
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 11, NOVEMBER 2000 1831

Two-Dimensional Dielectric Profile Reconstruction
Based on Spectral-Domain Moment Method and

Nonlinear Optimization
Theofanis A. Maniatis, Member, IEEE, Konstantina S. Nikita, Senior Member, IEEE, and

Nikolaos K. Uzunoglu, Senior Member, IEEE

Abstract—A novel method for two-dimensional (2-D) profile re-
construction of dielectric objects, based on nonlinear optimization,
is presented in this paper. The unknown dielectric profile is ex-
pressed in terms of Gaussian basis functions. The scattering in-
tegral equation (SIE) is discretized using a spectral-domain mo-
ment technique, where the unknown internal field is described as
a superposition of a limited number of plane waves, resulting in
a significant reduction of the associated computational cost. The
inverse-scattering problem is solved by minimizing a cost func-
tion consisting of two terms: the first term represents the error be-
tween measured and predicted values of the scattered field, while
the second term corresponds to the error in satisfying the SIE for
the field in the interior of the scatterer. Accurate and efficient di-
electric profile reconstructions of 2-D lossy scatterers of circular
and square cross sections using synthetic scattered field data are
presented, while the effect of various discretization parameters on
the convergence of the method is studied in detail.

Index Terms—Biomedical imaging, electromagnetic scattering
inverse problems, optimization methods.

I. INTRODUCTION

M ICROWAVE imaging of biological objects is highly de-
sirable since it provides quantitative information about

dielectric properties of tissues, which cannot be estimatedin
vivoby any of the currently available medical-imaging modali-
ties, and may potentially relate to the physiological state of the
tissue. A key step for the implementation of quantitative mi-
crowave imaging is the efficient solution of the associated in-
verse-scattering problem.

Early methods in inverse scattering were based on the lin-
earization of the problem using the first-order Born or Rytov
approximation [1], [2]. Despite their mathematical simplicity,
these methods are useful only for small and/or weakly scattering
objects [3]. In order to overcome the stringent limitations im-
posed by the first-order linear methods, nonlinear methods have
also been suggested [4], [5].

Spatial-domain techniques have been presented based on the
discretization of the exact scattering integral equations (SIEs)
by means of the method of moments (MoM). One of the ear-
liest approaches has been based on the solution of the equation
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for the field inside the scatterer and subsequent substitution to
the equation for the measured scattered field, seeking a direct
solution of the inverse-scattering problem [6]. Unfortunately,
this method suffered from the serious ill-posedness of the in-
verse problem. To alleviate this problem, pseudoinversion tech-
niques in conjunction with redundant scattered field data have
been suggested [7], [8].

Alternative approaches have been based on the reformulation
of the inverse problem as a nonlinear optimization one and its
solution using either Newton-type iterative procedures [9]–[16]
or the modified gradient method [17], [18]. Lately, a contrast
source inversion method has been suggested, improving the
overall performance of the modified gradient method [19],
[20]. In order to overcome the numerical complexity associated
with object sizes found in medical imaging, a method has been
presented that restricts the investigation domain in a subregion
of the human body [21].

Other interesting approaches have introduced the use of the
finite-element method or its hybrid coupling with the boundary-
element method, for the direct scattering problem, while the in-
version is based on conjugate-gradient [22] or Newton’s [23]
iterative schemes, respectively.

Although most of the above nonlinear methods have no the-
oretical restriction regarding the size or the refractive index of
the scattering object, they usually lead to an increased number
of unknowns for any problem of practical importance.

In order to demonstrate the practical implementation of
various inverse-scattering methods, several experimental
prototypes for microwave imaging of biological tissues have
been developed, operating at various frequencies in the range
of 300 MHz–2.45 GHz [24]–[29]. The early prototype [26]
has been based on linear inversion algorithms (i.e., Born ap-
proximation) providing rather qualitative reconstructed images.
However, more recent approaches adopt quantitative—usually
iterative—reconstruction algorithms with the cost of heavy
computational requirements [25], [27]–[29].

In this paper, a novel method based on a spectral-domain
MoM technique is presented, suitable for microwave imaging
of biological objects. The interaction of the incident field
with the scattering object is described in terms of the Lipp-
mann—Schwinger SIE. The unknown total wave field inside
the scattering object is expressed as a superposition of a
relatively small number of global domain basis functions (i.e.,
plane waves), while the unknown object function is expanded
in a set of spatially shifted Gaussian basis functions. The
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Fig. 1. Problem geometry with the object domain and Cartesian grid.

inverse-scattering problem is formulated as a nonlinear opti-
mization problem, which is solved by employing the modified
gradient method [17]. The main advantage of the proposed
formulation lies in the use of global-domain basis functions,
leading to a significant decrease of the number of unknowns
and, consequently, to a substantially lower computational cost.

This paper is organized in the following manner. The formu-
lation and solution of the direct and inverse-scattering problems
are presented in Section II. In Section III, the necessary checks
for the validation of the proposed method are described, fol-
lowed by dielectric-permittivity reconstructions of lossy dielec-
tric cylinders, based on the use of synthetic scattered field data.
In Section IV, important features of the method and directions
for further development are discussed.

II. M ATHEMATICAL FORMULATION AND ANALYSIS

A. Formulation of the Direct Problem

In this paper, we limit ourselves to two-dimensional (2-D)
problems. Let us consider a plane monochromatic wave1

propagating in the direction
inside an isotropic homogeneous medium, with wavenumber

, where is the angular frequency, and
are the medium’s dielectric permittivity and magnetic

permeability, respectively, with being the free-space mag-
netic permeability. The wave impinges on a scattering object
characterized by the complex dielectric permittivity , as
shown in Fig. 1. The magnetic properties of the object are
defined as , which is appropriate for biological
media.

The wave propagation is governed by the scalar Helmholtz
equation provided that the incident wave is pure TM and no
depolarization effects take place within the scattering object.
The scattered field is measured in the far region at a number
of points located at directions (corresponding
to the observation angles ) along a circular contour that fully
encloses the scattering object (Fig. 1). The measurement pro-
cedure can be repeated for a number of different incident field
directions , . A Cartesian grid consisting of

cells ( ) is defined within the object domain
, which totally covers the scattering object (Fig. 1).

1A time dependencee is assumed and omitted throughout.

The total field at any spatial location is given by the Lipp-
mann–Schwinger SIE

(1)

where is the 2-D Green’s function given by

with being the zeroth-order Hankel function of the first kind.
The object function is defined as

where is the complex refractive index of the
scatterer. The object function is expanded into spatially
shifted Gaussian basis functions

(2)

where are coefficients, which are known for the direct
scattering problem and should be determined for the inverse
problem. The centers of the Gaussian basis functions coincide
with the centers of the grid cells . The width of the Gaussian
functions is denoted by and considered to be equal to the
object-domain grid spacing .

The scattering amplitude at an observation directionex-
presses the asymptotic behavior of the scattered field in the far
region, and is defined as [30]

(3)

The total field in the interior of the scattering object can be ex-
pressed as a superposition of plane waves

(4)

where is the Fourier transform of the field inside the scat-
terer. By substituting (4) into (1), multiplying both sides by the
object function, and taking the Fourier transform, we obtain

(5)

where is the wavelength in the host medium,
denotes the Fourier transform of the object function, and the
superscript denotes the dependence of the total wave field on
the incident plane wave, propagating in the direction of

. The term is given by the integral

(6)
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Similarly, by substituting (4) into (3), the scattering amplitude
is expressed as follows:

(7)

where . A key procedure in the proposed formu-
lation is the discretization of the spectral-domain integrals (5)
and (7), using a finite number of wave vectors . This is
equivalent to expanding the total internal field in plane waves
[see (4)] with wave vectors . Discretization of (5) and (7)
[see Appendix], leads to the following equations written in ma-
trix–vector notation:

(8)

(9)

where the vectors and are related with the object func-
tion, while the vector is related with the expansion of the
internal field into plane waves. The elements of matrices and
vectors appearing in (8) and (9) are given in detail in the Ap-
pendix.

The direct scattering problem can be solved using (8) and (9).
In fact, if the dielectric profile of the scattering object is known,
then (2) can be used to determine the Gaussian basis functions
expansion coefficients ( ) of the object function. Solution of
the system of equations (8) with respect to the vector for a
given incident field direction and substitution into (9) pro-
vides the scattering amplitude.

B. Formulation and Solution of the Inverse Problem

For the solution of the inverse-scattering problem, we define
the residual that represents the error in satisfying the system
of equations (8)

(10)

In addition, a second residual term is defined, representing
the difference between the measured values of the scattering
amplitude and the theoretic prediction according to (9)
for a number of observation directions

(11)
where

and the matrix is defined as

A cost function is formed in terms of the residuals and

(12)

where denotes the two-norm and the vectoris defined as

The inverse-scattering problem is formulated as the problem of
minimizing the cost function with respect to the Gaussian
basis-function expansion coefficients () of the object function
and the expansion coefficients of the field inside the scatterer
( ). This nonlinear optimization problem is solved iteratively
using the modified gradient method proposed by Kleinmann and
Van den Berg [17], which does not require explicit solution of
the direct scattering problem at each step of the minimization
procedure.

III. N UMERICAL RESULTS

A. Direct Problem

The formulation presented thus far can be used for the solu-
tion of the direct scattering problem. The integral terms
[see (6)] depend on the pair of wave vectors ( ) and the set
of Gaussian basis functions used for the discretization of the
object function . The calculation of these 2-D Fourier inte-
grals is performed analytically with respect to the angular vari-
able, and numerically with respect to the radial. Furthermore,
their calculation can be performed off-line and stored for sub-
sequent usage, while significant computational savings can be
achieved by exploiting some symmetry properties of the inte-
grals , as noted in the Appendix.

One of the main advantages of the proposed spectral-domain
method is the ability to express the total internal wave field in
terms of a relatively small number of plane waves, whereas spa-
tial-domain methods require fine discretization of the internal
wave field. Appropriate selection of the wave vectors used in
discretizing (5) and (7) [see Appendix] can improve the per-
formance of the method. In fact, the proposed method is ex-
pected to perform well if the magnitudes of the expansion wave
vectors [see (A1) and (A4)] are close to the propagation
wavenumber within the scattering object.

In order to check the accuracy and convergence of the devel-
oped method, several checks have been performed. Let us con-
sider a simple 2-D scattering object. It consists of a two-layer
infinite-length cylinder whose refractive index is given by

for
for

for

Although not in scale, this scatterer represents a biological
model, consisting of an outer bone layer and an inner brain
core, which is immersed into deionized water. The complex
relative permittivities of the tissue media, which are compiled
from the relevant literature [31], [32], as well as the dielectric
constant of the background medium, used in the calculations,
are , , ,
at GHz. We assume that the scatterer is
illuminated by a plane wave propagating in the direction of
(see Fig. 1).
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Fig. 2. Magnitude of the scattering amplitude as a function of the observation angle. The angle of incidence is 0�.

The effects of the spatial- and spectral-domain discretization
are assessed using five different combinations of the discretiza-
tion parameters. To this end, the scattering amplitude calculated
by applying the proposed method is compared with that ob-
tained analytically, using separation of variables and eigenfunc-
tion expansion. With respect to the spatial sampling of the object
function, two distinct cases for the grid spacing are considered,
namely, a fine grid ( ) and a coarse grid ( ),
resulting in a total number of and
Gaussian basis functions, respectively [see (2)]. Regarding the
discretization of the spectral-domain integral equations, three
sets of 2-D wave vectors with uniform angular distribu-
tion from to [see Appendix, (A1) and (A4)] are used.
The first two sets consist of wave vectors each, with
constant magnitude and , respectively, while the third
set consists of wave vectors, with constant magnitude

.
The magnitude of the scattering amplitude, as computed for

five different combinations of spatial and spectral discretiza-
tion parameters along the exact analytic solution, are plotted
in Fig. 2 as a function of the observation angle. The most sig-
nificant improvement on the accuracy of the calculated scat-
tering amplitude is mainly due to the proper selection of the
wave-vector set . Since the main portion of the scattering
object is characterized by a refractive index of

, the wave-vector sets with magnitude of are better
suited for the description of the internal field. On the other hand,
the spatial-domain grid spacing has a less significant effect on

the accuracy of the calculated scattering amplitude, although the
fine-grid case ( ) produces marginally better results
compared with the coarse-grid case ( ). Furthermore,
the use of 24 wave vectors slightly improves the accuracy of the
calculated scattering amplitude, as compared with the use of 12
wave vectors.

B. Inverse Problem

The efficiency of the proposed inverse-scattering method for
tomographic imaging of biological objects is demonstrated with
the refractive index reconstruction of two different scattering
objects. It is pointed out that in order to avoid any trivial in-
version of the 2-D scattering problem, synthetic scattered field
data should be obtained by a direct solver having no relation to
the inverse method itself. Otherwise, a common mistake is com-
mitted, usually referred to asinverse crime[33].

As a first testing case, we consider the scattering object used
in the previous paragraph. In terms of spatial-domain discretiza-
tion, both fine and coarse-grid cases are studied, while in terms
of spectral-domain discretization, a set of wave vectors

with constant magnitude and uniform angular distribu-
tion from to is considered.

The scattering object is illuminated by plane waves
and, for each illumination, a total of scattering ampli-
tude data, uniformly distributed along the measurement circle,
are used. Synthetic scattering amplitude data have been calcu-
lated using the analytic solution.
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Fig. 3. Mean square reconstruction error as a function of iteration number. Solid line: fine-grid case with a flat initial profile. Dotted line: coarse-grid case with
a flat initial profile. Dashed line: coarse-grid case with the random initial profile.

We define the mean square reconstruction error for the refrac-
tive index at the th step of the iterative minimization procedure

(13)

as a figure-of-merit for the reconstructed profile. In (13),
represents the exact refractive index, while represents
the reconstructed one at theth step.

In order to check the stability of the proposed inverse-scat-
tering method, two different initial guesses for the scattering
object’s refractive index distribution have been considered. The
first one consists of a flat square profile given by

for
elsewhere.

The second initial profile is totally random, following a normal
distribution with mean value and standard
deviation of 0.2 for the real part and 0.1 for the imaginary part
of the refractive index. A total of 400 iterations of the recon-
struction procedure have been performed. In Fig. 3, the mean
square reconstruction error is plotted as a function of the it-
eration number for the flat initial profile (fine and coarse-grid
case) and the random initial profile (coarse-grid case). A rapid
decrease of the reconstruction error after the first few itera-
tions is observed for both grid cases, followed by a decrease
at a relatively slower rate at subsequent iterations. However, the
mean square reconstruction error for the fine grid is constantly

lower than that for the coarse grid. Regarding the reconstruction
starting from the random initial profile, a more rapid decrease
of the mean square reconstruction error is observed at the first
few iterations, while the final mean square reconstruction error
is higher as compared with that obtained from the flat initial pro-
file.

The exact and reconstructed profiles are shown in Fig. 4. Al-
though the coarse-grid reconstruction [see Fig. 4(b) and (c)]
retains the intelligibility of the object’s profile, the use of the
fine grid yields better reconstruction results [see Fig. 4(d)] in
fewer iterations. Furthermore, the imaginary part of the bone’s
refractive index is poorly discriminated in both grid cases. This
should be attributed to the low contrast of the imaginary part
of the bone’s refractive index compared with that of the back-
ground medium (water). For both grid cases, Gibbs-type phe-
nomena are observed near the edges of the scatterer, which are
more pronounced in the fine-grid case. This is due to the diffi-
culty in describing abrupt changes in the dielectric profile with
Gaussian basis functions. Finally, choosing a totally random ini-
tial profile yields similar reconstruction results [see Fig. 4(b)].
Therefore, we may conclude that the proposed method is stable
with respect to the initial choice of the refractive index distribu-
tion. It should be noted that the random initial profile constitutes
a worst-case scenario since one should always be able to find a
better initial estimate using a linear inverse-scattering method
(Born or Rytov). Improved reconstructions may be obtained by
using a set of wave vectors with magnitude , which
has been shown to produce more accurate results for the direct
problem.

Next, a lossy dielectric cylinder of a more complicated struc-
ture has been considered, having square cross section and con-
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Fig. 4. Exact and reconstructed dielectric profiles. Real part of the refractive index is shown in the left-hand-side column and the imaginary part inthe
right-hand-side column. (a) Exact profile. (b) Reconstructed profile after 400 iterations (coarse grid) using a random initial profile.

sisting of eight subsections, as shown in Fig. 5. The distribution
of the scatterer’s refractive index is given by

elsewhere.

The scattering object is illuminated by plane waves and
for each illumination a total of scattering amplitude
data, uniformly distributed along the measurement circle, are
used. Synthetic scattering amplitude data have been generated
using the MoM with pulse basis functions and point matching
[34]. In this example, a coarse grid of Gaussian
basis functions has been used ( ), covering the domain

. Furthermore, a set of wave
vectors with constant magnitude and uniform angular

distribution from to has been used for the spectral-domain
discretization. The initial guess for the refractive index profile is

for
elsewhere.

Atotalof400 iterationsof thereconstructionprocedurehavebeen
carried out. The exact and reconstructed profiles of the real and
imaginary parts of the refractive index are shown in Fig. 6. In a
qualitative sense, the algorithm seems to be able to discriminate
the different subsections, performing slightly better for the real
part of the complex refractive index than for the imaginary part.

Concerning the computational resources used, the developed
algorithm was executed on a Pentium II 350 –MHz personal
computer, and the average reconstruction time per iteration was
5 s for the circular cross-sectional object and coarse-grid case.

IV. DISCUSSION

The main advantage of the proposed inverse-scattering
method is the significant reduction of the total number of
unknowns, which is related to the limited number of global-do-
main basis functions required for the description of the internal
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Fig. 4. (Continued.)Exact and reconstructed dielectric profiles. Real part of the refractive index is shown in the left-hand-side column and the imaginary part in
the right-hand-side column. (c) Reconstructed profile after 400 iterations (coarse grid) using a flat initial profile. (d) Reconstructed profile after 200 iterations (fine
grid) using a flat initial profile.

Fig. 5. Cross section of infinite length dielectric scatterer.

field. In optimization-type inverse-scattering techniques, based
on the MoM in the spatial domain, the discretization required
for the description of the object function leads to a number of

variables per , while an equal number of variables per
per incident wave field is required for the description of

the internal field, where [13], [17], [18], [20].
In contrast, the proposed formulation requires variables
per for the description of the object function and a small
number of variables (typically 12 per incident wave field) for
the description of the internal field.

FromthesimulationresultspresentedinSectionIII, it isevident
that fine discretization of the object function yields better recon-
structionresults.However, itshouldbenotedthatevenwithcoarse
spatial-domain discretization ( ), fairly good images are
acquired. Moreover, fine spatial discretization may not provide
significant improvement of the reconstructed image quality, es-
pecially when experimental data are used, as is shown in [13]
for a human forearm. In terms of the spectral-domain discretiza-
tion, a uniform distribution of wave vectors in the angular di-
rection seems to be adequate. Furthermore, if the magnitude of
these wave vectors is selected to be close to the average propa-
gation wavenumber within the scatterer, a better description of
the internal field can be obtained. Although this information is
not available in advance, a reasonable estimate can be deduced
based on the general type of tissue being imaged.

The presented reconstruction algorithm can be further
improved by introducing constraints for the object’s refractive
index (such as positivity constraints) [18]. Furthermore,a
priori information available for biological tissues dielectric
properties can also be included in the method. In fact, a good
initial guess about the dielectric profile obtained by a linear
inverse-scattering method (such as Born or Rytov [2]) may
have beneficial effects to the convergence of the proposed
method [13].
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Fig. 6. Exact and reconstructed dielectric profiles. Real part of the refractive index is shown in the left-hand-side column and the imaginary part inthe
right-hand-side column. (a) Exact profile. (b) Reconstructed profile after 400 iterations.

Although the applicability of the developed algorithm has
been demonstrated for microwave tomography, the proposed
method is general and can be applied for ultrasonic tomography
of biological media since the acoustic-wave propagation is gov-
erned by the scalar inhomogeneous Helmholtz equation [35].
An experimental ultrasonic tomography system has been devel-
oped and the efficiency of the presented reconstruction method
will be further tested using experimental data.

Finally, since the proposed formulation leads to a relatively
small number of unknowns, its extension to reconstruct three di-
mensional (3-D) biological objects may result to a feasible com-
puter implementation. The computational cost associated with
the calculation of the integral terms [see (6)] will in-
crease;however, theircalculationcanbeperformedonceoff-line.

V. CONCLUSION

A nonperturbative solution for the reconstruction of complex
dielectric permittivity based on nonlinear optimization has been

presented in this paper. A substantial reduction of the number of
optimization variables is achieved for a given problem size, en-
abling the efficient numerical implementation of the proposed
method for electrically large scatterers. The proposed method
has been applied for the reconstruction of a biologically rele-
vant dielectric-permittivity profile, as well as for the reconstruc-
tion of a square cross-sectional lossy cylinder with a complex
structure. The method has no theoretical restriction to weak scat-
tering objects or to objects whose size is small compared to the
wavelength.

APPENDIX

In this appendix, the procedure adopted for the discretiza-
tion of the spectral-domain integral equations (5) and (7) is de-
scribed.

By using the Gauss quadrature method of numerical integra-
tion and further enforcing (5) at a finite number of wave vectors
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, we obtain a set of linear equations

(A1)

where are the weighting coefficients of the quadrature
integration, depending solely on the particular selection of the
expansion wave vectors .

If we select the testing wave vectors to coincide with
the wave vectors used in the quadrature numerical integration,
i.e., , significant computational savings can be
achieved by exploiting important symmetry properties of the in-
tegrals [see (6)], which can be shown by introducing
the Gaussian expansion of the object function in (6) and per-
forming some straightforward algebraic manipulations.

The set of equations shown in (A1) can be written in a ma-
trix–vector notation

where the elements of matrix are given by

(A2)

and the elements of vectors and , are

(A3)

In a similar manner, (7) can be discretized

(A4)

and written in vector notation

where the vector is defined as

(A5)
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