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Abstract—A novel method for two-dimensional (2-D) profile re-  for the field inside the scatterer and subsequent substitution to
construction of dielectric objects, based on nonlinear optimization, the equation for the measured scattered field, seeking a direct
is presented in this paper. The unknown dielectric profile is ex- solution of the inverse-scattering problem [6]. Unfortunately,

pressed in terms of Gaussian basis functions. The scattering in- thi thod suffered f th ; il d fthe i
tegral equation (SIE) is discretized using a spectral-domain mo- IS method sutiered irom the serious Hli-posedness of the in-

ment technique, where the unknown internal field is described as Verse problem. To alleviate this problem, pseudoinversion tech-
a superposition of a limited number of plane waves, resulting in niques in conjunction with redundant scattered field data have
a significant reduction of the associated computational cost. The peen suggested [7], [8].

inverse-scattering problem is solved by minimizing a cost func-  aternative approaches have been based on the reformulation

tion consisting of two terms: the first term represents the error be- fthe i bl i timizati dit
tween measured and predicted values of the scattered field, while Or the inverse problem as a nonlinear optmization one and its

the second term corresponds to the error in satisfying the SIE for Solution using either Newton-type iterative procedures [9]-[16]
the field in the interior of the scatterer. Accurate and efficient di- or the modified gradient method [17], [18]. Lately, a contrast

electric profile reconstructions of 2-D lossy scatterers of circular source inversion method has been suggested, improving the
and square cross sections using synthetic scattered field data arey/arq)| performance of the modified gradient method [19],
presented, while the effect of various discretization parameters on . . -
the convergence of the method is studied in detail. [2.0]. In _order_ to overcome the numgrlca! complexity associated
with object sizes found in medical imaging, a method has been

presented that restricts the investigation domain in a subregion
of the human body [21].

Other interesting approaches have introduced the use of the
|. INTRODUCTION finite-element method or its hybrid coupling with the boundary-

ICROWAVE imaging of biological objects is highly Ole_element method, for the direct scattering problem, while the in-
M sirable since it provides quantitative information abOL}{ersign is based on conjugate-gradient [22] or Newton's [23]
dielectric properties of tissues, which cannot be estimated '€rative schemes, respectively.

vivo by any of the currently available medical-imaging modali- AI_though r.no.st of the apove noqllnear methods *.“"“’? no the-
éetICBJ restriction regarding the size or the refractive index of

ties, and may potentially relate to the physiological state of tI‘L tteri biect. th v lead t ; d b
tissue. A key step for the implementation of quantitative mihe scattering object, they usually €ad 10 an increased number
f unknowns for any problem of practical importance.

crowave imaging is the efficient solution of the associated i : : .
In order to demonstrate the practical implementation of

verse-scattering problem. . . . .

Early methods in inverse scattering were based on the lyrous mverse—.scattermg. mgthods, .sevgral .expenmental
earization of the problem using the first-order Born or RyterOtOtypes for microwave imaging of b|olog|cal_ t|s§ues have
approximation [1], [2]. Despite their mathematical simplicit ,fezrége&eHlopgdisopée;aunzg4at ;g“o_llfrs] frequlenuets Itn thezrgnge
these methods are useful only for small and/or weakly scatteri e 1z [ .]_[ ].' e early prolotype [26]

nas been based on linear inversion algorithms (i.e., Born ap-

objects [3]. In order to overcome the stringent limitations i S s o .
posed by the first-order linear methods, nonlinear methods h gxmanon) providing rather qualitative reconstructed images.
' owever, more recent approaches adopt quantitative—usually

also been suggested [4], [5]. . i . lqorith ih th fh
Spatial-domain techniques have been presented based o fi{gtive—reconstruction algorithms with the cost of heavy
mputational requirements [25], [27]-[29].

discretization of the exact scattering integral equations (Sl . .
g g d ( I_:%csln this paper, a novel method based on a spectral-domain

by means of the method of moments (MoM). One of the ear- ! . . . . :
liest approaches has been based on the solution of the equ%{l %oﬁi%?gg?usbj!:c?;es'?r?;e?ﬁtztrjggtti)clyi fz; Th'gr?r’lvg\éeer::nzg:gg

with the scattering object is described in terms of the Lipp-
mann—Schwinger SIE. The unknown total wave field inside
Manuscript received November 12, 1999; revised May 3, 2000. the scattering object is expressed as a superposition of a
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Measurement The total field at any spatial location is given by the Lipp-
Object . A .. contour mann-Schwinger SIE
domain D, Y ho /

B(r) = folr) + & /D dro( W ()gelt) (1)

whereg(r|r’) is the 2-D Green’s function given by
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Scatt b i . . . . .
C:b.emg . Incident with Hy being the zeroth-order Hankel function of the first kind.
ject plane wave . . . .
The object functiors(r) is defined as
Fig. 1. Problem geometry with the object domain and Cartesian grid. o(r) - 712(1‘) _1
=n:

inverse-scattering problem is formulated as a nonlinear opttheren?(r) = =(r)/e, is the complex refractive index of the
mization problem, which is solved by employing the modifiegcatterer. The object function is expanded g spatially
gradient method [17]. The main advantage of the proposegdifted Gaussian basis functions
formulation lies in the use of global-domain basis functions, N,
leading to a significant decreasg of the number of pnknowns o(r) = Z e (G D) @
and, consequently, to a substantially lower computational cost. —

This paper is organized in the following manner. The formu-
lation and solution of the direct and inverse-scattering probleméere «,, are coefficients, which are known for the direct
are presented in Section Il. In Section lll, the necessary chedkattering problem and should be determined for the inverse
for the validation of the proposed method are described, f@roblem. The centers of the Gaussian basis functions coincide
lowed by dielectric-permittivity reconstructions of lossy dielecwith the centers of the grid celis,. The width of the Gaussian
tric cylinders, based on the use of synthetic scattered field ddiactions is denoted by and considered to be equal to the
In Section IV, important features of the method and directiormbject-domain grid spacing = A.

for further development are discussed. The scattering amplitude at an observation direcfibnex-
presses the asymptotic behavior of the scattered field in the far
ll. MATHEMATICAL FORMULATION AND ANALYSIS region, and is defined as [30]

A. Formulation of the Direct Problem

. < k2 TP
In this paper, we limit ourselves to two-dimensional (2-D) Ja(t3e) = ez(ﬂm\/; /D dr/ e o )p(x'). (3)
problems. Let us consider a plane monochromatic wave
o(r) = exp(ikytl, - r) propagating in the directios! . The total field in the interior of the scattering object can be ex-
inside an isotropic homogeneous medium, with wavenumbgiessed as a superposition of plane waves
ky = w,/eyps, Wherew is the angular frequency, and

Hy, = o are the medium’s dielectric permittivity and magnetic P(r) = % /Oo dp., /Oo dp, P C(p)
permeability, respectively, witly being the free-space mag- (2m)? ) o —o0

netic permeability. The wave impinges on a scattering object _ 1 / dpcP* O (p) (4)
characterized by the complex dielectric permittivitgr), as (2m)? Jq

shown in Fig. 1. The magnetic properties of the object are ) ) S
defined asu(r) = o, Which is appropriate for biological whereC(p) is the Fourier transform of the field inside the scat-

media. terer. By substituting (4) into (1), multiplying both sides by the

The wave propagation is governed by the scalar Helmhofpiect function, and taking the Fourier transform, we obtain
equation provided that the incident wave is pure TM and no '
depolarization effects take place within the scattering objec;./ dpC?(p) [O(q—p)—A"%I(q, p)] = (27)*O(q—kI,.),
The scattered field is measured in the far region at a numbefts2
ofs =1, ..., Spointslocated at directiorng, (corresponding g=1.J ®)
to the observation angles’) along a circular contour that fully whereA = 2x /I, is the wavelength in the host mediuti(k)

ncl h rin Fig. 1). The m rement pro- ; : .
encloses the scattering object (Fig. 1) '€ measureme t_p 8notes the Fourier transform of the object function, and the
cedure can be repeated for a number of different incident fie _— )

Y . : o superscriptj denotes the dependence of the total wave field on
directionst;, _, s = 1, ..., J. A Cartesian grid consisting of

N, cells (A = Ay = h) is defined within the object domain Zh‘fj'”c'?ﬁgttgﬂ‘[e Wa"e.’sp“?pe"’;]ggt”:ﬁ;‘;:‘ee g{ec“o“‘m =
D, which totally covers the scattering object (Fig. 1). oh (9, p) is gv y Integ

fap) = [ OSHOEERL )

1A time dependence—** is assumed and omitted throughout.
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Similarly, by substituting (4) into (3), the scattering amplitudevhere|| - ||» denotes the two-norm and the veciois defined as
is expressed as follows:

—3/2

i) = e

7

T
| apcimione.—p) @) @ = o oo |
Q

s s . The inverse-scattering problem is formulated as the problem of
Wh_ere_ksc N ].%rSC'.A k_ey procedure in the propo§ed formu, inimizing the cost functior) with respect to the Gaussian
lation is the_ dlscre_t|_zat|on of the spectral-domain mtegra_\ls ( sis-function expansion coefficients)(of the object function
and. (7), using a f|n|t§ number of_wave ve.ctqusl}. This is and the expansion coefficients of the field inside the scatterer
equivalent .to expanding the totalllnterr.lal f|eld in plane wave(%vj). This nonlinear optimization problem is solved iteratively
[see (4)] with wave vectorgp, }. Discretization of (5) and (7) using the modified gradient method proposed by Kleinmann and

[s_ee Appendix], I_ea.ds to the following equations written in M&%an den Berg [17], which does not require explicit solution of

trix=vector notation: the direct scattering problem at each step of the minimization
TW’ — o’ ®) procedure.

i A g rwi

a,s = ¢ 7(0 )W, i=1..J [ll. NUMERICAL RESULTS

s=1,...,8 () A, Direct Problem

where the vector®’ andO® are related with the object func- The formulation presented thus far can be used for the solu-
tion, while the vectoWW/ is related with the expansion of thetion of the direct scattering problem. The integral tetftx, p)
internal field into plane waves. The elements of matrices afgke (6)] depend on the pair of wave vectags p) and the set
vectors appearing in (8) and (9) are given in detail in the Apf Gaussian basis functions used for the discretization of the
pendix. object functiono(r). The calculation of these 2-D Fourier inte-

The direct scattering problem can be solved using (8) and (g)als is performed analytically with respect to the angular vari-
In fact, if the dielectric profile of the scattering object is knownable, and numerically with respect to the radial. Furthermore,
then (2) can be used to determine the Gaussian basis functithvedr calculation can be performed off-line and stored for sub-
expansion coefficients,) of the object function. Solution of sequent usage, while significant computational savings can be
the system of equations (8) with respect to the ve®torfor a  achieved by exploiting some symmetry properties of the inte-
given incident field directio?__ and substitution into (9) pro- gralsI(q, p), as noted in the Appendix.

mc

vides the scattering amplitude. One of the main advantages of the proposed spectral-domain
method is the ability to express the total internal wave field in
B. Formulation and Solution of the Inverse Problem terms of a relatively small number of plane waves, whereas spa-

For the solution of the inverse-scattering problem, we defifi@l-domain methods require fine discretization of the internal

the residuaP’ that represents the error in satisfying the systelave field. Appropriate selection of the wave vectors used in
of equations (8) discretizing (5) and (7) [see Appendix] can improve the per-
formance of the method. In fact, the proposed method is ex-
. (10) pected to perform well if the magnitudes of the expansion wave
vectors{p;} [see (Al) and (A4)] are close to the propagation
In addition, a second residual telR¥ is defined, representing wavenumber within the scattering object.
the difference between the measured values of the scatteringn order to check the accuracy and convergence of the devel-
amplitudef; .. and the theoretic prediction according to (9pped method, several checks have been performed. Let us con-

for a number ofS observation directions sider a simple 2-D scattering object. It consists of a two-layer
\-3/2 infinite-length cylinder whose refractive index is given by

PP =TUW -0/, j=1,..

RS = £y — /05 O“Wi,  j=1..,J
(11) 0.81+7-0.15,  for0 < < 0.8
where ne(r) = { 0.26+i-0.03,  for 0.8\ <7 < A
T 1, forr > A
fgleas = [fgleas 1 gleas PR fj S:| H H H H
’ ’ meas, Although not in scale, this scatterer represents a biological

model, consisting of an outer bone layer and an inner brain
core, which is immersed into deionized water. The complex
relative permittivities of the tissue media, which are compiled
from the relevant literature [31], [32], as well as the dielectric
constant of the background medium, used in the calculations,
areepone = 5.1 + ¢ - 1.1, eppain = 49 + ¢ - 18.5, eyater = 77,

J J at f = 2n/w = 2.45 GHz. We assume that the scatterer is
Q(a’ W WJ) =S IP/I3+ 3" IR/ (12) illuminated by a plane wave propagating in the directiort of

j=1 j=1

and the matrixO™""" is defined as

—scat

o™ = [01, o2 ... OS}T.

A cost function® is formed in terms of the residud® andRy

(see Fig. 1).
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Fig. 2. Magnitude of the scattering amplitude as a function of the observation angle. The angle of incidénce is 0

The effects of the spatial- and spectral-domain discretizatitime accuracy of the calculated scattering amplitude, although the
are assessed using five different combinations of the discretifiae-grid case £ = 0.1X) produces marginally better results
tion parameters. To this end, the scattering amplitude calculatemnpared with the coarse-grid cage-£ 0.2)). Furthermore,
by applying the proposed method is compared with that othe use of 24 wave vectors slightly improves the accuracy of the
tained analytically, using separation of variables and eigenfurcalculated scattering amplitude, as compared with the use of 12
tion expansion. With respect to the spatial sampling of the objegave vectors.
function, two distinct cases for the grid spacing are considered,
namely, a fine grid{ = 0.1)\) and a coarse gridh(= 0.2}),
resulting in a total number aV, = 21 x 21 and/V, = 11 x 11
Gaussian basis functions, respectively [see (2)]. Regarding thd he efficiency of the proposed inverse-scattering method for
discretization of the spectral-domain integral equations, thrignographic imaging of biological objects is demonstrated with
sets of 2-D wave vector§p;} with uniform angular distribu- the refractive index reconstruction of two different scattering
tion from 07 to 27 [see Appendix, (A1) and (A4)] are used.objects. It is pointed out that in order to avoid any trivial in-
The first two sets consist @¥/ = 12 wave vectors each, with version of the 2-D scattering problem, synthetic scattered field
constant magnitudé, and0.8%,, respectively, while the third data should be obtained by a direct solver having no relation to
set consists oM = 24 wave vectors, with constant magnituddéhe inverse method itself. Otherwise, a common mistake is com-
0.8k mitted, usually referred to asverse crimg33].

The magnitude of the scattering amplitude, as computed forAs a first testing case, we consider the scattering object used
five different combinations of spatial and spectral discretizén the previous paragraph. In terms of spatial-domain discretiza-
tion parameters along the exact analytic solution, are plottédn, both fine and coarse-grid cases are studied, while in terms
in Fig. 2 as a function of the observation angle. The most sigf spectral-domain discretization, a sef\df= 12 wave vectors
nificant improvement on the accuracy of the calculated scdtp:} with constant magnitudi, and uniform angular distribu-
tering amplitude is mainly due to the proper selection of then from Or to 27 is considered.
wave-vector se{p; }. Since the main portion of the scattering The scattering object is illuminated by = 12 plane waves
object is characterized by a refractive indexmf = 0.81 + and, for each illumination, a total ¢f = 48 scattering ampli-
1-0.15, the wave-vector sets with magnitude0ofk, are better tude data, uniformly distributed along the measurement circle,
suited for the description of the internal field. On the other handre used. Synthetic scattering amplitude data have been calcu-
the spatial-domain grid spacing has a less significant effect lated using the analytic solution.

B. Inverse Problem
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Fig. 3. Mean square reconstruction error as a function of iteration number. Solid line: fine-grid case with a flat initial profile. Dotted linegrida@ese with
a flat initial profile. Dashed line: coarse-grid case with the random initial profile.

We define the mean square reconstruction error for the refrdmwer than that for the coarse grid. Regarding the reconstruction
tive index at the/th step of the iterative minimization procedurestarting from the random initial profile, a more rapid decrease
of the mean square reconstruction error is observed at the first
few iterations, while the final mean square reconstruction error
is higher as compared with that obtained from the flat initial pro-
file.

The exact and reconstructed profiles are shown in Fig. 4. Al-
though the coarse-grid reconstruction [see Fig. 4(b) and (c)]
represents the exact refractive index, Whifé)(r) represents rgtain; the_ intelligibility of the Obj?Ct’S profile, the use of th?
the reconstructed one at théh step. fine gr.|d y|§Ids better reconstructlpn re§ults [see Fig. 4(d)] |r’1

In order to check the stability of the proposed inverse-sc:i?—wer |_ter§1t|0ns._ Furthermpre,' th'e 'maginary parF of the bong s
tering method, two different initial guesses for the scatterirl fractive index is poorly discriminated in both grid cases. This

object's refractive index distribution have been considered. T ould be a}ttr|buted_to f[he low contrast Of. the imaginary part
first one consists of a flat square profile given by of the bone’s refractive index compared with that of the back-

ground medium (water). For both grid cases, Gibbs-type phe-
. nomena are observed near the edges of the scatterer, which are
nn(r) = { 1.0144-0.015,  forfe| <08AA[y| 08X more pronounced in the fine-grid case. This is due to the diffi-

L, elsewhere. culty in describing abrupt changes in the dielectric profile with

Gaussian basis functions. Finally, choosing a totally random ini-

The second initial profile is totally random, following a normatial profile yields similar reconstruction results [see Fig. 4(b)].
distribution with mean value,.(r) = 0.9+ - 0.1 and standard Therefore, we may conclude that the proposed method is stable
deviation of 0.2 for the real part and 0.1 for the imaginary pawith respect to the initial choice of the refractive index distribu-
of the refractive index. A total of 400 iterations of the recontion. It should be noted that the random initial profile constitutes
struction procedure have been performed. In Fig. 3, the memworst-case scenario since one should always be able to find a
square reconstruction error is plotted as a function of the hetter initial estimate using a linear inverse-scattering method
eration number for the flat initial profile (fine and coarse-grigBorn or Rytov). Improved reconstructions may be obtained by
case) and the random initial profile (coarse-grid case). A rapiing a set of wave vectofgp; } with magnitude0.8k;, which
decrease of the reconstruction error after the first few iteraas been shown to produce more accurate results for the direct
tions is observed for both grid cases, followed by a decregz®mblem.
at a relatively slower rate at subsequent iterations. However, théNext, a lossy dielectric cylinder of a more complicated struc-
mean square reconstruction error for the fine grid is constantiyre has been considered, having square cross section and con-

ne(r) = n(r)

[l ()]l

En™) = ‘ 2 (13)

as a figure-of-merit for the reconstructed profile. In (13)(r)
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Real Part Imaginary Part

(b)

Fig. 4. Exact and reconstructed dielectric profiles. Real part of the refractive index is shown in the left-hand-side column and the imaginathepart in
right-hand-side column. (a) Exact profile. (b) Reconstructed profile after 400 iterations (coarse grid) using a random initial profile.

sisting of eight subsections, as shown in Fig. 5. The distributiaiistribution from0= to 27 has been used for the spectral-domain

of the scatterer’s refractive index is given by discretization. The initial guess for the refractive index profile is
(1444-0.1, reD, nol(r) = {1.01+i-0.015, for |z| < 1.8\ Ay < 1.8\
1.544-0.1, re D, ! 1, elsewhere.
1.344-0.1, reDs
1.244-0.1, re D, Atotal of 400iterations of the reconstruction procedure have been
ne(r) =< 1.4+i-0.2, r € Ds carried out. The exact and reconstructed profiles of the real and
1.54+4-0.2, r € Dg imaginary parts of the refractive index are shown in Fig. 6. In a
1.34+i-0.2, r € D; qualitative sense, the algorithm seems to be able to discriminate
1.2 4402, r € Dy the different subsections, performing slightly better for the real
L1, elsewhere. part of the complex refractive index than for the imaginary part.

Concerning the computational resources used, the developed
The scattering object is illuminated by= 12 plane waves and algorithm was executed on a Pentlum_ . 350 _MHZ pe.rsonal
computer, and the average reconstruction time per iteration was

for each illumination a total of = 48 scattering amplitude for the circular cr tional obiect and ; id
data, uniformly distributed along the measurement circle, a e 0f (€ circular cross-sectional object and coarse-grid case.

used. Synthetic scattering amplitude data have been generated
using the MoM with pulse basis functions and point matching
[34]. In this example, a coarse grid 8f, = 21 x 21 Gaussian ~ The main advantage of the proposed inverse-scattering
basis functions has been uséd= 0.2X), covering the domain method is the significant reduction of the total number of
{|z] < 2AA |y| € 2X}. Furthermore, a set d¥/ = 12 wave unknowns, which is related to the limited number of global-do-
vectors{p, } with constant magnitud&, and uniform angular main basis functions required for the description of the internal

IV. DISCUSSION
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Fig. 4. (Continued.Exact and reconstructed dielectric profiles. Real part of the refractive index is shown in the left-hand-side column and the imaginary part in
the right-hand-side column. (c) Reconstructed profile after 400 iterations (coarse grid) using a flat initial profile. (d) Reconstructefierd@@iterations (fine
grid) using a flat initial profile.

Fromthe simulationresults presentedin Section 11, itisevident
that fine discretization of the object function yields better recon-
structionresults. However, itshould be noted thatevenwith coarse
spatial-domain discretizatioh (= 0.2), fairly good images are
acquired. Moreover, fine spatial discretization may not provide
significant improvement of the reconstructed image quality, es-
pecially when experimental data are used, as is shown in [13]
for a human forearm. In terms of the spectral-domain discretiza-
tion, a uniform distribution of wave vectors in the angular di-
rection seems to be adequate. Furthermore, if the magnitude of
these wave vectors is selected to be close to the average propa-
gation wavenumber within the scatterer, a better description of
Fig. 5. Cross section of infinite length dielectric scatterer. the internal field can be obtained. Although this information is

not available in advance, a reasonable estimate can be deduced
field. In optimization-type inverse-scattering techniques, basbdsed on the general type of tissue being imaged.
on the MoM in the spatial domain, the discretization required The presented reconstruction algorithm can be further
for the description of the object function leads to a number @hproved by introducing constraints for the object’s refractive
N variables penZ, while an equal number o¥ variables per index (such as positivity constraints) [18]. Furthermoee,
A2 per incident wave field is required for the description opriori information available for biological tissues dielectric
the internal field, wher® < N < 100 [13], [17], [18], [20]. properties can also be included in the method. In fact, a good
In contrast, the proposed formulation requirds variables initial guess about the dielectric profile obtained by a linear
per A% for the description of the object function and a smalhverse-scattering method (such as Born or Rytov [2]) may
number of variables (typically 12 per incident wave field) fohave beneficial effects to the convergence of the proposed
the description of the internal field. method [13].

Dy
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Fig. 6. Exact and reconstructed dielectric profiles. Real part of the refractive index is shown in the left-hand-side column and the imaginathepart in
right-hand-side column. (a) Exact profile. (b) Reconstructed profile after 400 iterations.

Although the applicability of the developed algorithm hapresented in this paper. A substantial reduction of the number of
been demonstrated for microwave tomography, the proposgatimization variables is achieved for a given problem size, en-
method is general and can be applied for ultrasonic tomograpdiyling the efficient numerical implementation of the proposed
of biological media since the acoustic-wave propagation is gamethod for electrically large scatterers. The proposed method
erned by the scalar inhomogeneous Helmholtz equation [3Bas been applied for the reconstruction of a biologically rele-
An experimental ultrasonic tomography system has been dewednt dielectric-permittivity profile, as well as for the reconstruc-
oped and the efficiency of the presented reconstruction methazh of a square cross-sectional lossy cylinder with a complex
will be further tested using experimental data. structure. The method has no theoretical restriction to weak scat-

Finally, since the proposed formulation leads to a relativetgring objects or to objects whose size is small compared to the
small number of unknowns, its extension to reconstruct three diavelength.
mensional (3-D) biological objects may result to a feasible com-
puter implementation. The computational cost associated with
the calculation of the integral termi$q, p) [see (6)] will in-
crease; however, their calculation can be performed once off-line.

In this appendix, the procedure adopted for the discretiza-
tion of the spectral-domain integral equations (5) and (7) is de-
scribed.

A nonperturbative solution for the reconstruction of complex By using the Gauss quadrature method of numerical integra-
dielectric permittivity based on nonlinear optimization has bedion and further enforcing (5) at a finite number of wave vectors

APPENDIX

V. CONCLUSION
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{q=}, we obtain a set of linear equations

M

S w®)C (0) [Oldm—p0) A1 (@, B1)]
=1
o~ (27r)20(qm—k{m), m=1,... M j=1,...,.1

(A1)

wherew(p;) are the weighting coefficients of the quadrature

(3]

(4]

(5]

(6]

(7]

integration, depending solely on the particular selection of the

expansion wave vectofg; }.

If we select the testing wave vectolg,,, } to coincide with

(8]

the wave vectors used in the quadrature numerical integration,

i.e.,, {pi} = {am}, significant computational savings can be

achieved by exploiting important symmetry properties of the in- [l

tegralsi(q,», p:) [see (6)], which can be shown by introducing

the Gaussian expansion of the object function in (6) and peifL0]

forming some straightforward algebraic manipulations.

The set of equations shown in (A1) can be written in a maj11;

trix—vector notation
TW’ = 0’

where the elements of matriX are given by

Uml:O(Qm—Pl)—)\_QI(Qm, Pl), m:17 LR M7
l=1,...,M (A2)
and the elements of vectoWw’ andO?, j =1, ..., J are
03, =(2m)20(qm - K/..), m=1,..., M. (A3)

In a similar manner, (7) can be discretized

2. = Fk)

A S j
= p ; w(p)C? (p1)O(KS.—pi),
s=1,...,8 j=1,...,J (A4)
and written in vector notation
p 4 A"3/2 p
f;sze”(ﬂ/@—(OS)TWﬂ s=1,...,5;
’ 47
j=1,...,J
where the vecto©? is defined as
Of:O(kic—pl), I=1,...,M;s=1...5. (Ab5)
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