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Investigation of Numerical Errors of the
Two-Dimensional ADI–FDTD Method
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Abstract—We previously proposed the ADI–FDTD method as
a means of solving two-dimensional Maxwell’s equations. The
algorithm used in this method is unconditionally stable, which
means the time-step size can be set arbitrarily when this method
is used. The limitation of the time-step size is not dependent on
the Courant–Friedrich–Levy (CFL) condition, but on numerical
errors such as numerical dispersion. In this paper, we investigate
the numerical errors of the method quantitatively and discuss the
calculation accuracy and efficiency of the method. We found that a
large time-step size results in high numerical dispersion. However,
the limit of the time-step size due to numerical dispersion is
greater than the CFL limit if the size of the local minimum cell
in the computational domain is much smaller than the other cells
and the wavelength. In that case, because the large time-step
size reduces the number of time-loop iterations, the ADI–FDTD
method is more efficient than the conventional FDTD method in
terms of computer resources such as central processing unit time.

Index Terms—ADI–FDTD method, CFL condition, FDTD
method, numerical dispersion.

I. INTRODUCTION

WE PREVIOUSLY proposed the alternating direction
implicit (ADI)–finite-difference time-domain (FDTD)

method as a means of solving the two-dimensional (2-D) TE
wave [1]. This method is based on the ADI method [2] and is
applied to Yee’s staggered cell [3] to solve Maxwell’s equa-
tions. The algorithm is unconditionally stable, which means
the time-step size can be set arbitrarily when this method is
used. The limitation of the maximum time-step size of this
method is not dependent on the Courant–Friedrich–Levy (CFL)
condition, but rather on numerical errors.

In this paper, we undertook a quantitative study on the selec-
tion of the time-step size in the ADI–FDTD method for 2-D TM
and TE waves in terms of numerical error. We demonstrated the
2-D ADI–FDTD method using various time-step sizes and com-
pared the results with that of the conventional FDTD method
from the viewpoint of accuracy and efficiency.

Section II provides numerical formulations of the
ADI–FDTD method for 2-D TM and TE waves. In Sec-
tion III, the methods used to estimate numerical error, such
as numerical dispersion and amplitude error, are explained.
Section IV provides the numerical results of error estimations.
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In Section V, we discuss the selection of time-step size in the
ADI–FDTD method in terms of numerical error.

II. NUMERICAL FORMULATIONS OF THE2-D ADI–FDTD
METHOD

A. For a 2D TM Wave

The numerical formulation of the ADI–FDTD method for a
2D TM wave is presented in (1)–(6). The electromagnetic-field
components are arranged on the cells in the same way as that
when the conventional FDTD method is used. These formu-
lations are available for an inhomogeneous lossy medium and
when nonuniform cells are used. Two procedures are used to
calculate one discrete time-step. The first procedure is based on
(1)–(3), and the second procedure is based on (4)–(6) as follows:

(1)

(2)

(3)

(4)

(5)

(6)
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where the coefficients are defined in the same way as in the
conventional FDTD method as follows:

In the first procedure, (2) and (3) cannot be used for direct
numerical calculation, thus, (3’) is derived from (2) and (3)
by eliminating the components. In the suffix “,” (3’)
indicates maximum number of simultaneous linear equations.
Thereafter, (2) can be used to calculate directly using the

components calculated with (3’) as follows:

(3')

where

In the second procedure, (4) and (6) also cannot be used for
direct numerical calculation, thus, (6’) is derived from (4) and
(6) by eliminating the components. In the suffix “,” (6’)
indicates maximum number of simultaneous linear equations.
Thereafter, (4) can be used to calculate directly using the
components calculated by (6’) as follows:

(6')

where

Since simultaneous linear equations (3’) and (6’) can be written
in tridiagonal matrix form, the computational costs are not very
high.

B. For a 2D TE Wave

The numerical formulation of the ADI–FDTD method for a
2D TE wave is presented in (7)–(12). The calculation is made
in the same way as in the case of the TM wave as follows:

(7)

(8)

(9)

(10)

(11)

(12)

In the first procedure, (8) and (9) cannot be used for direct
numerical calculation, thus, (8’) is derived from (8) and (9) by
eliminating the components as follows:

(8')
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Fig. 1. Free-space model for a 2-D TM wave.

where

In the second procedure, (10) and (12) cannot be used for
direct numerical calculation, thus, (10’) is derived from (10) and
(12) by eliminating the components as follows:

(10')

where

III. N UMERICAL SIMULATIONS FOR ERRORESTIMATION

In order to investigate the relationship between the time-step
size and numerical error of the ADI–FDTD method, we per-
formed numerical simulations using several models. For a 2-D
TM wave, the free-space model shown in Fig. 1 was used. For
a 2-D TE wave, the parallel-plate waveguide model, shown in
Fig. 2, was used. We also used uniform and nonuniform cells
for both models. The cell sizes were as follows:

Fig. 2. Parallel-plate waveguide model for a 2-D TE wave.

Model 1-a : A free-space model for a TM wave using uni-
form cells was as follows:

The CFL condition of this model was as follows:

Model 1-b : A free-space model for a TM wave using local
nonuniform cells was as follows:

The CFL condition of this model was as follows:

Model 2-a : A parallel-plate waveguide model for a TE
wave using uniform cells was as follows:

The CFL condition of this model was as follows:

Model 2-b : A parallel-plate waveguide model for a TE
wave using local nonuniform cells was as follows:

The CFL condition of this model was as follows:

Since every model was prepared with sufficient number of
cells to separate the reflection waves occurring at the outer sur-
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face boundaries from the propagation wave in the time domain,
it was not necessary to consider the accuracy of the absorbing
boundary condition during this investigation.

The excitation was applied at the electric-field components
( or ) at the excitation points, and the electric-field com-
ponents of the observation points were then output. The wave-
form of the excitation pulse was as follows:

where

The numerical dispersion was estimated as follows [4]. The
Fourier transforms of at two different points were given by

(13a)

(13b)

where ( ) indicated point ( ) or point ( ).
Taking the ratio, we could obtain the propagation constants

and of the wave as follows:

where was the distance between and .
The phase velocity was given by

We estimated numerical dispersion with the phase velocity nor-
malized by the speed of light.

The numerical amplitude error was calculated as follows. We
could obtain the amplitude of the electric field at pointdi-
rectly from (13b). On the other hand, in the Fig. 1 model, since
the propagation wave was a cylindrical wave, the amplitude
of at point should be equal to the amplitude given by

, where , indicated the distances
from the excitation point to , , respectively. In the Fig. 2
model, the amplitude of at point should be equal to that
at point . We estimated the numerical amplitude error using
the value of normalized by the amplitude calculated
using .

We performed these numerical simulations using the
ADI–FDTD method and various time-step sizes.

IV. NUMERICAL RESULTS

Model 1-a : Figs. 3 and 4 show the normalized phase ve-
locity versus frequency, which was normalized by the value of

. These figures include the results of several simula-
tions performed with different time-step sizes, which was nor-
malized by . The data of Fig. 3, which was derived from
data observed at pointsand , indicates that the propagation

Fig. 3. Normalized phase velocity versus normalized frequency of model
1-a. The propagation angle was 90� (propagated along they-axis). This figure
included the results performed with different time-step sizes.

Fig. 4. Normalized phase velocity versus normalized frequency of model 1-a.
The propagation angle was 45� (oblique propagation). This figure included the
results performed with different time-step sizes.

Fig. 5. Normalized amplitude versus normalized frequency of model 1-a. The
propagation angle was 90� (propagated along they-axis). This figure included
the results performed with different time-step sizes.

angle of the wave was 90. The data of Fig. 4, which was de-
rived from data observed at pointsand , indicates that the
propagation angle was 45.

In both cases, an increase in the time-step size resulted in
a decrease in phase velocity. If the propagation angles were
identical, the decrease was substantial at a higher frequency. If
the frequency was the same, the decrease was substantial for a
90 -angle propagation.
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Fig. 6. Normalized amplitude versus normalized frequency of model 1-a.
The propagation angle was 45� (oblique propagation). This figure included the
results performed with different time-step sizes.

Fig. 7. Normalized phase velocity versus normalized frequency of model
1-b. The propagation angle was 90� (propagated along they-axis). This figure
included the results performed with different time-step sizes.

Fig. 8. Normalized phase velocity versus normalized frequency of model 1-b.
The propagation angle was 45� (oblique propagation). This figure included the
results performed with different time-step sizes.

Figs. 5 and 6 show normalized amplitudes versus the nor-
malized frequency. Compared with phase velocity, the ampli-
tude was independent of both the frequency and time-step size.
Moreover, the error of the amplitude was much less than 1% in
both cases.

Model 1-b : Figs. 7 and 8 show the normalized phase ve-
locity versus the normalized frequency for different propagation
angles. These results were quite similar to those of model 1-a,
except that the time-step size of the conventional FDTD was

Fig. 9. Normalized amplitude versus normalized frequency of model 1-b. The
propagation angle was 90� (propagated along they-axis). This figure included
the results performed with different time-step sizes.

Fig. 10. Normalized amplitude versus normalized frequency of model 1-b.
The propagation angle was 45� (oblique propagation). This figure included the
results performed with different time-step sizes.

Fig. 11. Normalized phase velocity versus normalized frequency of model 2-a.
This figure included the results performed with different time-step sizes.

much smaller. Figs. 9 and 10 show the normalized amplitudes
versus the normalized frequency. The amplitude was not depen-
dent on the time-step size, but was slightly dependent on the
frequency. Compared with the results of model 1-a, the error of
the amplitude was larger, but was almost less than 1%.

Model 2-a : Fig. 11 shows the normalized phase velocity
versus the normalized frequency. Fig. 12 shows the normalized
amplitude versus the normalized frequency. These results were
quite similar to those of models 1-a and 1-b for a propagation
angle of 90.
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Fig. 12. Normalized amplitude versus normalized frequency of model 2-a.
This figure included the results performed with different time-step sizes.

Fig. 13. Normalized CPU time versus normalized time-step size of models 1-a
and 1-b.

Fig. 14. Normalized CPU time versus normalized time-step size of models 2-a
and 2-b.

Model 2-b : The results were identical to those of model
2-a, except that the time-step size in the conventional FDTD
was much smaller, thus, the results were not presented.

Fig. 13 shows the required CPU time for the ADI–FDTD cal-
culation of models 1-a and 1-b normalized by that for the con-
ventional FDTD calculation of each model. Fig. 14 shows the
required CPU time for the ADI–FDTD calculation of models
2-a and 2-b normalized by that for the conventional FDTD cal-
culation of each model.

V. DISCUSSION

In using uniform cells, an increase in the time-step size did
not result in an amplitude error (see Figs. 5, 6, and 12), but re-
sulted in numerical dispersion (see Figs. 3, 4, and 11). Thus,
even if we use the ADI–FDTD, we cannot set a larger time-step
size than the CFL limit without a decrease in phase velocity. In
other words, the tradeoff of an increase in time-step size is a de-
crease in phase accuracy. However, there may be a problem in
that the required accuracy will not be very high. For example,
if the normalized frequency is 1.0 (and may be lower) and the
permissible limit of numerical dispersion is 1.0%, the normal-
ized time-step size can be set to 6.0, which is six times as large
as the CFL limit (see Figs. 3, 4, and 11). The CPU time can
then be reduced to about 60%–70% of the conventional FDTD,
although the two methods do not achieve the same phase accu-
racy (see Figs. 13 and 14). This indicates that the ADI–FDTD
method has the advantage of ensuring a more efficient calcula-
tion at relatively low frequencies.

In using local nonuniform cells, an increase in the time-step
size also did not result in an amplitude error, though using just
nonuniform cells caused an amplitude error, which was almost
less than 1%, and that of the ADI–FDTD was almost the same
as the conventional FDTD (see Figs. 9 and 10). The increase in
the time-step size resulted in numerical dispersion (see Figs. 7
and 8). However, it is possible to set a larger time-step size than
the CFL limit of the conventional FDTD without experiencing
a decrease in phase accuracy. If the normalized time-step size
is set to 1.0, which is 11–16 times as large as the CFL limit,
the CPU time can be made about 20%–40% lower than when
using the conventional FDTD while maintaining a similar level
of accuracy in the two methods. If the normalized frequency is
1.0 (and may be lower) and the permissible limit of numerical
dispersion is 1.0%, the normalized time-step size can be set to
6.0 and the CPU time can be reduced to about 4%–7% than that
of the conventional FDTD, although the two methods do not
achieve the same phase accuracy (see Figs. 13 and 14).

VI. CONCLUSION

This paper has presented a quantitative study on the selection
of the time-step size in the ADI–FDTD method for 2-D TM
and TE waves in terms of numerical error. An increase in the
time-step size did not result in an amplitude error, but resulted
in numerical dispersion. In using uniform cells for dividing the
computational domain, we cannot set a larger time-step size
than the CFL limit without experiencing a decrease in phase ve-
locity. On the other hand, in using local nonuniform cells that
includes relatively very small cells, the local minimum cell re-
duced the time-step size because of the CFL condition when
the conventional FDTD was used. Consequently, we could set a
larger time-step size when the ADI–FDTD was used without ex-
periencing a decrease in phase accuracy. In that case, we could
reduce the CPU time by using the ADI–FDTD method rather
than the conventional FDTD method, and we could achieve the
same level of accuracy.
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