-gap voltage pulse. Therefore, a logical next step was
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to replace the magnetic dipole by a secondary loop excited by a
voltage source. Our expectation that such a loop may then serve
as a transmitting, as well as a receiving, antenna was confirmed
by the results.

It should be remarked that, until now, we have considered a
relatively simple model of the actual configuration. If this study
is continued, a mandatory next step is to include interior loops
into the circular wire to obtain a more realistic model of the oc-
cluder struts. Also, the occluder itself may have to be taken into
account. A second possible step is to take into account the wires
connecting the secondary loop to the source and the impedance
of such a source. Third, the fact that the artificial heart valve is
located in a blood vessel could be taken into account by consid-
ering an inhomogeneous embedding.

Finally, because of the large number of assumptions in the
present model, we preferred to obtain more experimental vali-
dation of our idea before a further generalization of the model
was considered. While this validation was in progress, a nonin-
vasive technique was discovered that may provide an indication
of the presence of fractures. This has reduced the urgency of
developing an invasive technique based on the electromagnetic
detection. Nevertheless, both the problem and ideas resulting
from our feasibility study seemed to be interesting enough to be
reported to the scientific community.
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