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Chaotic Dynamics in Coupled Microwave Oscillators
Rajeev J. Ram, Ralph Sporer, Hans-Richard Blank, and Robert A. York, Senior Member, IEEE

Abstract—This paper describes an investigation into possible
chaotic behavior in a coupled-oscillator system and the possible
control of this behavior for communications. The established math-
ematical models for these oscillator arrays are demonstrated to ex-
hibit chaos when the coupling strength between oscillators is below
the range for phase locking. The complexity and predictability of
the array dynamics are analyzed by means of standard dynamical
measures such as the Lyapunov exponents, the Kolmogorov–Sinai
entropy, and the attractor dimension. We show that chaos in these
oscillator arrays is low dimensional and well characterized; both
necessary conditions for control and possible exploitation of chaos.
Finally, the method of occasional proportional feedback is used to
stabilize the output from the array while the array is still in the
chaotic regime. Possible applications of these chaotic transmitters
are also discussed.

I. INTRODUCTION

A RRAYS OF coupled nonlinear systems possess a rich
catalog of potentially useful dynamics including mutual

synchronization, which has been used to demonstrate novel
beam-scanning techniques in microwave arrays [1] and mode
locking. Coupled-oscillator systems have also been shown
to reduce phase noise while increasing overall output power
[2], [3]. Although it is not yet clear whether these effects
will find practical use in microwave systems, the study of
coupled-oscillators is also motivated by a broader role of
synchronous behavior in many nonlinear biological systems,
including cardiac and neural activity.

A clear understanding of coupled-oscillator systems requires
a study of the full spectrum of operating regimes, including
the nonsynchronous states. In recent years, the possibility of
exploiting chaotic behavior of complex nonlinear systems has
been raised. One intriguing possibility was proposed by Hayes,
Grebogi, and Ott (HGO) [4]. In their proposal, a transmitter
is separated into a chaotic power stage and a high-speed
microelectronic control circuit. The free-running power stage
is chaotic because of continuous “switching” between various
unstable periodic orbits; an infinite number of unstable periodic
states typically coexist with any chaotic state [5]. Since the
chaotic state is arbitrarily close to any unstable periodic state,
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a small control perturbation can cause the (normally chaotic)
signal from the power stage to follow an “orbit” whose sequence
represents the information to be communicated. Hayeset al.
[6] have recently demonstrated this technique by controlling a
5-kHz chaotic oscillator circuit so that arbitrary bit sequences
could be generated. With the HGO technique, there is no need
for expensive high-speed electronics that are also capable of
high power handling. The strict separation of the power stage
and the high-speed electronics could allow for the fabrication
of inexpensive high-speed wireless communication channels.

The major challenge for the HGO scheme is realization in a
practical communication link. Coupled-oscillator arrays could
present a suitable platform for chaotic communication systems.
Modulation rates as high as 600 MHz have been demonstrated
with oscillator arrays [7]. In this paper, we show that oscillator
arrays have an accessible chaotic regime that exhibits low di-
mensionality, a necessary requirement for practical chaos con-
trol. In addition to the above-stated advantages of HGO chan-
nels, operation of the oscillator arrays in the chaotic regime may
alleviate the bandwidth limits set by the intrinsic locking range
of the arrays [8].

It is not difficult to observe chaos in single-oscillator systems.
Van der Pol observed the appearance of irregular oscillations
in an electrical circuit containing discharge tubes [9]. More re-
cently, Fukushima and Yamada have replaced the discharge tube
in Van der Pol’s apparatus with diode elements and have studied
the dynamics of two such diode oscillators that were coupled by
an inductive element [10]. We show in Section II that the dy-
namics of coupled-oscillator arrays are governed by a similar
set of coupled Van der Pol equations.

Lasers are extensively studied nonlinear oscillators that ex-
hibit chaos. Multimode lasers are examples of globally cou-
pled oscillators [11] and laser arrays are examples of nearest
neighbor coupled oscillators [12]. Again, the dynamics of laser
arrays can be described by a set of modified Van der Pol equa-
tions. Control of chaos has thus far been demonstrated in a glob-
ally coupled oscillator system: an Nd : YAG multimode laser
with an intracavity nonlinear crystal [13], [14].

Control and modulation of a chaotic system requires thorough
characterization of the system dynamics. Despite the interest in
oscillator arrays for synchronization or phase control, little con-
sideration has been given to the dynamics of unsynchronized
systems. In this paper, we obtain measures of the complexity
and predictability of the array’s dynamics. To this end, the at-
tractor dimension, the Kolmogorov–Sinai entropy, and the Lya-
panov exponents are introduced and estimated. As a first step to-
ward communications with chaotic antenna arrays, we employ
the method of occasional proportional feedback (OPF) [15] to
stabilize the output of an oscillator array while it is in the chaotic
regime.

0018–9480/00$10.00 © 2000 IEEE
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Fig. 1. Schematic diagram of coupled-oscillator system.

II. COUPLED-OSCILLATOR MODEL

To model these arrays, we choose a simple van der Pol model
that applies generally to coupled oscillator systems while ne-
glecting of the details of the coupling and the nonlinearity [16].
Such a simple theory has successfully modeled microwave os-
cillator experiments using Gunn, IMPATT, and MESFET de-
vices [8], [17].

The Van der Pol equation [18] models the active device by
a lumped negative resistance, which is embedded in a series
resonant circuit (Fig. 1); any reactive component of the device
impedance is considered part of the embedding network. The
negative resistance is assumed independent of frequency, but
depends nonlinearly on the amplitude of oscillation. The circuit
equation is

(1)

where is the radiation resistance of the antennas,is the
resonant frequency of the circuit, is the complex (phasor)
output voltage, is the -factor of the embedding network,
and represents any externally injected signals. The-factor
is sufficiently high ( ) so that the oscillator frequency
will remain close to and, therefore, the amplitude and phase
terms will be slowly varying functions of time (compared with
the period of oscillation). The output voltage can then be written
as

(2)

where is the amplitude of oscillation, and is the instanta-
neous phase. Following Van der Pol [7], the device saturation is
modeled by a quadratic such that

(3)

where is the free-running amplitude of oscillation, andis
an empirical nonlinearity parameter describing the oscillator.
This weak quadratic nonlinearity is the simplest nonlinearity
that approximates the behavior of a wide range of active devices.
Using (2), the amplitude and phase dynamics can be written

separately as

(4a)

(4b)

where and denote the real and imaginary parts of
the bracketed expression, respectively.

For a system of coupled oscillators, the mutual interaction
between oscillatorsand is described by a complex coupling
coefficient , which has a magnitude and phase given by

(5)

In most arrays, reciprocity will hold so that . This
coupling parameter is unitless and defined such that in a system
of oscillators, the injected signal at theth oscillator can be
written as

(6)

where is the complex (phasor) output voltage of theth os-
cillator. The system dynamics are described by

(7)

where the subscriptdenotes theth oscillator. For simplicity,
it is assumed that all of the oscillators have approximately the
same - and -factors. Writing enables the ampli-
tude and phase dynamics to be separated as

(8a)

(8b)

When , the oscillators are uncoupled and (8) reduces
to a set of independent sinusoidal oscillators with amplitudes

and frequencies .
In the limit of strong coupling between the oscillators, the

amplitude dynamics can be significant. However, for exploring
chaotic behavior, we are primarily interested in the case of weak
coupling where the oscillators are unable to achieve a phase-
locked state. In this limit, the amplitude variations are insignifi-
cant [19], and the dynamics are governed by the phase equations

(9)
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Note also that one of the phase variables is arbitrary and can be
set to zero; an -oscillator system has only degrees
of freedom. The ability to predetermine the number of dynamic
variables in the coupled oscillator systems makes this system an
ideal candidate for chaos control.

III. N UMERICAL TIME SERIES

The power transmitted by the antenna array is the natural
variable for monitoring chaos in the coupled oscillators. The
far-field power is the communication signal and can be related
to the parameters in (9) by a superposition of the field patterns
for the individual antennas

(10)

In addition to the far-field power, it is necessary that we mon-
itor the signal locally for input to the control circuit. An obvious
choice for the local variable is the real part of the impedance
into the antenna array. Energy conservation requires the input
impedance to be proportional to the radiated power plus any
ohmic losses.

In addition, we must choose a system variable that can be ma-
nipulated by the control circuit. Virtually any of the static vari-
ables that appear in (9) are a valid choice for a control param-
eter, i.e., the intrinsic frequency of the oscillator, the coupling
strength, or the phase of the coupling constant. In this paper,
we use the coupling strength as the relevant control parameter.
High-speed modulation of the coupling strength may be accom-
plished by introducing active elements in the coupling network
of a transmission-line coupled-oscillator array. For example, in-
tegration of an FET into the coupling network would allow us
to attenuate the coupling between neighboring elements simply
by varying the gate bias.

In order to investigate the dynamics of the oscillator arrays,
we solve the set of coupled van der Pol equations in the time do-
main. The time series for the radiated power, radiation spectrum,
and “phase portrait” are shown in Fig. 2 for three values of the
coupling strength. The time series is calculated for a four-oscil-
lator array with an initial frequency distribution of (9.988, 9.996,
10.004, and 10.012 GHz); each oscillator has a . The
sampling time is . The 10-GHz carrier frequency is not
observable from this time series data. As the oscillator strength
is reduced below the range for phase locking, the time series
becomes significantly more complex. Fig. 3 shows the global
dynamics of the array. It is a density plot of the numerical time
series as a function of the coupling strength; the frequency of
occurrence for a given derivative of the radiated power is indi-
cated by brightness. Three distinct regions can be identified in
this figure. Coupling strengths greater than are the
phase-locked regime. Below , the dynamics appear
irregular.

The literature on quasi-optical arrays has been restricted to
the range where the oscillators are mutually injection locked.
Operation of the oscillator arrays in the locking range does not
exploit the rich dynamics of this system. For example, arrays

Fig. 2. Far-field power radiated by a four-element array. The power is plotted
as a function of the time and as a function of its time derivative. Fig. 1(a)–(c)
correspond to coupling strengths of 0.025, 0.020, and 0.015, respectively.

Fig. 3. Global dynamics of the four-element coupled-oscillator array. The
frequency of occurrence for a given derivative of the radiated power is indicated
by brightness. Three distinctly different operating regimes are visible. Coupling
strengths greater than 0.064 result in phase locking of the oscillator elements.
Coupling strengths below 0.020 result in chaotic fluctuations of the output
power. Between chaos and phase locking is a continuous transition.

with oscillator strengths between exhibit
periodic variations in the radiated power. Analysis of the power
pattern shows that the beam from the array is scanning.
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For intermediate coupling strengths, the arrays appear un-
stable and the power seems to fluctuate randomly. These fluctu-
ations are entirely deterministic; there are no random variables
or noise sources in the numerical simulations. The precision of
the simulation is also not responsible for this instability. While
reduction of the numerical precision from 16- to 8-bit alters the
specific values of the time series, it does not affect its qualita-
tive appearance. This seemingly random evolution of the radi-
ated power is suggestive of chaos in the oscillator array.

There is a gradual transition between these two limits
( ). In the transition regime, the time series is
quasi-periodic, but this periodicity is intermittently interrupted
by large signal bursts. As the coupling strength is reduced
toward the chaotic regime, the time between bursts becomes
shorter until it is impossible to discern any clear periodicity.
This appears to be an intermittancy transition to chaos rather
than the more familiar period-doubling route to chaos. Similar
intermittancy transitions to chaotic behavior have been ob-
served in many systems, e.g., fluid transport, heat convection,
and chemical reactions [20].

IV. CHARACTERIZING CHAOS

The best-known characteristic of a chaotic system is unpre-
dictability, resulting from sensitivity to initial conditions (SIC).
Even the slightest deviation from a given set of initial conditions
yields a completely different output. Fig. 4 shows the time series
for two arrays having the same coupling constants, but a slightly
different initial phase distribution—one oscillator element has
an additional 0.1phase shift. Although the time series initially
evolve together, after several time steps, the output from the two
arrays appears to be completely independent.

Although SIC has come to be the hallmark of chaos, it is not
unique to the chaotic regime. For example, a similar behavior
can be observed in the intermittancy transition regime where the
time series is nearly periodic. Despite the apparent randomness,
chaos refers to a specific well-defined type of dynamics. There
are rigid constraints on the predictability and complexity of a
chaotic system’s evolution. Claims of chaos in many real sys-
tems have not been substantiated by rigorous analysis. Chaos in
climate and brain-wave patterns has not been demonstrated; the
analysis is limited by the large number of dynamical variables
and poor data sets [21], [22].

A. Chaotic Attractors and Invariant Quantities

In this section, we discuss strategies for describing the dy-
namics of a system exhibiting such sensitivity to its starting
values [23]. Although still useful, familiar techniques such as
time- and frequency-domain analysis are often unable to reveal
the patterns embedded within chaotic dynamics. It is necessary
to investigate the dynamics of the system in a more abstract
space called “phase space.” Phase space is defined by a system’s
independent variables, e.g., the position and momentum of a
linear damped harmonic oscillator or the relative phase differ-
ences in our coupled-oscillator arrays. The phase-space dimen-
sion is equal to the number of independent variables. Analysis
of a power time series in phase space allows us to uncover the
hidden structure in the behavior of the oscillator array.

Fig. 4. Far-field power radiated by two identical four element arrays where
one array has an additional 0.1� phase shift in an one-oscillator element.

In spite of SIC, all trajectories for a given set of control pa-
rameters converge to a single object in phase space: the attractor.
The convergence of all trajectories to an attractor is guaranteed
even if the control parameters are varied slightly. This char-
acteristic behavior of a deterministic chaotic system is called
structural stability. Small perturbations of the control param-
eter—e.g., from a feedback control circuit—do not change the
attractor, they only change the trajectory in phase space. The
structural stability of the attractor will be a necessary condi-
tion for chaos control of oscillator arrays. This invariance of the
system dynamics occurs only when the control parameters are
not close to any critical values. Near critical values of the control
parameters, the system loses its structural stability and tends to
undergo a transition to a different state; the attractor is then not
defined. For example, the four-element array discussed in the
previous section is not described by an attractor at the critical
coupling constant .

The set of Lyapunov exponents provides an intuitively ap-
pealing and yet powerful measure of SIC and dissipation, both
of which are required for a chaotic system. The set oforigi-
nates from a linear stability analysis. In this approximation, all
solutions are of the form , , where
is the number of degrees of freedom, which—as mentioned be-
fore—is equal to the phase-space dimension. If one of the ex-
ponents is larger than zero, the distance between two initially
nearby trajectories will increase exponentially with time in this
direction; this exponential divergence is responsible for the SIC.
If one of the is less than zero, the initial distance between
two nearby trajectories will decrease exponentially with time.
This negative Lyapunov exponent indicates the time scale for a
perturbation to die out. It is a measure of the dissipation that al-
lows a trajectory to be “pulled in” toward the attractor; without
a negative exponent, an attractor could not exist. All dynamical
systems that are drawn toward attractors1 must also have one
equal to zero, where this represents the direction of propagation
where neighboring trajectories are parallel. A chaotic system
has to have at least one positive, one negative, and oneequal
to zero.

1This is true for all attractors, except point attractors, for which all Lyapunov
exponents are negative.
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In addition, the existence of the attractor allows a descrip-
tion of the system dynamics via other invariant quantities. One
suitable quantity is the attractor dimension. The necessity
for at least three different Lyapunov exponents for a chaotic
system requires that the phase space in which the attractor is
embedded be greater than three. Therefore, at least four oscilla-
tors (three relative phases) are required for the observation of
chaos in the oscillator arrays represented by (9). In fact, the
Poincare–Bendixon theorem requires only that the attractor di-
mension of a chaotic system be larger than two. The attractor
dimension for a chaotic system is typically fractional; this is an
indication of the self-similarity of the phase-portrait.

Kolmogorov–Sinai entropy is a third important measure
of the system dynamics. represents the rate at which in-
formation is “created” in the system. Consider a computer that
tracks the state of dynamical systems and stores this information
in a finite-size memory. Two initial states of a chaotic system
that are indistinguishable due to the limited precision of the
memory become distinguishable as the trajectories diverge due
to SIC. Therefore, the amount of information needed to track a
chaotic system is always increasing; is positive for a chaotic
system. Two trajectories that start nearby remain nearby for a
periodic system. Therefore, the amount of information needed
to track the state of a periodic system does not change;is
zero for a periodic system. For random evolution, two initially
indistinguishable trajectories become distinguishable almost in-
stantaneously; approaches infinity for random noise-driven
systems. Our experience with various dynamical systems indi-
cates that provides the most reliable indication of determin-
istic chaotic dynamics. Intuitively, the above discussion sug-
gests that a large positive Lyapunov exponent results in a large

entropy; it can be shown that , where the
summation is only over the positive Lyapunov exponents.

The attractor dimension can also be estimated from the Lya-
punov exponents. Kaplan and York conjectured that the attractor
dimension

(11)

where is the positive integer for which the is still
positive. This conjecture is a powerful method for estimating
the attractor dimension.

All of the above quantities allow a characterization of de-
terministic chaotic systems via the analysis of corresponding
attractors in phase space. While the dimension of an attractor
gives an estimate of the number of the active degrees of freedom,
the Kolmogorow–Sinai entropy and Lyapunov exponents indi-
cate a time scale for which the oscillator array’s dynamics are
predictable. A detailed analysis of experimental time series by
the techniques mentioned above can aid in the construction of
accurate theoretical models.

B. Characterizing Chaos in a Four-Element Array

In this section, we introduce techniques for the estimation of
the Lyapunov exponents, attractor dimension, and entropy from
numerical or experimental time series [24], [25]. Thus far, we
have assumed that the evolution of all the systems independent

variables (i.e., the relative phases) could be monitored. While
this is tenable for theoretical analysis, it is generally impossible
to simultaneously measure the evolution of every independent
variable. Often it is difficult to even determine the relevant de-
grees of freedom—which of the many parameters in an FET os-
cillator are relevant to the dynamics of the oscillator array? Also,
it is, in general, not possible to calculate either the attractor di-
mension or the Kolmogorov–Sinai entropy from the time series;
instead, we calculate the lower bounds for these measures. If we
are to demonstrate chaos experimentally, we must first develop
the necessary techniques with the numerical data.

Takens [26] demonstrated that, under certain limiting condi-
tions, there is an equivalence of the true phase portrait with a
reconstruction generated by a delay time embedding. In other
words, a time delay reconstruction will not affect the actual
values of , , or . The delay time method provides a phase
portrait reconstruction even if the time series for only a single
variable is known. In this case, we only observe the far-field
power radiated by the array. The information contained in a
measurement of all of the oscillator phases at a single time is
reconstructed from a measurement of the radiated power
at many different times. In a -dimensional embedding space,
the vectors are generated as follows:

(12)

where is called the delay time. is arbitrary for an infinitely
long and accurate time series, however, the choice ofcan be
crucial for experimental or numerical data. In this paper,and

are varied, and the estimates for, , and are checked
for stability.

As we mentioned earlier, even when the phase portrait has
been constructed, we cannot, in general, determinefrom a
given time series. is usually estimated by the correlation
dimension , for which the relation holds [27].

is relatively easy to compute and is widely used [28]. The
calculation is performed by taking a reference point and
measuring the distance to all other points. The number of
points within spheres of increasing radiusare counted. The
mean over all reference points is called the correlation integral

(13)

where for and zero otherwise.
The correlation integral is the average fraction of points within
. In a certain region, often referred to as the scaling region,

will follow a power law relation to . The slope in
that region

(14)

is an estimate for the correlation dimension.
We have calculated the correlation integral for 50

different radii , following a logarithmic scaling to the maximal
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Fig. 5. Correlation integral for increasing hypershere radii for embedding
dimensions fromd = 2to17. The correlation integrals coverage to a single
curve as the embedding dimensions is increased.

Fig. 6. Estimated dimension of the chaotic attractor for increasing embedding
dimension.

extent of the attractor, as determined from the time series. The
embedding dimension was varied up to 25. We used a sample
of 30 000 points for the calculation. The time delaywas varied
over a wide range. From up to (in units of sam-
pling rate ), the outcome remained qualitatively and quanti-
tatively unchanged. We, therefore, fixed the value of
in the following. Furthermore, we excluded 200 neighbors of
the reference point in order to avoid time correlations in
the phase-space vectors, these spurious correlations frequently
prevent the observation of the scaling region. Fig. 5 shows the
correlation integral calculated from the power time series of the
oscillator array with a coupling strength of .

The correlation integral shows the typical shape for a data set
with finite length and precision, which result in the fluctuations
of at small radii . In the range

, there is a well-defined scaling region where the slope of
the curves follows the power law of (14) and the correlation
dimension can be estimated. For radii larger than ,
the correlation integrals start to saturate, which corresponds to
the coverage of the whole attractor by only a few hyperspheres.
The correlation dimension converges to , as
shown in Fig. 6.

Fig. 7. Estimated Kolmogorov–Sinai entropy for increasing embedding
dimension.

Fig. 8. Lyapunov� exponents versus time for an embedding dimension of
d = 3.

As with , it is hard to calculate directly from a finite
time series. can be estimated from the entropy, where
the relation holds [29]. The entropy is related to
the correlation integral through

(15)

where denotes the sampling time. In order to obtain conver-
gence for the calculation of the entropy by (15), it is usually
necessary to rescale the distance for each dimension—a proce-
dure outlined in detail in [30].

As shown in Fig. 7, a clear saturation is visible for the cor-
relation entropy . is well above zero,
this provides a strong indication for a chaotic state.

A linear stability analysis can be used to extract the Lya-
punov exponents from the constructed time series [31], [32].
Fig. 8 shows the Lyapunov exponents ( , , and

) for an embedding dimension . The
higher dimensions show a similar picture; for all embedding
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Fig. 9. Time series from an experimental array at 8 GHz.

dimensions, a positive Lyapunov exponent of was found.
Using the Kaplan–Yorke conjecture, the attractor dimension is
estimated to be where in (15).2 This estimate
is in agreement with the estimated from the correlation in-
tegral. In addition, the positive Lyapunov exponent is found to
equal to the calculated entropy.

We want to stress that all of the methods described above
must be used with extreme care. Note that all of the calculated
quantities were stable with respect to changes in the embedding
dimension; this check is necessary for the time-delay embed-
ding procedure to be meaningful. There are additional restric-
tions arising from the influence of stationarity [24], metric in
phase space [30], embedding parameters [33], [34], noise [35],
[36], time correlations [37], and data length [38].

In summary, we have shown that the oscillator arrays exhibit
several signatures of a chaotic system. Considering the under-
lying model and results of the preceding paragraph, we conclude
that the coupled oscillator array shows low-dimensional chaotic
behavior for a range of coupling strengths. Sincewas posi-
tive, the oscillator system is chaotic and it is assured that there
are an infinite number of unstable periodic orbits that are acces-
sible by small perturbations on the coupling strength. We have
recently observed many of the complex time series discussed in
this paper. The far-field power was measured in a coupled os-
cillator array with 8-GHz MESFET oscillator elements coupled
to patch antennas [39]. An example is shown in Fig. 9.

V. CHAOS CONTROL

If we assign a symbol value to every periodic orbit, a chaotic
symbol sequence is generated as the system switches between
various orbits. Communication requires control of the symbol
sequence, i.e., specifying the itinerary of orbits. In this section,
we demonstrate control of the oscillator array by generating a
regular symbol sequence. We employ a simple trial-and-error
method where the parameters in the control algorithm are ad-
justed to obtain the desired periodic orbit. Stabilization of the
system state is realized by the OPF algorithm [15].

The OPF algorithm samples the peak power , and
if it is within a given window, the coupling strength is modu-

2d = 4: D = 2:30, d = 5, D = 2:37, d = 6: D = 2:42

or 2:66.

Fig. 10. Far-field power radiated by a four-element array with a coupling
strength that is modulated so as to stabilize a periodic orbit. The instantaneous
coupling strength is also shown.

lated proportionately to the difference between and the
center of the window. If it is outside the window, no modulation
is applied. The maximum correction is set to 1% of; this en-
sures that the system is always described by a chaotic attractor.
Scanning the center position of the windows selects different
periodic orbits to be targeted.

Fig. 10 shows the time series for the radiated power and cou-
pling strength for a four-oscillator array with . The
control perturbation is applied for approximately 100 ns. A reg-
ular periodic orbit is stabilized by the control perturbations after
approximately 10 000 time steps. Note that, for all values of the
coupling strengths in Fig. 10, the free-running oscillator array
was chaotic (see Fig. 3).

The complexity of the periodic orbit that is eventually stabi-
lized is a result of the trial-and-error nature of the control al-
gorithm. Careful analysis of the chaotic attractor can allow pre-
cise determination of the magnitude and frequency of the con-
trol pulse required to stabilize a periodic orbit. We chose the
simple trial-and-error method since our goal is only to demon-
strate that small (1%) perturbations of the coupling strength
can stabilize the power radiated by the coupled oscillator array.

VI. CONCLUSIONS

In this paper, we have studied the dynamics of coupled
nonlinear oscillators. We have shown that when the coupling
strength between array elements is too small to allow phase
locking, the antenna arrays exhibit low-dimensional chaos.
Controlling the chaos in these arrays by small control per-
turbations indicates the potential of such oscillator arrays for
chaotic communications. The combination of quasi-optical
power combining and an external chaotic control may allow for
high-power high-speed modulation in an inexpensive circuit.

Throughout this paper, we have used a simple model to de-
scribe the dynamics of coupled oscillator arrays. More accurate
models tend to have the same underlying dynamics, but more
degrees of freedom. The nonlinearity and coupling that we have
employed are sufficiently general such that the we can conclude
that nearly all coupled oscillator arrays have similar chaotic op-
erating regimes.
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