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Combined Electromagnetic and Heat-Conduction
Analysis of Rapid Rewarminging of

Cryopreserved Tissues
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Abstract—In this paper, a combined solution of an electromag-
netic (EM)-wave equation and head transfer equation is presented
to analyze the microwave rewarming process of cryopreserved
tissues. The solution process starts with an initial temperature
of the tissue. The EM-field distribution inside the tissue is deter-
mined first by solving hybrid surface-volume integral equations.
This solution provides a thermal source term for the heat-transfer
equation. A finite-difference scheme is then applied to solve the
heat-transfer equation, which determines the temperature distri-
bution inside the tissue for the next time step. Since the tissue’s
electrical characteristics ( and ) are functions of temperature,
their values are then updated based on the new temperature
distribution. The iteration continues until a termination condition
is satisfied. This combined iterative solution of wave equation and
heat-transfer equation allows us to model the complex rewarming
process. Numerical results are presented to demonstrate the
application of the combined analysis approach.

Index Terms—Cryopreservation, electromagnetic interaction,
heat transfer, integral equation, rewarming.

I. INTRODUCTION

PRACTICAL methods for cryopreservation of biological
tissues would provide inestimable benefits to the field

of medicine (e.g., the cell and organ transplantations). In the
context of cryopreservation, vitrification typically refers to
the avoidance of ice crystals with size large enough to cause
cell damage [1], [2], [14]–[17]. All practical cryopreservation
protocols require biological tissues to survive two perilous
processes: cooling down to cryogenic storage temperature and
the subsequent rewarming. In many aspects, the threats to cell
viability are greater during the rewarming phase [3]. This is
particularly true if the approach used during the cooling process
produced a nonequilibrium phase (i.e., a vitreous solid). The
prevailing view of vitrification is that numerous ice nuclei
form during the cooling process, but then find themselves in
an environment too viscous to permit detectable growth. These
nuclei are preserved in the vitreous solid until the sample is
rewarmed. During the rewarming process, these nuclei may
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grow at extremely rapid rates into damaging ice particles.
Typically, vitrified aqueous solutions present in biological
systems will begin to reorganize into crystalline forms once
the temperature is raised to about40 C [1]. The traditional
approach to minimizing this problem is to rewarm the sample
as quickly as possible. This minimizes ice crystal damage by
traversing the range of temperatures, where there is both a
significant thermodynamic driving force toward crystallization
and a significant degree of molecular diffusion. Unfortunately,
avoiding formation of ice during rewarming would require
heating rates (10 C/min) that are very difficult to achieve.
The chief impediment is that biological tissues have relatively
low thermal conductivities and high specific heats. Moreover,
care must be taken to avoid the large temperature gradient
within the tissue, which may cause high thermal stress inducing
tissue fracture.

The use of microwaves for rewarming offers some signifi-
cant advantages over conventional methods. Since heat is gener-
ated volumetrically, the low thermal conductivity of biological
materials is not so problematic. Additionally, with proper de-
sign, microwave energy can be dissipated into a material at very
high rate [4]. Although these advantages have long been recog-
nized, there has been little progress toward widespread appli-
cation of microwave heating processes to avoid devitrification.
Perhaps the greatest disadvantage to the use of microwaves is
that heating processes require very careful design to achieve the
intended outcome and avoid undesired effects (such as the for-
mation of the hot spot in the tissue during microwave heating).

One of the reasons is due to the complicated interaction of
the electromagnetic (EM) field and materials. In the heating
process, the fields in an empty cavity will be distorted because
of the presence of the materials. The field pattern inside the ma-
terial depends on a number of factors such as the shape, size
of the material, the operating frequency, and, most importantly,
the constitutive parameters of the material. As a result, it is prob-
lematic to obtain the desired heating pattern or precisely control
the temperature distribution. It is known that the EM field in an
electrically small tissue is uniform if illuminated by a uniform
external field. This means low frequency is preferred for heating
a tissue of a given size. However, lower frequency microwave
has a lower heating rate. Therefore, it is difficult to achieve uni-
form and rapid heating at the same time in a microwave cavity.

Theoretical and experimental researches are needed to better
understand the microwave heating process and search for op-
timum design to realize the desired uniform heating. Theoret-
ical method has the following two advantages. 1) It can provide
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detailed field and temperature pattern in the tissue. These pat-
terns are difficulty to measure without interfering with the ap-
plied field. 2) It is a cost-effective way to simulate and compare
various cases with different tissue parameters and system con-
figurations. Extensive theoretical analysis of EM fields inside di-
electric spheres have been given by several researchers [4], [5].
These results demonstrated that the EM field and, hence, the tem-
perature inside a tissue, are very sensitive to tissue’s size, shape,
and electric and thermal properties. These studies were restricted
to spherical samples in an open area. Though four plane waves
were used in [4] to simulate the field in a rectangular cavity, it
lacks the flexibility to model cavities of other shapes.

Since interaction of microwave energy with real dielectric
materials is nonlinear, an authentic model of microwave heating
should take this into account. Moreover, an accurate model
should simulate the manner in which a dielectric material
affects the -field as it is being warmed. For most materials,
the dielectric properties vary with the temperature. This change
can significantly distort the electric-field distribution over the
course of the heating process. In either case, the electric-field
distribution is altered. Since this is equivalent to change the
internal heating source terms in the heat-transfer equation, it
is important to include this phenomena in any model of the
heating process.

Recently, Francois [6] and Ma [7] reported results using
the finite-difference time-domain (FDTD) method as EM
solver, and finite-difference (FD) method as heat-transfer
equation solver to simulate the microwave heating process.
In these simulations, the temperature pattern is calculated for
a rectangular dielectric sample in a rectangular cavity. Their
models have been taken into consideration of the temperature
dependence for the material’s electric parameters and, hence,
are very close to reality. Theoretically, the FDTD method can
be used to model structures of arbitrary shapes; it is difficult to
implement in practice, especially when both the cavity walls
and sample shapes are of curved shapes.

In this paper, we present a new method, which can handle ar-
bitrary structure shapes, for the combined EM and heat-transfer
simulation of microwave rewarming process. In this method, the
EM solver is based on the numerical solution of coupled inte-
gral equations. It models the cavity wall by a set of small trian-
gles and represents the dielectric tissue by a set of small tetra-
hedrons. This model provides the flexibility to simulate realistic
cavities and tissue shapes. Since our ultimate interest is in the
thermal effect, accurate knowledge of the temperature distribu-
tion is crucial to achieve basic understanding, the control, and
optimization of the heating processes. This requires the solution
of the energy equations within the processed materials. In this
paper, the control volume method developed by Patankar [8] is
used to model heat transfer in biological samples. The inhomo-
geneity nature of the tissue’s electric and physical properties has
been considered in the combined analysis.

The organization of this paper is as follows. Section II
presents the general formulation of the problem. Then in
Sections II and III, numerical schemes are discussed for the
EM solver and the heat-transfer solver, respectively. Numerical
simulations are shown in Section IV. Section V presents a
summary of this paper and point out the directions of future

Fig. 1. Geometry sketch of a microwave rewarming cavity. The cylindrical
cavity is fed by a probe near the sidewall. A tissue sample is put at the center
of the cavity. Two small holes are cut at the upper and bottom end covers of the
cavity for temperature monitoring. For safety reasons, pipes of small diameters
are attached to the holes to attenuate the fields leaked from the opening.

work. The time factor used in representing the EM fields is
and is suppressed.

II. GENERAL FORMULATION OF THE PROBLEM

The configuration of the rewarming system is shown in Fig. 1.
It consists of a microwave cavity and dielectric material (tissue
sample). There are two small holes on the top and bottom cover
of the cavity that are cut for temperature measurement access.
The microwave power is fed in through a probe. Due to the
presence of the tissue sample, the field distribution in the cavity
will be different from that when the cavity is empty. In the mi-
crowave rewarming process, one is interested in the field dis-
tribution inside the sample. It is known that when the size of
the tissue is much smaller than a wavelength (in material), the
field in the sample will be uniform. If the size is comparable
to or larger than a wavelength, then the interior field pattern is
generally not uniform. In this case, it is important to know the
exact field distribution. This information is important to deter-
mine whether a thermal run away will occur. The thermal run
away is a phenomena in microwave heating in which the tem-
perature in certain portion of the sample increases much faster
than the rest portion, causing sever damage to the tissue or pre-
venting the sample from being further heated to the desired tem-
perature distribution.

For given dielectric parameters of the tissue (, , and ),
the electric-field distribution in the tissue can be determined by
solving a coupled surface and volume integral equations [9], one
formulated on the surface of the cavity, and one formulated in
the tissue volume region

(1)

(2)

where is the free-space dyadic Green’s function, (A/m)
and (A/m ) are the surface current and volume current, re-
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spectively, and (V/m) is the excitation field, which is gen-
erated by the probe in the absence of the cavity and sample. The
subscript “ ” stands for taking the tangent component of the
corresponding quantities. Note that since the total electric field

is related to the volume current by , there
are actually two unknown functions, i.e., and , in the two
integral equations (1) and (2).

With known electric-field distribution for every grid point
in the tissue, the absorbed power density by the tissue is deter-
mined by

W/m (3)

where is the conductivity of the tissue and it is generally a
function of position. The absorbed power per unit volume is then
used as the thermal source term in the heat-transfer equation.
Since, in this paper, the rewarming range concerned is between

196 C and 15 C, the phase change is assumed negligible.
Without the phase change, the heat-transfer equation has the
following form:

(4)
where (J/m K) is the volumetric heat-transfer capacity,
(W/mK) is the thermal conductivity, (K) is the temperature,
and (s) is the time. By solving (4), one obtains the temperature
distribution for the tissue as a function of time. Based on the
temperature distribution, the tissue’s constitutive parameters
(F/m) and (S/m) are then updated using a model that is ob-
tained experimentally. The new values ofand are then fed
into the EM solver again to determine the electric-field distribu-
tion. This process is repeated until a desired temperature distri-
bution is achieved.

It can be seen from the above process that, for an initial uni-
form temperature distribution and uniform dielectric parame-
ters of the tissue, the final temperature may be nonuniform due
to nonuniform electric-field distribution. When the nonunifor-
mity of the temperature distribution exceeds a certain threshold,
the heating process is considered as unacceptable. Hence, main-
taining the nonuniformity within a tolerance in the tissue is an
important issue in microwave rewarming.

III. SOLUTION OF WAVE EQUATIONS AND HEAT-TRANSFER

EQUATIONS

A. Solution for EM Fields

The coupled integral equations (1) and (2) are solved simul-
taneously using the method of moments (MoM) [10], [14]. To
this end, the surface is modeled by a set of triangles, and the
sample is represented by a set of tetrahedrons. This discretiza-
tion is flexible to model cavities and samples of arbitrary shapes.
This is important since, in practice, the tissues to be rewarmed
take many different shapes. An example of the meshed geometry
is shown in Fig. 2, in which the cavity is a cylindrical resonator,
and the sample is a solid sphere.

Fig. 2. Mesh of a rewarming configuration. The cavity wall is modeled by a set
of small triangular patches, and the sample is modeled by a set of tetrahedrons.
A portion of the cavity wall is cut and shifted for the purpose of visualization.
The size of the triangular cell is about one-tenth of a free-space wavelength, and
the size of the tetrahedron is close to one-tenth of dielectric wavelength.

The unknown current distributions are approximately ex-
panded by two sets of vector basis functions: one for the surface
current [11] and one for the volume current [9], [12]

(5)

(6)

where and are the expansion coefficients, is the basis
function for the surface current, is the basis function for
the volume current, and and are the number of basis
functions on the surface and volume regions, respectively. If we
consider a triangle or a tetrahedron as a general mesh cell, then
each basis function is defined over two adjacent cells that share
a same entity (the edge for triangle and the face for tetrahedron).
When the cell size is small enough, (5) and (6) will give very ac-
curate representation of the currents. When (5) and (6) are sub-
stituted into (1) and (2), and the resultant equations are tested by
Galerkin’s testing procedure, we will obtain a set of
linear equations, which relate the expansion coefficients and ex-
citation field. Thus, the unknown expansion coefficients in (5)
and (6) can be solved for by a matrix inversion scheme or by
an iterative solver. Finally, the electric-field distribution inside
the cavity (including the sample region) can be obtained by in-
tegrate the currents given by (5) and (6).

B. Solution for Temperature Distribution

The energy absorption by a lossy dielectric material (in our
case, the liquid and possibly the container) in a microwave field
is described by (4). Considering the nature of microwave heating
process, the magnitude of heating time is second. Furthermore,
microwave heating intensity is much stronger than that of nat-
ural convection. Thus, natural convection in a microwave reso-
nant cavity is ignored, and an adiabatic boundary condition is
adopted. Equation (4) is numerically solved by the explicit con-
trolled volume method. In this method, the material is divided
into small rectangular cubes, and the current temperature at the
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Fig. 3. Absolute value of the field intensity on thex = 0 cutting plane inside
a dielectric sphere when the sphere is in free space and is illuminated by a plane
wave. The parameters for this example are: sphere radius= 0:15 m, frequency
= 300MHz, dielectric permittivity is3:3+1:0i. Incident plane wave amplitude
is 1 V/m and the incident direction is� = 0 . Both analytic solution (left-hand
side) and numerical solution (right-hand side) are shown.

center of each cube is updated using the previous temperature at
the current cube as well as the previous temperatures at neigh-
boring cubes based on the following equation [8]:

(7)

In the above, the subscript “” is an index of grid point, is the
temperature of the previous time step, andis the temperature
of the current time step at grid point “.” Other symbols are
described in detail in [8]. The last term in (7) is the thermal
source term that is calculated using the electric-field amplitude
as follows:

(8)

Note that is a functions of positions. Equation (7) is solved
iteratively for the temperature distribution across the sample
grid points and over discrete time instances. During the itera-
tion process, the material permittivities at all the grid points are
monitored. If the maximum change of a permittivity at a grid
point is greater than a pre-specified amount, the permittivities
at all the points are then updated, and the EM-field solution is
repeated for the new permittivity distribution. The temperature
characteristic of the materials is based on a measurement model.

IV. SIMULATION RESULTS

In the following, we present numerical results for the EM
field as well as temperature calculations for a number of con-
figurations. The EM solution is first compared with the analytic
solution for uniform dielectric sphere, and then the code is ap-
plied to calculate the electric-field distribution in tissue sam-
ples of spherical shape and rectangular cubic shape. The tis-
sues used in the examples are similar to the perfused rabbit
kidney given in [13]. Figs. 3–6 show the simulation results.
In Fig. 3, the absolute field-intensity values are plotted and, in
Figs. 4–6, the field intensity relative to the minimum field inten-
sity is plotted. The thermal parameters used in this paper’s sim-
ulation are (MJ/m K), (W/mK).

(a) (b) (c)

Fig. 4. Relative field-intensity comparison for three dielectric spheres of
uniform permittivity. (a)" = 11+3:7i. (b)" = 46+10i. (c)" = 64+12i.
In each plot, 0 dB stands forjE j.

(a) (b)

Fig. 5. Field patterns of a dielectric sample when it is put: (a) in a circular
cylindrical cavity and (b) in a rectangular cavity.

(a) (b) (c)

Fig. 6. Field pattern of a cubic sample at three temperatures. This should be
compared with the patterns shown in Fig. 4 for a spherical sample of the same
volume.

A. Comparison with Analytic Solution

First, we calculate the interior field distribution for a homo-
geneous sphere in free space that is illuminated by a plane wave
of unit amplitude (1 V/m). For this configuration, an analytical
solution exists. This example is to show that the developed algo-
rithms have the required solution accuracy. The calculated elec-
tric-field-intensity distribution (in volts per meter) on the
cutting plane is shown in Fig. 3. As a comparison, the analytical
solution is shown in Fig. 3. In this example, the field nonunifor-
mity, defined as the ratio of the maximum and minimum field
intensities, is 1.39 (the result from the analytic solution is 1.42).



LU et al.: COMBINED EM AND HEAT-CONDUCTION ANALYSIS OF RAPID REWARMING OF CRYOPRESERVED TISSUES 2189

B. Dielectric Sphere in Cavities

Next, we will calculate the field distribution in a dielectric
sphere when it is put inside a circular cavity. This example is to
show the effect of the dielectric constant on the field pattern. The
radius and height of the cavity are 0.26 and 0.55 m, respectively,
and it supports a mode at 434 MHz. It is excited by a
short coaxial probe inserted into the cavity at the center of the
sidewall. For the simulation examples given in this paper, the
probe is considered as a short dipole, and the accessing holes
on the cavity covers are sealed.

Hence, the primary field is that of a short dipole in the absence
of the cavity and the sample, i.e., the field on the right-hand side
of (1) and (2). The field in the cavity and the sample is calcu-
lated by solving the coupled surface-volume integral equations.
The sample is a dielectric sphere and is located at the center
of the cavity. The sample has the dielectric properties as the
perfused rabbit kidney tissue given in [13, Table I]. At a fre-
quency of 434 MHz and temperatures of30 C, 12 C, and
0 C, the tissue permittivities are , , and

, respectively. The radius of the dielectric sphere is
50 mm. In the discretization, the sphere is represented by 480
small tetrahedrons, and the cavity wall is represented by 526
small triangles. In order to compare the electric-field nonuni-
formity for the three cases, the relative field intensity

is plotted. It is clear that the maximum value of
indicates the nonuniformity of the fields across the sample’s in-
terior points. Uniform heating means for all points in
the sample. In the following figures, the displayed patterns are
the log value of the relative electric-field intensity (hence, the
minimum electric-field intensity corresponds to 0 dB).

Fig. 4 shows the relative electric-field intensity for the three
temperatures when the sample is put in the circular cavity
(again, absolute field values from the three cases are quite
different. However, we are interested in the uniformity of the
fields; hence, the relative intensity is plotted. For each case, the
minimum field intensity is used as reference, or 0 dB).

It can be seen from Fig. 4 that with the increase in temper-
atures, the nonuniformity of the field distribution is also in-
creased, causing nonuniform heating.

C. Circular Versus Rectangular Cavity

In order to study the effect of the cavity shapes on the
field distribution, the calculation results are compared for a
circular cavity (Section IV-B) and a rectangular cavity. The
rectangular cavity is designed so that the mode resonates
at 434 MHz. The dimensions are m, m,
and m, where , , and are the dimensions in the

-, -, and -directions. The coordinate is chosen such that
the center of the cavity is at the origin. The cavity is excited
also by a short dipole located at . Fig. 5 shows the
differences in the pattern distribution when the sample is in
circular and rectangular cavities. For this particular case, the
difference in the field pattern is not significant.

D. Spherical Versus Cubic Samples in Circular Cavity

It is generally accepted that the field pattern uniformity is
dependent on the shape of the sample. The detailed quantitative

Fig. 7. Temperature pattern for a cubic sample obtained iteratively using the
combined EM and heat-transfer equation solution. The pattern are taken at the
z = 0-plane in the sample. TheRATIO shown in the figure is defined as(T �

T )=T for the corresponding data set.

comparison can be obtained through simulation. In the next
example, a spherical and cubic sample are put in a circular
cylinder, one at a time. The two samples have the same volume
and dielectric properties. The radius of the spherical sample
is 0.05 m, and its field pattern is shown in a previous figure
(Fig. 4). The side length of the cubic sample is set to 0.0806,
and its field pattern is shown in Fig. 6. As is expected, the
temperatures near the corners are higher than the other parts on
the sample due to field singularities at those places.

E. Combined Solution Example

In practical rewarming, the temperature has a large variation
range, say, from 60 C to 0 C. It can be expected that, with
this range, the temperature, initially uniform, can become highly
nonuniform at the end of the rewarming process. We found that
this is true even within a small temperature variation range. In
the last example, we demonstrate the variation of the temper-
ature nonuniformity during a heating (or rewarming) process
by considering a cubic sample in a circular cavity. The sample
that resembles the perfused rabbit kidney is used for this sim-
ulation. It is a cubic with side length of 0.0806 m, and is put
at the coordinate origin, which is also the center of the cavity.
The initial temperature is assumed to be uniform (30 C across
the sample), and the permittivity of the sample at this temper-
ature is . The simulation starts by solving for
the electric-field distribution. The heat source is then calculated
based on (8). Finally, the heat-transfer equation is solved to ob-
tain the temperature of the next step. With the new temperature,
the permittivity distribution is updated (hence, the sample’s per-
mittivity becomes nonuniform). In this example, a three-point
interpolation model is used to update the permittivity in the tem-
perature range from30 C to 20 C. The three measured data
samples are [13] C , ( 25 C,

), ( 20 C, ). Temperature patterns
taken at the plane in the sample are plotted in Fig. 7. It
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can be seen that the nonuniformity becomes high with the in-
crease of temperatures. The center of the sample and the region
near the corners are heated more compared to the rest of the re-
gion.

V. SUMMARY

In this paper, an iteration algorithm is presented to obtain the
EM-field distribution and the temperature pattern for arbitrary
shaped samples when they are in free space and inside cavities.
The iteration involves solving the EM wave equation and the
heat-transfer equation alternatively. The EM solver models the
cavity with triangular patches and the dielectric tissue by tetra-
hedrons. Hence it can be used to simulate realistic microwave
rewarming and heating processes, and provides an accurate and
effective tool for virtual experiments, through which we can an-
alyze the heating pattern and the heating rate as functions of a
sample’s size, shape, and electric and heat-conduction proper-
ties. These simulations are essential to know what kind of cavity
and what control process can lead to a desired heating pattern
and rewarming history.
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