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Chaotic Dynamics in Coupled Microwave Oscillators
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Abstract—This paper describes an investigation into possible a small control perturbation can cause the (normally chaotic)
chaotic behavior in a coupled-oscillator system and the possible signal from the power stage to follow an “orbit” whose sequence
contrpl of this behaV|orforcom'munlcatlons.The established math- represents the information to be communicated. Hagtes.
ematical models for these oscillator arrays are demonstrated to ex- . . .
hibit chaos when the coupling strength between oscillators is below [6] have recgntly d-emons.trat(.ed this technllque by. controlling a
the range for phase |Ocking' The Comp|exity and pred|ctab|||ty of 5'kHZ ChaotIC OSCI||atOI’ circult so that arbltl’al’y b|t Sequences
the array dynamics are analyzed by means of standard dynamical could be generated. With the HGO technique, there is no need
measures such as the Lyapunov exponents, the Kolmogorov-Sinaifor expensive high-speed electronics that are also capable of
entropy, and the attractor dimension. We show that chaos in these high power handling. The strict separation of the power stage

oscillator arrays is low dimensional and well characterized; both d the high d electroni d all for the fabricati
necessary conditions for control and possible exploitation of chaos. ok € NIgN=SPEEd EIECLIONICS CoUId allow Tor the 1abrICation

Finally, the method of occasional proportional feedback is used to Of inexpensive high-speed wireless communication channels.
stabilize the output from the array while the array is still in the  The major challenge for the HGO scheme is realization in a
g?:gtlfor?j?s":ueési?s'ble applications of these chaotic transmitters practical communication link. Coupled-oscillator arrays could
present a suitable platform for chaotic communication systems.
Modulation rates as high as 600 MHz have been demonstrated
with oscillator arrays [7]. In this paper, we show that oscillator
RRAYS OF coupled nonlinear systems possess a righrays have an accessible chaotic regime that exhibits low di-
catalog of potentially useful dynamics including mutuahensionality, a necessary requirement for practical chaos con-
synchronization, which has been used to demonstrate noyg|. n addition to the above-stated advantages of HGO chan-
beam-scanning techniques in microwave arrays [1] and mogl§ls, operation of the oscillator arrays in the chaotic regime may

locking. Coupled-oscillator systems have also been shogyfleviate the bandwidth limits set by the intrinsic locking range

to reduce phase noise while increasing overall output powgt'the arrays [8].

\[/a]” 1[‘|?;1]d Alrt;l(c:)tl:((;:];: Ssles irr]10tm?/certov(\:/[aeg ;Vhsfgr]:; t?r?esestizeasf Itis not difficult to observe chaos in single-oscillator systems.
pra . . y ' Y Qan der Pol observed the appearance of irregular oscillations

coupled-oscillators is also motivated by a broader role g

T ) . . in an electrical circuit containing discharge tubes [9]. More re-
synchronous behavior in many nonlinear biological systems : .
; . ) - cently, Fukushima and Yamada have replaced the discharge tube
including cardiac and neural activity.

. . . in Van der Pol’'s apparatus with diode elements and have studied
A clear understanding of coupled-oscillator systems requirgs : . .

; . ; . the dynamics of two such diode oscillators that were coupled by
a study of the full spectrum of operating regimes, mcIudmg

the nonsynchronous states. In recent years, the possibilit gfinductive element [10]. We show in Section Il that the dy-
onsy . . years, P Yn3mics of coupled-oscillator arrays are governed by a similar
exploiting chaotic behavior of complex nonlinear systems has .
. S . Set of coupled Van der Pol equations.
been raised. One intriguing possibility was proposed by Hayes, ) . ] )
Grebogi, and Ott (HGO) [4]. In their proposal, a transmitter Lasers are extensively studied nonlinear oscillators that ex-
is separated into a chaotic power stage and a high—spé@at chaps. Multimode lasers are examples of globally cou-
microelectronic control circuit. The free-running power stagd®d oscillators [11] and laser arrays are examples of nearest
is chaotic because of continuous “switching” between variot}§ighbor coupled oscillators [12]. Again, the dynamics of laser
unstable periodic orbits; an infinite number of unstable periodféTays can be described by a set of modified Van der Pol equa-
states typically coexist with any chaotic state [5]. Since tHONS. Control of qhaos has thus far been demonstr'ated in a glob-
chaotic state is arbitrarily close to any unstable periodic stafdly coupled oscillator system: an Nd: YAG multimode laser
with an intracavity nonlinear crystal [13], [14].

) . Control and modulation of a chaotic system requires thorough
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Active device whereRe{} andIm{} denote the real and imaginary parts of

the bracketed expression, respectively.

— For a system of coupled oscillators, the mutual interaction
Osc #N between oscillatorsand is described by a complex coupling
coefficientx;;, which has a magnitude and phase given by

Coupling Network

Fig. 1. Schematic diagram of coupled-oscillator system. Kij = Eije—jq’ij_ (5)

Il. COUPLED-OSCILLATOR MODEL In most arrays, reciprocity will hold so that; = x;;. This
coupling parameter is unitless and defined such that in a system

To model these arrays, we choose a simple van der Pol mogely oscillators, the injected signal at tééh oscillator can be
that applies generally to coupled oscillator systems while Ngritten as

glecting of the details of the coupling and the nonlinearity [16]. .
Such a simple theory has successfully modeled microwave os- A
cillator experiments using Gunn, IMPATT, and MESFET de- Vin = Z“UVJ ®)
vices [8], [17]. =t

The Van der Pol equation [18] models the active device lihereV; is the complex (phasor) output voltage of tie os-
a lumped negative resistance, which is embedded in a sedgtor. The system dynamics are described by
resonant circuit (Fig. 1); any reactive component of the device
impedance is considered part of the embedding network. The ;. [1w;
negative resistandg, is assumed independent of frequency, but P Vi [%
depends nonlinearly on the amplitude of oscillation. The circuit
equation is i=12 ..., N (1)

N
: wi
(ai® = [Vi*) +sz} +50 > iV,
i=1

AV ) Wo Ry(|V]) wo yviiere the subscriptdenotes the:th oscillator. For simplicity,
' + wo /th + Va [1 ~ TR, } = §Vinj (1) itis assumed that all of the oscillators have approximately the

sameR- andy-factors. WritingV; = A,¢/% enables the ampli-
tude and phase dynamics to be separated as

where Ry, is the radiation resistance of the antennasis the
resonant frequency of the circui¥] is the complex (phasor)

N
output voltage? is the @-factor of the embedding network, dA, — i (aiQ_AiQ)Ai+ﬂ ZEijAj cos(®,;+6,—0;)
andViy; represents any externally injected signals. @htactor ¢ 20 2Q j=1

is sufficiently high (2 > 10) so that the oscillator frequency (8a)

will remain close tavg and, therefore, the amplitude and phase N
terms will be slowly varying functions of time (compared with —* =w; — -~ > eij - sin(®i;+0;—6;),

the period of oscillation). The output voltage can then be written t Q j=1 i

as 1=1,2,..., N. (8b)

V = A(t)ed ot Ho0) = A()e?*® (2) Whene;; = 0, the oscillators are uncoupled and (8) reduces
to a set of independent sinusoidal oscillators with amplitudes
where A is the amplitude of oscillation, anfllis the instanta- A; = «; and frequencies;.
neous phase. Following Van der Pol [7], the device saturation isin the limit of strong coupling between the oscillators, the

modeled by a quadratic such that amplitude dynamics can be significant. However, for exploring
chaotic behavior, we are primarily interested in the case of weak
1— Ry/Ry ~ N(QOQ _ |V|2) 3) coupling where the oscillators are unable to achieve a phase-

locked state. In this limit, the amplitude variations are insignifi-

) ] ] o cant[19], and the dynamics are governed by the phase equations
whereqy is the free-running amplitude of oscillation, apds

an empirical nonlinearity parameter describing the oscillator. 46 o A

This weak quadratic nonlinearity is the simplest nonlinearity — =W = Zsij—’ sin(®;;+6;—6;),

that approximates the behavior of a wide range of active devices. dt 2Q j=1 A

Using (2), the amplitude and phase dynamics can be written i=1,2, ..., N. (9)
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Note also that one of the phase variables is arbitrary and can | 15 * — 2 B i S
setto zero; av-oscillator system has onj/ = N —1degrees = 11 1.5 .
of freedom. The ability to predetermine the number of dynamic §1 ol 1k -
variables in the coupled oscillator systems makes this system i< 0.5 -
ideal candidate for chaos control. § £ gl ]
Té s 0.5 .

=}

I1l. NUMERICAL TIME SERIES = T 7

0 1 1.5 I : ] !

The power transmitted by the antenna array is the natur: 8 10" 3210’ 3.4 10° 0 10 20

variable for monitoring chaos in the coupled oscillators. The
far-field power is the communication signal and can be relate:
to the parameters in (9) by a superposition of the field pattern
for the individual antennas

=¥
g12)
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® o
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In addition to the far-field power, it is necessary that we mon:- 20

itor the signal locally for input to the control circuit. An obvious {4
choice for the local variable is the real part of the impedancen_m L
into the antenna array. Energy conservation requires the inpt ;12
impedance to be proportional to the radiated power plus anjni_m
ohmic losses. 8

In addition, we must choose a system variable that can be mé=
nipulated by the control circuit. Virtually any of the static vari-
ables that appear in (9) are a valid choice for a control param
eter, i.e., the intrinsic frequency of the oscillator, the coupling 10° 32 10° 34 10°
strength, or the phase of the coupling constant. In this pape Time [x 5u] Normalized Power, P
we use the coupling strength as the relevant control paramete ©
High-speed modulation of the coupling strength may be accom-
plished by introducing active elements in the coupling networg. 2. Far-field power radiated by a four-element array. The power is plotted
of a transmission-line coupled-oscillator array. For example, ifs @ function of the time and as a function of its time derivative. Fig. 1(a)—(c)
. . . correspond to coupling strengths of 0.025, 0.020, and 0.015, respectively.
tegration of an FET into the coupling network would allow us
to attenuate the coupling between neighboring elements simply
by varying the gate bias.

In order to investigate the dynamics of the oscillator arrays,
we solve the set of coupled van der Pol equations in the time do-
main. The time series for the radiated power, radiation spectrum,
and “phase portrait” are shown in Fig. 2 for three values of the
coupling strength. The time series is calculated for a four-oscil-
lator array with an initial frequency distribution of (9.988, 9.996,
10.004, and 10.012 GHz); each oscillator ha@ a= 20. The
sampling time is, = 5ns. The 10-GHz carrier frequency is not
observable from this time series data. As the oscillator strength
is reduced below the range for phase locking, the time series i T g T ’ T ¥ i
becomes significantly more complex. Fig. 3 shows the global L a W ol
dynamics of the array. It is a density plot of the numerical time Coupling Strength
series as a function of the coupling strength; the frequency of

occurrence for a g|ven derivative of the radiated power is |nd‘flg 3. Global dynamics of the four-element coupled-oscillator array. The
frequency of occurrence for a given derivative of the radiated power is indicated

Cé?teo_' by b”ghme_ss- Three distinct regions can be 'dent'f'edd)mbrightness. Three distinctly different operating regimes are visible. Coupling
this figure. Coupling strengths greater thar= 0.064 are the strengths greater than 0.064 result in phase locking of the oscillator elements.

phase-locked regime. Below= 0.020, the dynamics appear Coupling strengths below 0.020 resul_t in_chaotic_ﬂuctuations‘(_)f the output
irregular. power. Between chaos and phase locking is a continuous transition.

The literature on quasi-optical arrays has been restricted to
the range where the oscillators are mutually injection lockedith oscillator strengths betwedn020 < ¢ < 0.064 exhibit
Operation of the oscillator arrays in the locking range does neériodic variations in the radiated power. Analysis of the power
exploit the rich dynamics of this system. For example, arrapattern shows that the beam from the array is scanning.

Normalized

-

Wo v &2 O

o

20

dP/dt (arb. units)
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For intermediate coupling strengths, the arrays appear u —— [Initial phases: (9, 0,.¢,,0,)
stable and the power seems to fluctuate randomly. These fluct P Initial phases: 9,0, 94019
ations are entirely deterministic; there are no random variabli
or noise sources in the numerical simulations. The precision
the simulation is also not responsible for this instability. While —. ™ [
reduction of the numerical precision from 16- to 8-bit alters th( & i Sl
specific values of the time series, it does not affect its qualite > s | . RN 1
tive appearance. This seemingly random evolution of the rac § ¥ . ; RRN:
ated power is suggestive of chaos in the oscillator array. & L0

There is a gradual transition between these two limit
(¢ = 0.020 — 0.064). In the transition regime, the time series is . Rl WV GV
guasi-periodic, but this periodicity is intermittently interrupted 500 625 750 875 1000
by large signal bursts. As the coupling strength is reduce.. Time, t (a.u.)
toward the .cha_otl'c reglme, the tl,me between bursts beco%s 4. Far-field power radiated by two identical four element arrays where
shorter until it is impossible to discern any clear periodicCityyne array has an additional 0 ghase shift in an one-oscillator element.

This appears to be an intermittancy transition to chaos rather
than the more familiar period-doubling route to chaos. Similar
intermittancy transitions to chaotic behavior have been ob-In spite of SIC, all trajectories for a given set of control pa-

served in many systems, e.g., fluid transport, heat convectiédmeters converge to a single object in phase space: the attractor.
and chemical reactions [20]. The convergence of all trajectories to an attractor is guaranteed

even if the control parameters are varied slightly. This char-
acteristic behavior of a deterministic chaotic system is called
structural stability. Small perturbations of the control param-
The best-known characteristic of a chaotic system is unpigter—e.g., from a feedback control circuit—do not change the
dictability, resulting from sensitivity to initial conditions (SIC). attractor, they only change the trajectory in phase space. The
Even the slightest deviation from a given set of initial conditionstructural stability of the attractor will be a necessary condi-
yields a completely different output. Fig. 4 shows the time seri@i&n for chaos control of oscillator arrays. This invariance of the
for two arrays having the same coupling constants, but a slighglystem dynamics occurs only when the control parameters are
different initial phase distribution—one oscillator element hasot close to any critical values. Near critical values of the control
an additional 0.1phase shift. Although the time series initiallyparameters, the system loses its structural stability and tends to
evolve together, after several time steps, the output from the twiadergo a transition to a different state; the attractor is then not
arrays appears to be completely independent. defined. For example, the four-element array discussed in the
Although SIC has come to be the hallmark of chaos, it is ngtevious section is not described by an attractor at the critical
unique to the chaotic regime. For example, a similar behaviesupling constant 0.020.
can be observed in the intermittancy transition regime where theThe set of Lyapunov exponenis provides an intuitively ap-
time series is nearly periodic. Despite the apparent randomngssaling and yet powerful measure of SIC and dissipation, both
chaos refers to a specific well-defined type of dynamics. Thes¢which are required for a chaotic system. The sex0brigi-
are rigid constraints on the predictability and complexity of aates from a linear stability analysis. In this approximation, all
chaotic system’s evolution. Claims of chaos in many real syselutions are of the formaxp(\;t), i = 1,..., M, where M
tems have not been substantiated by rigorous analysis. Chads the number of degrees of freedom, which—as mentioned be-
climate and brain-wave patterns has not been demonstrated;ffte—is equal to the phase-space dimension. If one of the ex-
analysis is limited by the large number of dynamical variablgsonents is larger than zero, the distance between two initially

IV. CHARACTERIZING CHAOS

and poor data sets [21], [22]. nearby trajectories will increase exponentially with time in this
direction; this exponential divergence is responsible for the SIC.
A. Chaotic Attractors and Invariant Quantities If one of the \; is less than zero, the initial distance between

In this section, we discuss strategies for describing the dy© nearby trajectories will decrease exponentially with time.
namics of a system exhibiting such sensitivity to its startingiS Négative Lyapunov exponent indicates the time scale for a
values [23]. Although still useful, familiar techniques such agerturbatlpn todie out. Itisa measure of the d|SS|pat|0n.that al-
time- and frequency-domain analysis are often unable to revi3'S & trajectory to be “pulled in” toward the attractor; without

the patterns embedded within chaotic dynamics. It is necess&fjedative exponent, an attractor could not exist. All dynamical

to investigate the dynamics of the system in a more abstr&¥ptems thatare drawn toward attractersist also have ong;

space called “phase space.” Phase space is defined by asyst@ﬂi’?l to zero, where this represents the direction of propagation

independent variables, e.g., the position and momentum owgere neighboring trajectories are parallel. A chaotic system

linear damped harmonic oscillator or the relative phase diffdf2S (0 have atleast one positive, one negative, and.pequal
ences in our coupled-oscillator arrays. The phase-space dim@nZero-
sion is equal to the number of independent variables. Analysis

OT a power time S.e”es In pha;e space a”QWS us to uncover therys is true for all attractors, except point attractors, for which all Lyapunov
hidden structure in the behavior of the oscillator array. exponents are negative.
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In addition, the existence of the attractor allows a descrigariables (i.e., the relative phases) could be monitored. While
tion of the system dynamics via other invariant quantities. Otlais is tenable for theoretical analysis, it is generally impossible
suitable quantity is the attractor dimensibly. The necessity to simultaneously measure the evolution of every independent
for at least three different Lyapunov exponents for a chaotiariable. Often it is difficult to even determine the relevant de-
system requires that the phase space in which the attractogrises of freedom—which of the many parameters in an FET os-
embedded be greater than three. Therefore, at least four oscitiflator are relevant to the dynamics of the oscillator array? Also,
tors (three relative phases) are required for the observationitds, in general, not possible to calculate either the attractor di-
chaos in the oscillator arrays represented by (9). In fact, theension or the Kolmogorov—-Sinai entropy from the time series;
Poincare—Bendixon theorem requires only that the attractor @listead, we calculate the lower bounds for these measures. If we
mension of a chaotic system be larger than two. The attractoe to demonstrate chaos experimentally, we must first develop
dimension for a chaotic system is typically fractional; this is athe necessary techniques with the numerical data.
indication of the self-similarity of the phase-portrait. Takens [26] demonstrated that, under certain limiting condi-

Kolmogorov—Sinai entropy; is a third important measuretions, there is an equivalence of the true phase portrait with a
of the system dynamicg; represents the rate at which in-reconstruction generated by a delay time embedding. In other
formation is “created” in the system. Consider a computer thabrds, a time delay reconstruction will not affect the actual
tracks the state of dynamical systems and stores this informati@ues ofD, K1, or A;. The delay time method provides a phase
in a finite-size memory. Two initial states of a chaotic systemortrait reconstruction even if the time series for only a single
that are indistinguishable due to the limited precision of theriable is known. In this case, we only observe the far-field
memory become distinguishable as the trajectories diverge chaver radiated by the array. The information contained in a
to SIC. Therefore, the amount of information needed to trackeasurement of all of the oscillator phases at a single time is
chaotic system is always increasitg; is positive for a chaotic reconstructed from a measurement of the radiated p@wer
system. Two trajectories that start nearby remain nearby foaamany different times. In dz-dimensional embedding space,
periodic system. Therefore, the amount of information needdte vectorsP; are generated as follows:
to track the state of a periodic system does not chahgeis
zero for a periodic system. For random evolution, two initially
indistinguishable trajectories become distinguishable almost in-
stantaneouslyk’; approaches infinity for random noise-driven
systems. Our experience with various dynamical systems indiherer is called the delay timer is arbitrary for an infinitely
cates tha#(; provides the most reliable indication of determinlong and accurate time series, however, the choice ain be
istic chaotic dynamics. Intuitively, the above discussion sugtucial for experimental or numerical data. In this papeand
gests that a large positive Lyapunov exponent results in a lak§e are varied, and the estimates 0§, K, and)\; are checked
K, entropy; it can be shown thdt; = >"._, A}, where the for stability.
summation is only over the positive Lyapunov exponents. As we mentioned earlier, even when the phase portrait has

The attractor dimension can also be estimated from the Lyiseen constructed, we cannot, in general, determindrom a
punov exponents. Kaplan and York conjectured that the attractiven time seriesD; is usually estimated by the correlation

P = (P(i), Pli+7), ..., P(i+ (dp — 1)T)) (12)

dimension dimensionD,, for which the relationD, > D, holds [27].
j D5 is relatively easy to compute and is widely used [28]. The

Do >j+ 1 Z)‘i (11) caIcuIat'ion is performed by taking a reference pdit; and

Aj+1 measuring the distance to all other poidts The number of

, points within spheres of increasing radiusre counted. The
wherej is the positive integer for which thg_/_, A; is still mean over all reference points is called the correlation integral
positive. This conjecture is a powerful method for estimating

the attractor dimension. M M
All of the above quantities allow a characterization of de- Clr, d) = Z Z H(|P, - P (13)
terministic chaotic systems via the analysis of corresponding i=1 i=1

attractors in phase space. While the dimension of an attractor i

gives an estimate of the number of the active degrees of freedom

the Kolmogorow—Sinai entropy and Lyapunov exponents indithere (|1 — F;|) = 1 for | F; — P;| < r and zero otherwise.

cate a time scale for which the oscillator array’s dynamics ajdre correlation integral is the average fraction of points within
In a certain region, often referred to as the scaling region,

predictable. A detailed analysis of experimental time series %;(f’ ¢ : -
the techniques mentioned above can aid in the constructionCof» @) Will follow a power law relation tor. The slope in

accurate theoretical models. that region

B. Characterizing Chaos in a Four-Element Array D, = lim (14)
In this section, we introduce techniques for the estimation of

the Lyapunov exponents, attractor dimension, and entropy frasnan estimate for the correlation dimensibg.

numerical or experimental time series [24], [25]. Thus far, we We have calculated the correlation integfdlr, dg) for 50

have assumed that the evolution of all the systems independdifferent radiir, following a logarithmic scaling to the maximal
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Fig. 5. Correlation integral for increasing hypershere radii for embeddingg, 7. Estimated Kolmogorov—Sinai entropy for increasing embedding
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Fig. 8. Lyapunov)\; exponents versus time for an embedding dimension of

Fig. 6. Estimated dimension of the chaotic attractor for increasing embeddifg = 3.
dimension.

As with Dy, it is hard to calculaté(; directly from a finite
extent of the attractor, as determined from the time series. Tii®e seriesK; can be estimated from th&, entropy, where
embedding dimensiofiz was varied up to 25. We used a sampléhe relationk’; > K, holds [29]. TheK; entropy is related to
of 30 000 points for the calculation. The time detayas varied the correlation integral through
over a wide range. From = 5 up tor = 25 (in units of sam-

pling rater,), the outcome remained qualitatively and quanti- 1 Ctr, d)

tatively unchanged. We, therefore, fixed the value of 10 Kyr,dy=—In | =—+"~

in the following. Furthermore, we excluded 200 neighbors of Ts Cr, d+1)

the reference poink,.; in order to avoid time correlations in }Er& Ky(r, d) = K» (15)
the phase-space vectors, these spurious correlations frequently d— o0

prevent the observation of the scaling region. Fig. 5 shows the
correlation integral calculated from the power time series of tlieherer, denotes the sampling time. In order to obtain conver-
oscillator array with a coupling strength of= 0.015. gence for the calculation of the entropy by (15), it is usually
The correlation integral shows the typical shape for a data sefcessary to rescale the distance for each dimension—a proce-
with finite length and precision, which result in the fluctuationglure outlined in detail in [30].
of C(r, dg) at small radii(r < 25). In the range2s < r < As shown in Fig. 7, a clear saturation is visible for the cor-
600, there is a well-defined scaling region where the slope oflation entropyK, = 2.04 + 0.177;*. K is well above zero,
the curves follows the power law of (14) and the correlatiothis provides a strong indication for a chaotic state.
dimensionD, can be estimated. For radii larger than- 600, A linear stability analysis can be used to extract the Lya-
the correlation integrals start to saturate, which correspondspinov exponents from the constructed time series [31], [32].
the coverage of the whole attractor by only a few hyperspher&sg. 8 shows the Lyapunov exponents (= +2, A, = 0, and
The correlation dimension convergesite = 2.63 + 0.03,as A3 = —6 7, ) for an embedding dimensio#z = 3. The
shown in Fig. 6. higher dimensions show a similar picture; for all embedding
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Fig. 9. Time series from an experimental array at 8 GHz. strength that is modulated so as to stabilize a periodic orbit. The instantaneous
coupling strength is also shown.

dimensions, a positive Lyapunov exponent+e was found.

Usi.ng the Kaplan—Yorke conjecture, 'Fhe attractqr dim_ension@ed proportionately to the difference betwen. (i) and the

estimated to bd), = 2.35 wherej = 2in (15)7 This estimate center of the window. If it is outside the window, no modulation

is in agreement with thé, estimated from the correlation in-jg applied. The maximum correction is set to 1%:cpthis en-

tegral. In addition, the positive Lyapunov exponent is found iQ,res that the system is always described by a chaotic attractor.

equal to the calculated’; entropy. _ Scanning the center position of the windows selects different
We want to stress that all of the methods described ab%@riodic orbits to be targeted.

must be used with extreme care. Note that all of the calculateq:ig_ 10 shows the time series for the radiated power and cou-
qgantitigs were stable vyith respectto change; in the embedqi;ngg strength for a four-oscillator array with= 0.015. The
dimension; this check is necessary for the time-delay embegntrol perturbation is applied for approximately 100 ns. A reg-
ding procedure to be meaningful. There are additional restrigy periodic orbit is stabilized by the control perturbations after
tions arising from the influence of stationarity [24], metric inypproximately 10 000 time steps. Note that, for all values of the
phase space [30], embedding parameters [33], [34], noise [3}upling strengths in Fig. 10, the free-running oscillator array
[36], time correlations [37], and data length [38]. was chaotic (see Fig. 3).

In summary, we have shown that the oscillator arrays exhibitThe complexity of the periodic orbit that is eventually stabi-
several signatures of a chaotic system. Considering the undgfsq is a result of the trial-and-error nature of the control al-
lying model and results of the preceding paragraph, we conclugi§ithm. Careful analysis of the chaotic attractor can allow pre-
that the coupled oscillator array shows low-dimensional chaolifse determination of the magnitude and frequency of the con-
behavior for a range of coupling strengths. SiiGgwas posi- | pulse required to stabilize a periodic orbit. We chose the
tive, the oscillator system is chaotic and it is assured that th%riﬁ]ple trial-and-error method since our goal is only to demon-
are an infinite number of unstable periodic orbits that are accegrate that small<€<1%) perturbations of the coupling strength

sible by small perturbations on the coupling strength. We hayg stabilize the power radiated by the coupled oscillator array.
recently observed many of the complex time series discussed in

this paper. The far-field power was measured in a coupled os-
cillator array with 8-GHz MESFET oscillator elements coupled VI. CONCLUSIONS

to patch antennas [39]. An example is shown in Fig. 9. ] ) ]
In this paper, we have studied the dynamics of coupled

V. CHAOS CONTROL nonlinear oscillators. We have shown that when the coupling

. o ) strength between array elements is too small to allow phase
If we assign a symbol value to every periodic orbit, a chaotjgcking, the antenna arrays exhibit low-dimensional chaos.

symbol sequence is generated as the system switches betwegirolling the chaos in these arrays by small control per-
various orbits. Communication requires control of the symb@lhations indicates the potential of such oscillator arrays for
sequence, i.e., specifying the itinerary of orbits. In this sectiofhaotic communications. The combination of quasi-optical
we demonstrate control of the oscillator array by generating,8\er combining and an external chaotic control may allow for
regular symbol sequence. We employ a simple trial-and-eriggn-power high-speed modulation in an inexpensive circuit.
method where the parameters in the control algorithm are ad'l'hroughout this paper, we have used a simple model to de-
justed to obtain the desired periodic orbit. Stabilization of thgipe the dynamics of coupled oscillator arrays. More accurate
system state is realized by the OPF algorithm [15]. models tend to have the same underlying dynamics, but more

The OPF algorithm samples the peak powf.«(¢), and gegrees of freedom. The nonlinearity and coupling that we have
if it is within a given window, the coupling strength is moduemployed are sufficiently general such that the we can conclude

20, =4 Dyy = 2.30,dp =5, Dy = 2.37, dp = 6: Dy = 2.42 that_nearly gll coupled oscillator arrays have similar chaotic op-
or 2.66. erating regimes.
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