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Investigation of Numerical Errors of the
Two-Dimensional ADI-FDTD Method

Takefumi Namikj Member, IEEEand Koichi Itq Member, IEEE

Abstract—We previously proposed the ADI-FDTD method as In Section V, we discuss the selection of time-step size in the

a means of solving two-dimensional Maxwell's equations. The ADI-EDTD method in terms of numerical error.
algorithm used in this method is unconditionally stable, which
means the time-step size can be set arbitrarily when this method
is used. The limitation of the time-step size is not dependent on IIl. NUMERICAL FORMULATIONS OF THE2-D ADI-FDTD

the Courant—Friedrich-Levy (CFL) condition, but on numerical METHOD

errors such as numerical dispersion. In this paper, we investigate

the numerical errors of the method quantitatively and discuss the A. Fora 2D TM Wave

calculation accuracy and efficiency of the method. We found thata  The numerical formulation of the ADI-FDTD method for a
large time-step size results in high numerical dispersion. However, sp TM wave is presented in (1)—(6). The electromagnetic-field

the limit of the time-step size due to numerical dispersion is .

greater than the CFL limit if the size of the local minimum cell components are a_rranged on the cells !n the same way as that
in the computational domain is much smaller than the other cells When the conventional FDTD method is used. These formu-

and the wavelength. In that case, because the large time-steplations are available for an inhomogeneous lossy medium and
size reduces the number of time-loop iterations, the ADI-FDTD when nonuniform cells are used. Two procedures are used to
method is more efficient than the conventional FDTD method in - ca|cylate one discrete time-step. The first procedure is based on
terms of computer resources such as central processing unit time. (1)=(3), and the second procedure is based on (4)—(6) as follows:

Index Terms—ADI-FDTD method, CFL condition, FDTD

method, numerical dispersion. (First procedure)
H Y2, j+1/2)
|. INTRODUCTION =H}i, j+1/2)— By(i, 5+ 1/2)
E PREVIOUSLY proposed the alternating direction AEN, 5+~ E2G )} 1)
implicit (ADI)—finite-difference time-domain (FDTD) H,;”“/Q(i +1/2, 5)
method as a means of_ solving the two-dimensional (2-D) TE = H(i +1/2, j) + Ba(i +1/2, )
wave [1]. This method is based on the ADI method [2] and is nt1)/2): . ntlj2g;
applied to Yee's staggered cell [3] to solve Maxwell's equa- ) {Ez (i+1, ) — EZ (4, J)} )
tions. The algorithm is unconditionally stable, which means E7+/2(; j)
the time-step size can be set arbitrarily when this method is — _ ¢; j). £7(i, )+ D(i, )

used. The limitation of the maximum time-step size of this " : ) " ) )
method is not dependent on the Courant—Friedrich-Levy (CFL) A{HH 172, ) = Hyt 26 =172, )}
condition, but rather on numerical errors. — Dy(i, 3) - {Hy (i, § +1/2) = Hy (4, § — 1/2)}

In this paper, we undertook a quantitative study on the selec- 3
tion of the time-step size in the ADI-FDTD method for 2-D TM
and TE waves in terms of numerical error. We demonstrated the
2-D ADI-FDTD method using various time-step sizes and com:

pared the results with that of the conventional FDTD metho<<§econd procedure)

from the viewpoint of accuracy and efficiency. H4(i, j+1/2)
Section Il provides numerical formulations of the = H™Y2(i j41/2)— By(i, j +1/2)
ADI-FDTD method for 2-D TM and TE waves. In Sec- BN, G+ 1) — BTG )} 4

tion 1ll, the methods used to estimate numerical error, sucgnﬂ(iJr 1/2, )
as numerical dispersion and amplitude error, are explained¥ s +J
Section IV provides the numerical results of error estimations. = H/2(i +1/2, j) + Ba(i +1/2, j)

+1/2¢ . +1/27: -
AEITV i+ 1, §) — BTV 5)} (5)
B2, 5)
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where the coefficients are defined in the same way as in tBe For a 2D TE Wave

conventional FDTD method as follows: The numerical formulation of the ADI-FDTD method for a

2D TE wave is presented in (7)—(12). The calculation is made

Ba(i, §) = At‘ 1 : in the same way as in the case of the TM wave as follows:
pulis j)  Ax(i)
By(i, j) = At' 1 : (First procedure)
.. e ) ) ) . . .
Cli. 1) = — ; R LT ; ; ;
GD =0+ olis At Clit1/2,5) - BE(i+1/2. )+ Dili+1/2.)
(i ) = At 1 {HI(i+1/2, j+1/2) - HI (i41/2, 5-1/2)} - (7)
I T D) ol At Ax() ER2(3i, j+1/2)
i) = At 1 = C(i, j+1/2) - Ey(i, j+1/2)=Da(i, j+1/2)
Db(L7 J) - P T . . Yy
(i, 1) +o(i, ))At  Ay(y) . {H§+1/2(i+1/2, j+1/2)—H§+1/2(i—1/2, j+1/2)}
In the first procedure, (2) and (3) cannot be used for direct ®
numerical calculat|on thus, (3) is derived from (2) and (3)H"+1/2(L+1/2 i+1/2)
by eliminating theH /2 components. In the suffixi” (3') = H'"(i+1/2, j+1/2)+By(i+1/2, j+1/2)

e e (EL(1/2. 1 E2(11/2.9)
EQH/Q components calculated with (3’) as follows: —Bo(i41/2, j+1/2)
B2+ 1,5+ 1/2) - B j+1/2)F 0 (9)
QB2 =1, ) + PEITYR( 5) + A BITVR 41, )
= C(i, j) - EZ(i 3) + Dali )
AHy (i +1/2, §) — Hy(i = 1/2, j)} (Second procedure)
— Dy(é, ) - {H (i, 5+ 1/2) - H} (i, 5+ 1/2)}  (3)  E™(i+1/2, )
= C(i+1/2, j) - By (i+1/2, j)+Dy(i+1/2, j)
AHIi+1/2, j+1/2)-HIP (i41/2, j—1/2)}
(10)

where

o = _Ba(i_1/27 J) 'Da(iv J)
Y= _Ba(i+1/27 1) 'Da(iv 1)
f=1—a—1.

Eyt(i, j+1/2)
= C(i, j+1/2) - By 2(i, j+1/2)=Dali, j+1/2)
A{HM2(i41/2, j41/2) - HI2(i-1/2, j+1/2)}
In the second procedure, (4) and (6) also cannot be used for (11)
direct numerical calculr?flon thus, (6’) is derived from 4) anqqn+1 (i+1/2, j+1/2)
(6) by eliminating theH ™' components. In the suffix/;” (6") /2, ) . .
indicatesj maximum number of simultaneous Ilnear equatlons. = H; 1(L+1/2’ J+1/2)+B§)(L+1/27 J+1/2)
Thereafter, (4) can be used to calculate directly usingfre® AET (4172, 1) BT (i4+1/2, 5) }
components calculated by (6") as follows: —B,(i4+1/2, j+1/2)
AEM241, j+1/2)- BP0 j41/2)) (12)
QBN (6, j—D)+BEITHE, J) BN j41)
=C(i, j)- EQ+1/2(i, ) +Da(i, §) In th_e flirst lpr(?c?dur?r,] (8) én)d (9d) c_anr;oft be l(J;)ed fgr(g)irsct
. ] N : ) . numerical calculation, thus, is derived from (8) an
{HZR2(i41/2, )~ HPP2(i-1/2, )} - Dili, ) Y

eliminating ther™ /2 ¢ components as follows:
AHTRG +1/2) - HIRGL j+1/2)) (6)
aB2(i—1, j+1/2)+BEFT (i, j+1/2)

where +’YE;L+1/2(L+1, j+1/2)
= — Byi, j —1/2) - Dui, j) =C(i, j+1/2) - B} (i, j+1/2)+ Do (i, j+1/2)
Y= = Byli, j+1/2) - Difi, j) [ {H2G=1/2, j41/2) - H2G+1/2, j4+1/2))
B=1—a—-. —By(i4+1/2, j+1/2)
AER(i+1/2, j41)—ENi+1/2, )}
Since simultaneous linear equations (3’) and (6’) can be written By (i—1/2, j+1/2)

in tridiagonal matrix form, the computational costs are not very . . . .
high. {E-1/2, 4D -EXNi-1/2.9)}]  ®)
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Excitation pt. (5, 1-20)
/ Obs. pt. B (355, 10)
Obs. pt. B (400, 600) Obs. pt. D (600, 600) I /
i o
\o o/ Y i
©  © <« Obs. pt. G (500, 500) Obs. pt. A (85, 10)
Obs. pt. A (400, 500) > pt O
. z X
/ Fig. 2. Parallel-plate waveguide model for a 2-D TE wave.
Excitation pt. (400, 400)
Y (Model 1-3: A free-space model for a TM wave using uni-
Y form cells was as follows:
Outer Surface Boundary
z X dz(i) = A(1 <4< 1000) dy(y) = A(1 < j < 1000).

Fig. 1. Free-space model for a 2-D TM wave. The CFL condition of this model was as follows:

at< =
where V2
(Model 1-B: A free-space model for a TM wave using local
a=—DB,(i—1/2,j+1/2) - D,(¢, 5 +1/2) nonuniform cells was as follows:
v == Bu(i+1/2, j +1/2) - Do(4, j +1/2) (A, 1<i< 546,555 <i < 1000
B=1-a—n. AJ2, i =547, 554
de(i) = { AJ22, =548, 553
In the second procedure, (10) and (12) cannot be used for A/2%, =549, 552
direct numerical calculation, thus, (10) is derived from (10) and LA/2%, =550, 551
(12) by eliminating thed” "'/ components as follows: (A, 1< <546, 555 < j < 1000
AJ2, =547, 554
QB (i41/2, j— 1)+ PERNi+1/2, ) i) = A2 = 548, 55
b . A/23, j = 549, 552
+yET(i+1/2, j+1) (A/2%, =550, 551

= C(i+1/2, j) - Ex™2(i4+1/2, §)+Dy(i+1/2, j)

The CFL condition of this model was as follows:
[fEm G2, j4172)

At <

—H™M/2(i41/2, j—-1/2)} T eVv29
—Ba(i+1/2, j+1/2) (Model 2-3: A parallel-plate waveguide model for a TE
AETR2(i41, j4+1/2)-EF2 (0, j+1/2)} wave using uniform cells was as follows:

+B,(i+1/2, j—1/2)

du(i) = A(1< i <1000) dy(j) = AL < j < 20).
A B+, j-1/2) - EFRG, -1/2) ]

The CFL condition of this model was as follows:

(107
where ars V2
(Model 2-B: A parallel-plate waveguide model for a TE
a=—By(i+1/2,5—1/2) - Dy(i+1/2, j) wave using local nonuniform cells was as follows:
y=—=By(i+1/2,5+1/2)- Dy(i+1/2, j) A, 1<i<201, 210 < i< 1000
B=1—a—r. AJ2, =202, 209

de(i) = { AJ22,  i=203, 208
AJ28, i =204, 207
[1l. NUMERICAL SIMULATIONS FOR ERRORESTIMATION Af24, © = 205, 206

. . . . . 7)) =A(1 <75 <20).
In order to investigate the relationship between the time-step dy(s) (1<) =20)

size and numerical error of the ADI-FDTD method, we perfhe CFL condition of this model was as follows:

formed numerical simulations using several models. For a 2-D A
TM wave, the free-space model shown in Fig. 1 was used. For At < e
a 2-D TE wave, the parallel-plate waveguide model, shown in V2t +1

Fig. 2, was used. We also used uniform and nonuniform cellsSince every model was prepared with sufficient number of
for both models. The cell sizes were as follows: cells to separate the reflection waves occurring at the outer sur-
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face boundaries from the propagation wave in the time domain, > 1.00[ ?
it was not necessary to consider the accuracy of the absorbing g e
boundary condition during this investigation. © 099 el e
The excitation was applied at the electric-field components o TTh~a Tl |
(&£, or E,) at the excitation points, and the electric-field com- e 0.98 | TS~ T 1
ponents of the observation points were then output. The wave- & 097k TSl i
form of the excitation pulse was as follows: ?’}‘ R AOLFOTD oty TS
= ADI-FDTD (At=2.0) S
(t to)g g 0.96 [ e ADI-FDTD (At=4.0) S~
— c [— ADI-FDTD (At=6.0 ]
E =F— Eo(t —to)exp [_T} S ———— ADI-FDTD §§:=s.o%
Z 0.95¢ s =
1.0 1.5 2.0

where Normalized Frequency

Fig. 3. Normalized phase velocity versus normalized frequency of model
1-a. The propagation angle was’qPropagated along thg-axis). This figure

The numerical dispersion was estimated as follows [4]. THeluded the results performed with different time-step sizes.
Fourier transforms oF/(¢) at two different points were given by

to = 186At; T = 50At, Ato = A / (c\/i) .

> 1.00 Frommmmmmmrmrmrrs s e R R R R T TR T
i ot I3
E(w,r) = / E(t,ry) e 7¥dt (13a) °
—00 >
oo . (]
E(w,ry) = / E(t, ro) -7 dt (13b) 5
oo £
Y indi ; ; © 0977 ____ o (at=1.0) I
where (1, 72) indicated point 4, B) or point C, D). e | T2 ADI-FDD (At=1.0) ]
Taking the ratio, we could obtain the propagation constants S posk Rt 22{:183 i
andj3 of the wave as follows: £ | cie ADI-FDTD (At=6.0)
§ 0.95L — ==~ ADI-FDTD (At=8.0) |
—lotyipn _ Ew, r2) 1.0 1.5 2.0
E(w, 1) Normalized Frequency

whereL was the dls_tance bet_WeeD andrs. Fig. 4. Normalized phase velocity versus normalized frequency of model 1-a.
The phase velocity,, was given by The propagation angle was 4blique propagation). This figure included the
results performed with different time-step sizes.

vp(w) = =
p(w) = .
plw) 1.03F ' 3

We estimated numerical dispersion with the phase velocity nor- 3 I ADI_FOTD %ﬁtt;}.%)
malized by the speed of liglt = 1.02f . ADIFOTD (2::‘2118 |

The numerical amplitude error was calculated as follows. We £ ' 01 e rIFoTD thi=eds
could obtain the amplitude of the electric field at pointdi- < - ]
rectly from (13b). On the other hand, in the Fig. 1 model, since § 1.00 P e i
the propagation wave was a cylindrical wave, the amplitude 35 I
of E, at pointr, should be equal to the amplitude given by £ 0.99F 4
|E.(w, )| - VL1 /L2, whereL;, L, indicated the distances 2 i
from the excitation point ta{, 2, respectively. In the Fig. 2 0.98t . =
model, the amplitude oF, at pointr, should be equal to that 1.0 1.5 2.0
at pointr;. We estimated the numerical amplitude error using Normalized Frequency
the value of E,(w, r2)| normalized by the amplitude calculated
using |Ey (w, 71)]. Fig.5. Normalized amplitude versus normalized frequency of model 1-a. The

We performed these numerical simulations using ﬂﬁ%opagatlonanglewas9()propagatedalongthﬁams).Thlsflguremcluded

. . : e results performed with different time-step sizes.
ADI-FDTD method and various time-step sizes.

angle of the wave was 90The data of Fig. 4, which was de-
rived from data observed at pointsand D, indicates that the
(Model 1-3: Figs. 3 and 4 show the normalized phase vepropagation angle was 45
locity versus frequency, which was normalized by the value of In both cases, an increase in the time-step size resulted in
¢/(100A). These figures include the results of several simula- decrease in phase velocity. If the propagation angles were
tions performed with different time-step sizes, which was noidentical, the decrease was substantial at a higher frequency. If
malized byAt,. The data of Fig. 3, which was derived fromthe frequency was the same, the decrease was substantial for a
data observed at points and B, indicates that the propagation90°-angle propagation.

IV. NUMERICAL RESULTS
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1.03F 7 1.03F
© FOTD  (At=1.0) ° I FOTD  (At=0.0625)]
9 L 0 ADI-FDTD (At=1.0)
3 1.02+F B 35 1.02+ e -« ADI-FDTD (At=2.0) -
= = —imimemees ADI=FDTD (At=4.0)
= - oy — S— - ADI-FDTD (At=6.0)
E 1.01r g 101 mm=== ADI-FDTD (At=8.0)
8 r } 1 hel
N 1.00F e X 1.00
g ’ g
S
5 0.99r 7 5 0.99r 7
=z r 1 z L ]
0.98¢t s = 0.98E ‘ |
1.0 1.5 2.0 1.0 1.5 2.0
Normalized Frequency Normalized Frequency

Fig. 6. Normalized amplitude versus normalized frequency of model 1-gig. 9. Normalized amplitude versus normalized frequency of model 1-b. The
The propagation angle was 4blique propagation). This figure included the propagation angle was 9Qpropagated along the-axis). This figure included

results performed with different time-step sizes. the results performed with different time-step sizes.
> 1.00 1.03F ‘ 3
= ° i FOTD  (At=0.0625)]
S oot LR — o (i
— L .. ADI— =2. i
§’ 0.99 :3 1.02 - ADI-FDTD 5At=4.0)
3 3 T R e
g 0.98 100 TTTTT =e
e
& 3
9 097 rom (at=0.0625) >~ 7 N 1.00
N - - ADI-FDTD (At=1.0) S~ g H
= ADI-FDTD (At=2.0 N
g 0.96 ADI=FDTD Em=4.o§ SN 5 0.99
£ | ADI-FDTD (At=6.0) N = |
S) — ——— ADI-FDTD (At=8.0)
Z 0.95¢t ‘ 5 0.98¢ ‘ ]
1.0 1.5 2.0 1.0 1.5 2.0
Normalized Frequency Normalized Frequency

Fig. 7. Normalized phase velocity versus normalized frequency of modeilg. 10. Normalized amplitude versus normalized frequency of model 1-b.
1-b. The propagation angle was°9@ropagated along thg-axis). This figure The propagation angle was 4blique propagation). This figure included the

included the results performed with different time-step sizes. results performed with different time-step sizes.
> > 1.00
= =
s ©
2 2 0.99 [
] [}
4 g 0.98
<
o z i
b 0.97r FOTD  (At=0.0625) 7 2 0977 ___ rom  (at=1.0) S~
N boeeeees ADI-FDTD (At=1.0) 1 N Foeeee- ADI-FDTD (At=1.0) ~<
= . - ADI-FDTD (At=2.0) 5 | ADI-FDTD (At=2.0) \\\ i
2 0.96 [ -w--- ADI-FDTD (At=4.0) . c 0.96 ADI-FDTD (At=4.0) N
E S ADI-FDTD (At=6.0) | & L .= ADI-FDTD (At=6.0) |
<] —— —— ADI-FDTD {At=8.0) o ———— ADI-FDTD (4t=8.0)
Z 0.95¢C E Z 0.95 s =
1.0 1.5 2.0 1.0 1.5 2.0
Normalized Frequency Normalized Frequency

Fig. 8. Normalized phase velocity versus normalized frequency of model 1fig- 11.  Normalized phase velocity versus normalized frequency of model 2-a.
The propagation angle was4blique propagation). This figure included the This figure included the results performed with different time-step sizes.
results performed with different time-step sizes.
much smaller. Figs. 9 and 10 show the normalized amplitudes
Figs. 5 and 6 show normalized amplitudes versus the neersus the normalized frequency. The amplitude was not depen-
malized frequency. Compared with phase velocity, the amptlent on the time-step size, but was slightly dependent on the
tude was independent of both the frequency and time-step sizequency. Compared with the results of model 1-a, the error of
Moreover, the error of the amplitude was much less than 1%time amplitude was larger, but was almost less than 1%.
both cases. (Model 2-a: Fig. 11 shows the normalized phase velocity
(Model 1-8: Figs. 7 and 8 show the normalized phase verersus the normalized frequency. Fig. 12 shows the normalized
locity versus the normalized frequency for different propagatiamplitude versus the normalized frequency. These results were
angles. These results were quite similar to those of model leajte similar to those of models 1-a and 1-b for a propagation
except that the time-step size of the conventional FDTD wasgle of 90.
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1.03F ' ] V. DISCUSSION
g e ASP—TEDTD ((ﬁtt==11'.%)
2 1.02F o AR (ﬁ{:igg ] In using uniform cells, an increase in the time-step size did
3 AL gﬁt:gig) not result in an amplitude error (see Figs. 5, 6, and 12), but re-
< 1.01r sulted in numerical dispersion (see Figs. 3, 4, and 11). Thus,
E 1 00 | even if we use the ADI-FDTD, we cannot set a larger time-step
s | size than the CFL limit without a decrease in phase velocity. In
£ 0.99 - J other words, the tradeoff of an increase in time-step size is a de-
2 _ ] crease in phase accuracy. However, there may be a problem in
0.98%E . 4 that the required accuracy will not be very high. For example,
1.0 1.5 2.0 if the normalized frequency is 1.0 (and may be lower) and the
Normalized Frequency permissible limit of numerical dispersion is 1.0%, the normal-

ized time-step size can be set to 6.0, which is six times as large

Fig. 12. Normalized amplitude versus normalized frequency of model 24s the CFL limit (see Figs. 3, 4, and 11). The CPU time can
then be reduced to about 60%—-70% of the conventional FDTD,
although the two methods do not achieve the same phase accu-
L A S — 3 racy (see Figs. 13 and 14). This indicates that the ADI-FDTD

QO Model 1-a (Uniform cells)
@ Model 1-b (Nonuniform cells) ]

This figure included the results performed with different time-step sizes.

10.00
method has the advantage of ensuring a more efficient calcula-

tion at relatively low frequencies.

In using local nonuniform cells, an increase in the time-step
size also did not result in an amplitude error, though using just
nonuniform cells caused an amplitude error, which was almost
less than 1%, and that of the ADI-FDTD was almost the same
as the conventional FDTD (see Figs. 9 and 10). The increase in
i the time-step size resulted in numerical dispersion (see Figs. 7

0.01 . . L and 8). However, it is possible to set a larger time-step size than
1 29 3 4 5 6 7 8 9 10 the CFL limit of the conventional FDTD without experiencing
Normalized Time—step Size a decrease in phase accuracy. If the normalized time-step size
is set to 1.0, which is 11-16 times as large as the CFL limit,
Fig. 13. Normalized CPU time versus normalized time-step size of models }g¢ CPU time can be made about 20%—40% lower than when

1.00 ;

Normalized CPU—-time

and 1-b. using the conventional FDTD while maintaining a similar level
of accuracy in the two methods. If the normalized frequency is
10.00¢f ‘ O wode e (L‘mw‘n ce“s‘) ] 1.0 (and may be lower) and the permissible limit of numerical
GE) ® Model 2-b (Nonuniform cells) ] dispersion is 1.0%, the normalized time-step size can be set to
= 6.0 and the CPU time can be reduced to about 4%—7% than that
2 1.00¢ of the conventional FDTD, although the two methods do not
© e achieve the same phase accuracy (see Figs. 13 and 14).
° [
LI S
o 0.10F . 3
£ T | QU
c @, o VI. CONCLUSION
2
0.01 L L This paper has presented a quantitative study on the selection
12 3 4 5 6 7 8 9 10 of the time-step size in the ADI-FDTD method for 2-D TM
Normalized Time—step Size and TE waves in terms of numerical error. An increase in the

time-step size did not result in an amplitude error, but resulted
Fig. 14. Normalized CPU time versus normalized time-step size of models 4r?numerical dispersion. In using uniform cells for dividing the
and 2-b. ) o . .

computational domain, we cannot set a larger time-step size

than the CFL limit without experiencing a decrease in phase ve-

(Model 2-§: The results were identical to those of moddpocity. On the other hand, in using local nonuniform cells that
2-a, except that the time-step size in the conventional FDTDCludes relatively very small cells, the local minimum cell re-
was much smaller, thus, the results were not presented. duced the time-step size because of the CFL condition when

Fig. 13 shows the required CPU time for the ADI-FDTD caithe conventional FDTD was used. Consequently, we could set a
culation of models 1-a and 1-b normalized by that for the cokarger time-step size when the ADI-FDTD was used without ex-
ventional FDTD calculation of each model. Fig. 14 shows theeriencing a decrease in phase accuracy. In that case, we could
required CPU time for the ADI-FDTD calculation of modelgeduce the CPU time by using the ADI-FDTD method rather
2-a and 2-b normalized by that for the conventional FDTD cathan the conventional FDTD method, and we could achieve the
culation of each model. same level of accuracy.
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