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Combined Electromagnetic and Heat-Conduction
Analysis of Rapid Rewarminging of
Cryopreserved Tissues

Cai-Cheng Lu Senior Member, IEERHuai-Zhi Li, and Dayong Gao

Abstract—In this paper, a combined solution of an electromag- grow at extremely rapid rates into damaging ice particles.
netic (EM)-wave equation and head transfer equation is presented Typically, vitrified aqueous solutions present in biological
to analyze the microwave rewarming process of cryopreserved gystams will begin to reorganize into crystalline forms once

tissues. The solution process starts with an initial temperature - . o o\
of the tissue. The EM-field distribution inside the tissue is deter- the temperature is raised to abow#0 °C [1]. The traditional

mined first by solving hybrid surface-volume integral equations. @pproach to minimizing this problem is to rewarm the sample
This solution provides a thermal source term for the heat-transfer as quickly as possible. This minimizes ice crystal damage by

equation. A finite-difference scheme is then applied to solve the traversing the range of temperatures, where there is both a
heat-transfer equation, which determines the temperature distri- g;qnificant thermodynamic driving force toward crystallization

bution inside the tissue for the next time step. Since the tissue’s d iqnifi td f | lar diffusi Unfortunatel
electrical characteristics € and o) are functions of temperature, and a significant aegree of molecular diffusion. Unfortunately,

their values are then updated based on the new temperature @voiding formation of ice during rewarming would require
distribution. The iteration continues until a termination condition  heating rates~10° °C/min) that are very difficult to achieve.
is satisfied. This combined iterative solution of wave equation and The chief impediment is that biological tissues have relatively
heat-transfer equation allows us to model the complex rewarming oy thermal conductivities and high specific heats. Moreover,
process. Numerical results are presented to demonstrate the t be taken t id the | t t dient
application of the combined analysis approach. cgrg mus ) ela er_‘ 0 avol e grge empera ure.gra |.en
. . . within the tissue, which may cause high thermal stress inducing
Index Terms—Cryopreservation, electromagnetic interaction, ti fract
heat transfer, integral equation, rewarming. ISsue fracture. ) ) o
The use of microwaves for rewarming offers some signifi-
cant advantages over conventional methods. Since heatis gener-
. INTRODUCTION ated volumetrically, the low thermal conductivity of biological

RACTICAL methods for cryopreservation of bi0|ogica|materials is not so problematic. Additionally, with proper de-
Ptissues would provide inestimable benefits to the fieldign, microwave energy can be dissipated into a material at very
of medicine (e.g., the cell and organ transplantations). In thigh rate [4]. Although these advantages have long been recog-
context of cryopreservation, vitrification typically refers tdlized, there has been little progress toward widespread appli-
the avoidance of ice crystals with size large enough to caua@tion of microwave hegting processes to avoid dev?trification. .
cell damage [1], [2], [14]-[17]. All practical cryopreservatiorPerhapS the greatest disadvantage to the use of microwaves is
protocols require biological tissues to survive two perilod&at heating processes require very careful design to achieve the
processes: cooling down to cryogenic storage temperature iMgnded outcome and avoid undesired effects (such as the for-
the subsequent rewarming. In many aspects, the threats to gration of the hot spot in the tissue during microwave heating).
viability are greater during the rewarming phase [3]. This is One of the reasons is du_e to the complicated interactiop of
particularly true if the approach used during the cooling procel¥ electromagnetic (EM) field and materials. In the heating
produced a nonequilibrium phase (i.e., a vitreous solid). TIREOCESS, the fields in an empty cavity will be distorted because
prevailing view of vitrification is that numerous ice nucleof the presence of the materials. The field pattern inside the ma-
form during the cooling process, but then find themselves arial depends on a number of factors such as the shape, size
an environment too viscous to permit detectable growth. Thedthe material, the operating frequency, and, most importantly,
nuclei are preserved in the vitreous solid until the SamMet@econstitutive parameters of the material. As aresult, itis prob-

rewarmed. During the rewarming process, these nuclei migynatic to obtain the desired heating pattern or precisely control
the temperature distribution. It is known that the EM field in an

electrically small tissue is uniform if illuminated by a uniform
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detailed field and temperature pattern in the tissue. These pat- Access Hole

terns are difficulty to measure without interfering with the ap- 8

plied field. 2) It is a cost-effective way to simulate and compare \_’/ '
various cases with different tissue parameters and system con- Cavity

figurations. Extensive theoretical analysis of EM fields inside di-

electric spheres have been given by several researchers [4], [5]. ) ‘
These results demonstrated thatthe EM field and, hence, the tem- e

perature inside a tissue, are very sensitive to tissue’s size, shape,  Probe Feeder o S_an_lple
and electric and thermal properties. These studies were restricted -7 - N

to spherical samples in an open area. Though four plane waves \_/
were used in [4] to simulate the field in a rectangular cavity, it

laCk_S the.ﬂeXIb"'Fy to mOC!EI cavities of other §hapes. . Fig. 1. Geometry sketch of a microwave rewarming cavity. The cylindrical
Since interaction of microwave energy with real dielectricavity is fed by a probe near the sidewall. A tissue sample is put at the center
materials is nonlinear. an authentic model of microwave heatiftjhe cavity. Two small holes are cut at the upper and bottom end covers of the
Lo ity for temperature monitoring. For safety reasons, pipes of small diameters
should ta?ke this into account-. More'over! a'?‘ accgrate m0. attached to the holes to attenuate the fields leaked from the opening.
should simulate the manner in which a dielectric material
affects the£-field as it is being warmed. For most materialsyork, The time factor used in representing the EM fields is
the d|§leqnc prop(_art|es vary with t.he.tempgra.ture.. This chang)g.p(_iw) and is suppressed.
can significantly distort the electric-field distribution over the
course of the heating process. In either case, the electric-field
distribution is altered. Since this is equivalent to change the ' . _ _ o
internal heating source terms in the heat-transfer equation, it he configuration of the rewarming system is shownin Fig. 1.

is important to include this phenomena in any model of tHgconsists of a microwave cavity and dielectric material (tissue
heating process. sample). There are two small holes on the top and bottom cover

Recently, Francois [6] and Ma [7] reported results usin f the cavity that are cut for temperature measurement access.

the finite-difference time-domain (FDTD) method as EM N€ microwave power is fed in through a probe. Due to the
solver, and finite-difference (FD) method as heat-transf@fésence of the tissue sample, the field distribution in the cavity
equation solver to simulate the microwave heating proce¥dll be different from that when the cavity is empty. In the mi-
In these simulations, the temperature pattern is calculated f§PWave rewarming process, one is interested in the field dis-
a rectangular dielectric sample in a rectangular cavity. Thdffoution inside the sample. It is known that when the size of
models have been taken into consideration of the temperattt@ tissue is much smaller than a wavelength (in material), the
dependence for the material’s electric parameters and, herft&d in the sample will be uniform. If the size is comparable
are very close to reality. Theoretically, the FDTD method cdR ©F larger than_a wavelength, then_ t_he_lnterlor field pattern is
be used to model structures of arbitrary shapes; it is difficult @Enerally not uniform. In this case, it is important to know the
implement in practice, especially when both the cavity walfXact field distribution. This information is important to deter-
and sample shapes are of curved shapes. mine whether a thermal run away will occur. The thermal run
In this paper, we present a new method, which can handle 8@y i @ phenomena in microwave heating in which the tem-
bitrary structure shapes, for the combined EM and heat-trandp§fature in certain portion of the sample increases much faster
simulation of microwave rewarming process. In this method, tﬁlaan_ the rest portion, causing sever damage to the tissue or pre-
EM solver is based on the numerical solution of coupled int¥enting the sample from being further heated to the desired tem-

gral equations. It models the cavity wall by a set of small triaf€rature distribution.

gles and represents the dielectric tissue by a set of small tetraf©r given dielectric parameters of the tissee £, and p),

hedrons. This model provides the flexibility to simulate realistit'e €lectric-field distribution in the tissue can be determined by
cavities and tissue shapes. Since our ultimate interest is in fifiVing @ coupled surface and volume integral equations [9], one
thermal effect, accurate knowledge of the temperature distriggfmulated on the surface of the cavity, and one formulated in
tion is crucial to achieve basic understanding, the control, aHtf tiSSué volume region

optimization of the heating processes. This requires the soluti{n / "

Il. GENERAL FORMULATION OF THE PROBLEM

of the energy equations within the processed materials. In thigwr | G(7, 7)-Js(i7)dS +iwp / G(7,7")- Sy (i")dS’
paper, the control volume method developed by Patankar [8] is I . v
used to model heat transfer in biological samples. The inhomo- — —Eian res
geneity nature of the tissue’s electric and physical properties has 1)
been considered in the combined analysis. N N

The organization of this paper is as follows. Section II G ) - Js() dS
presents the general formulation of the problem. Then in
Sections Il and Ill, numerical schemes are discussed for the
EM solver and the heat-transfer solver, respectively. Numerical -
simulations are shown in Section IV. Section V presentsvehered is the free-space dyadic Green’s functioh, (A/m)
summary of this paper and point out the directions of futumnd Jy- (A/m?) are the surface current and volume current, re-

tan

E = Ei" 4 wi

o

tiwp | GEF)- T (7)dS',  FeV. @)
v
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spectively, andzine (V/m) is the excitation field, which is gen-
erated by the probe in the absence of the cavity and sample. The
subscript tan” stands for taking the tangent component of the
corresponding quantities. Note that since the total electric field
E is related to the volume current by = iw(e — &) E, there
are actually two unknown functions, i.&lgand.Ji/, in the two
integral equations (1) and (2).

With known electric-field distributiorE for every grid point
in the tissue, the absorbed power density by the tissue is deter-
mined by

o) = ol B Wi ®

whereo is the conductivity of the tissue and it is generally &ig.2. Mesh of arewarming configuration. The cavity wall is modeled by a set
function of position. The absorbed power per unit volume is th@hsmall triangular patches, and the sample is modeled by a set of tetrahedrons.
. A portion of the cavity wall is cut and shifted for the purpose of visualization.
u‘?‘Ed a_s thg thermal source term in the heat'tranSfe_r equatigfl-size of the triangular cell is about one-tenth of a free-space wavelength, and
Since, in this paper, the rewarming range concerned is betweaessize of the tetrahedron is close to one-tenth of dielectric wavelength.

—196°C and—15 °C, the phase change is assumed negligible.
Without the phase change, the heat-transfer equation has th¢nhe ynknown current distributions are approximately ex-

following form: panded by two sets of vector basis functions: one for the surface
current [11] and one for the volume current [9], [12]
arT a arT a aT a aT Ng
PO =1+ 5, (’“%) * oy (’“a—g) 5z <’“ a()) AGEDWANG (5)
4 n=1
where pC (J/m’K) is the volumetric heat-transfer capacity, . Ny .
(W/mK) is the thermal conductivity]” (K) is the temperature, Jy(7) = Z ay fn (7) (6)
n=1

andt (s) is the time. By solving (4), one obtains the temperature
distribution for the tissue as a function of time. Based on the, s v , L .
temperature distribution, the tissue’s constitutive parameter hergan anda,, are the expan&gy poefﬁuenp_&f 'S the_ basis

(F/m) ando (S/m) are then updated using a model that is o unction for the surface curreny,) is the basis function fo_r
tained experimentally. The new valuessofndo are then fed the volume current, anis and Ny are the number of basis

into the EM solver again to determine the electric-field distriblIynCtlonS on the surface and volume regions, respectively. If we

tion. This process is repeated until a desired temperature dis(ﬁ(f-ns'der a triangle or a tetrahedron as a general mesh cell, then

bution is achieved each basis function is defined over two adjacent cells that share
It can be seen from the above process that, for an initial ufsame entity (the edge for triangle and the face for tetrahedron).

form temperature distribution and uniform dielectric paramé/yhenthe cell size is small enough, (5) and (6) will give very ac-

ters of the tissue, the final temperature may be nonuniform dﬁlérate representation of the currents. When (5) and (6) are sub-

to nonuniform electric-field distribution. When the nonunifor-smmed into (1) and (2), and the resultant equations are tested by

mity of the temperature distribution exceeds a certain thresho%alerkln s testing procedure, we will obtain a setdf + Ny

the heating process is considered as unacceptable. Hence, nlg\ﬁ‘?r quatlons, which relate the expansion coefﬂqgnts a}nd ex-
itation field. Thus, the unknown expansion coefficients in (5)

taining the nonuniformity within a tolerance in the tissue is a 46 b \ved for b ix i ) h b
important issue in microwave rewarming. anad ©6) can be solved for by a matrix Inversion scheme or by
an iterative solver. Finally, the electric-field distribution inside

the cavity (including the sample region) can be obtained by in-

ll. SOLUTION OF WAVE EQUATIONS AND HEAT-TRANSFER  tegrate the currents given by (5) and (6).
EQUATIONS
B. Solution for Temperature Distribution

A. Solution for EM Fields The energy absorption by a lossy dielectric material (in our

The coupled integral equations (1) and (2) are solved simghse, the liquid and possibly the container) in a microwave field
taneously using the method of moments (MoM) [10], [14]. T described by (4). Considering the nature of microwave heating
this end, the surface is modeled by a set of triangles, and fhrecess, the magnitude of heating time is second. Furthermore,
sample is represented by a set of tetrahedrons. This discretiméerowave heating intensity is much stronger than that of nat-
tionis flexible to model cavities and samples of arbitrary shapagal convection. Thus, natural convection in a microwave reso-
This is important since, in practice, the tissues to be rewarmeant cavity is ignored, and an adiabatic boundary condition is
take many different shapes. An example of the meshed geometdppted. Equation (4) is numerically solved by the explicit con-
is shown in Fig. 2, in which the cavity is a cylindrical resonatotrolled volume method. In this method, the material is divided
and the sample is a solid sphere. into small rectangular cubes, and the current temperature at the
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Fig. 4. Relative field-intensity comparison for three dielectric spheres of
05 0.66 082 uniform permittivity. (&), = 11+3.7:. (b)e,. = 46+ 10¢.(C)e, = 64+124.
In each plot, 0 dB stands fOF,,,;,|.
Fig. 3. Absolute value of the field intensity on tlhe= 0 cutting plane inside
a dielectric sphere when the sphere is in free space and is illuminated by a plane
wave. The parameters for this example are: sphere radiud 5 m, frequency
= 300 MHz, dielectric permittivity is3.3+ 1.0:. Incident plane wave amplitude
is 1 V/m and the incident direction# = 0°. Both analytic solution (left-hand
side) and numerical solution (right-hand side) are shown.

0 (dB) 9.705

Circular Cavity: E"l a,/E m.m=9.11 Rectangular Cavity: Em a,/E =9.35

min
0.05 0.05

center of each cube is updated using the previous temperature
the current cube as well as the previous temperatures at neig

boring cubes based on the following equation [8]: g ,
X
ap,T, = agTy + aWT‘(,)V +anT® + aSTg
+arT + apTy + apTp+b. (7) : ‘@ e o
-0.0; -0
In the above, the subscript™is an index of grid point7™® is the B v-AXsS ws 3 v-RXS o0
temperature of the previous time step, dpds the temperature @ (b)

of the current time step at grid poinp.” Other symbols are Fig. 5. Field patterns of a dielectric sample when it is put: (a) in a circular
. . P . . 1g. o. | | 1 Wi It ut: | Ircu

described in detail in [8]. The last term in (7) is the thermq:kfﬂindrical Cavitpy and (b) in a rectangular Cgviw_ P

source term that is calculated using the electric-field amplitude

as follows:

0 12.8556 2571

1 =02
qg= §OP|EP| (AzAyAz). (8)

eF14370E  JE L =3.33

e'=64¢|2i: E "w/Emi" =19.3
Note thatq is a functions of positions. Equation (7) is solved _o.j " T ]
iteratively for the temperature distribution across the sampl -o02
grid points and over discrete time instances. During the itere §™°
tion process, the material permittivities at all the grid points an™ oo 8
monitored. If the maximum change of a permittivity at a grid
point is greater than a pre-specified amount, the permittivitie
at all the points are then updated, and the EM-field solution i
repeated for the new permittivity distribution. The temperature @ ® ©

characteristic of the materials is based on a measurement moHegl 6. Field pattern of a cubic sample at three temperatures. This should be
compared with the patterns shown in Fig. 4 for a spherical sample of the same
volume.

IV. SIMULATION RESULTS

. In the following, we present numgrical results for the El\k Comparison with Analytic Solution

field as well as temperature calculations for a number of con-

figurations. The EM solution is first compared with the analytic First, we calculate the interior field distribution for a homo-
solution for uniform dielectric sphere, and then the code is ageneous sphere in free space that is illuminated by a plane wave
plied to calculate the electric-field distribution in tissue san®f unit amplitude (1 V/m). For this configuration, an analytical
ples of spherical shape and rectangular cubic shape. The siglution exists. This example is to show that the developed algo-
sues used in the examples are similar to the perfused rabliims have the required solution accuracy. The calculated elec-
kidney given in [13]. Figs. 3—6 show the simulation resultdric-field-intensity distribution (in volts per meter) on the= 0

In Fig. 3, the absolute field-intensity values are plotted and, autting plane is shown in Fig. 3. As a comparison, the analytical
Figs. 4-6, the field intensity relative to the minimum field intensolution is shown in Fig. 3. In this example, the field nonunifor-
sity is plotted. The thermal parameters used in this paper’s simity, defined as the ratio of the maximum and minimum field
ulation arepC' = 2.01 (MJ/m?K), k = 5.69 x 1073 (W/mK). intensities, is 1.39 (the result from the analytic solution is 1.42).
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B. Dielectric Sphere in Cavities T, =-28.6°C, RATIO=0.096 T, oy=-27.74°C, RATIO=0.163

Next, we will calculate the field distribution in a dielectric
sphere when it is put inside a circular cavity. This example is to
show the effect of the dielectric constant on the field pattern. The
radius and height of the cavity are 0.26 and 0.55 m, respectively,
and it supports &'E1;; mode at 434 MHz. It is excited by a
short coaxial probe inserted into the cavity at the center of the

-0.02 o 0.02 -0.02 0 0.02

sidewall. For the simulation examples given in this paper, the T - 2665°C, RATIO=0269 --26.01°C, RATIO=0.343
probe is considered as a short dipole, and the accessing holes _o_mT -
on the cavity covers are sealed. 002l
Hence, the primary field is that of a short dipole inthe absence o0 @
of the cavity and the sample, i.e., the field on the right-hand side 3 o S
of (1) and (2). The field in the cavity and the sample is calcu- ™ °°'| ool
lated by solving the coupled surface-volume integral equations. 0'22 ,
The sample is a dielectric sphere and is located at the center ey ey

of the cavity. The sample has the dielectric properties as the
perfused rabbit kidney tissue given in [13, Table I]. At a fre-
quency of 434 MHz and temperatures-e80 °C, —12°C, and

0 °C, the tissue permittivities afd .0 +13.7,46.0 +410.0, and Fig. 7_. Temperature pattern for a cubic samp_le obtained iteratively using the
64.0 +1412.0, respectively. The radius of the dielectric sphere fz?é’:g'_ﬁgn':'}’r'] ?r?gs*;?ﬁgltsﬁs;lgqsuhfﬁws iiotlﬁélggh:ehii pattern Z%Effikfn at the
50 mm. In the discretization, the sphere is represented by 480 ) /7. .. for the corresponding data set.

small tetrahedrons, and the cavity wall is represented by 526

small triangles. In order to compare the electric—fieldwnonuné-Om arison can be obtained throuah simulation. In the next
formity for the three cases, the relative field intensity = b 9 '

|E|/|E| . is plotted. It is clear that the maximum value Bf example, a spherical and cubic sample are put in a circular

indicates the nonuniformity of the fields across the sample’s iﬁ)_/lmder, one at a time. The two samples have the same volume

terior points. Uniform heating meari < 1 for all points in and dielectric properties. The radius of the spherical sample

the sample. In the following figures, the displayed patterns is 0.05 m, and its field pattern is shown in a previous figure

the log value of the relative electric-field intensity (hence, tiﬁg'.d')' _The side Iength of the.CUb.'C sample_ Is set to 0.0806,
o e : and its field pattern is shown in Fig. 6. As is expected, the
minimum electric-field intensity corresponds to 0 dB).

temperatures near the corners are higher than the other parts on

Fig. 4 shows the relative electric-field intensity for the thre X : "
; . . ﬁwe sample due to field singularities at those places.
temperatures when the sample is put in the circular cavity

(again, absolute field values from the three cases are qLEte
different. However, we are interested in the uniformity of the”
fields; hence, the relative intensity is plotted. For each case, thdn practical rewarming, the temperature has a large variation
minimum field intensity is used as reference, or 0 dB). range, say, from-60 °C to 0°C. It can be expected that, with

It can be seen from Fig. 4 that with the increase in tempdfis range, the temperature, initially uniform, can become highly
atures, the nonuniformity of the field distribution is also inhonuniform at the end of the rewarming process. We found that

-29.79 ~27.9 -2601 °C

Combined Solution Example

creased, causing nonuniform heating. this is true even within a small temperature variation range. In
the last example, we demonstrate the variation of the temper-
C. Circular Versus Rectangular Cavity ature nonuniformity during a heating (or rewarming) process

| der to studv the effect of th ity sh ¢ l:%/ considering a cubic sample in a circular cavity. The sample
_n-order 1o study ine efiect of the cavily shapes on r} at resembles the perfused rabbit kidney is used for this sim-
field distribution, the calculation results are compared for

Jation. It is a cubic with side length of 0.0806 m, and is put
circular cavity (Section IV-B) and a rectangular cavity. Th 9 ' P

o . %t the coordinate origin, which is also the center of the cavity.
rectangular cavity is designed so that 6, o, mode resonates g jnitiq) temperature is assumed to be uniforn3Q°C across
at 434 MHz. The dimensions are = 0.52 m, b = 0.27 m,

. . . . the sample), and the permittivity of the sample at this temper-
andc = 0.345 m, wherea, b, andc are the dimensions in the 5, o js. 11 g 4 3.7, The simulation starts by solving for
z-, y-, and z-directions. The coordinate is chosen such thgle o0 ctic field distribution. The heat source is then calculated
the center of the cavity is at the origin. The cavity is eXCItegased on (8). Finally, the heat-transfer equation is solved to ob-

3!;0 by a shprttglpoletltocatgq f{'Lb _t.O'l’ O)h. Flgt.h5 ShOWSI th_e tain the temperature of the next step. With the new temperature,
fmerences In the pattern distribution when the sample 1S o permittivity distribution is updated (hence, the sample’s per-
circular and rectangular cavities. For this particular case, t

diff in the field pattern i t sianificant ttivity becomes nonuniform). In this example, a three-point
fierence In the Tield pattern is not signimcant. interpolation model is used to update the permittivity in the tem-

) ] o ) perature range from30°C to—20°C. The three measured data

D. Spherical Versus Cubic Samples in Circular Cavity samples are [13]7} ¢,.) = (—30°C, 11.0 + i3.7), (—25 °C,
It is generally accepted that the field pattern uniformity i$3.0 + ¢4.55), (—20 °C, 19.0 + ¢7.03). Temperature patterns
dependent on the shape of the sample. The detailed quantitataken at the: = 0 plane in the sample are plotted in Fig. 7. It



2190

can be seen that the nonuniformity becomes high with the ing4]
crease of temperatures. The center of the sample and the region

[l
near the corners are heated more compared to the rest of the re-
gion.

V. SUMMARY [16]

In this paper, an iteration algorithm is presented to obtain the
EM-field distribution and the temperature pattern for arbitrary[17]
shaped samples when they are in free space and inside cavities.
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The iteration involves solving the EM wave equation and the

heat-transfer equation alternatively. The EM solver models the
cavity with triangular patches and the dielectric tissue by tetra-
hedrons. Hence it can be used to simulate realistic microwe
rewarming and heating processes, and provides an accurate
effective tool for virtual experiments, through which we can ar
alyze the heating pattern and the heating rate as functions ¢
sample’s size, shape, and electric and heat-conduction proy
ties. These simulations are essential to know what kind of cavj
and what control process can lead to a desired heating patt
and rewarming history.
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