2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Neural Space-Mapping Optimization for EM-Based Design

Mohamed H. Bakr, Student Member, IEEE John W. Bandler, Fellow, IEEE Mostafa A. Ismail, Student Member, IEEE José Ernesto Rayas-Sánchez, Senior Member, IEEE and Qi-Jun Zhang Senior Member, IEEE

Page 2307.

Abstract:

We propose, for the first time, neural space-mapping (NSM) optimization for electromagnetic-based design. NSM optimization exploits our space-mapping (SM)-based neuromodeling techniques to efficiently approximate the mapping. A novel procedure that does not require troublesome parameter extraction to predict the next point is proposed. The initial mapping is established by performing upfront fine-model analyses at a reduced number of base points. Coarse-model sensitivities are exploited to select those base points. Huber optimization is used to train, without testing points, simple SM-based neuromodels at each NSM iteration. The technique is illustrated by a high-temperature superconducting quarter-wave parallel coupled-line microstrip filter and a bandstop microstrip filter with quarter-wave resonant open stubs.

References

  1. A. H. Zaabab, Q. J. Zhang and M. S. Nakhla, "A neural network modeling approach to circuit optimization and statistical design", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  1349-1358, June  1995.
  2. P. Burrascano, M. Dionigi, C. Fancelli and M. Mongiardo, "A neural network model for CAD and optimization of microwave filters", in IEEE MTT-S Int. Microwave Symp. Dig. , Baltimore, MD, 1998, pp.  13-16. 
  3. P. M. Watson and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2515-2523, Dec.  1997.
  4. P. M. Watson, G. L. Creech and K. C. Gupta, "Knowledge based EM-ANN models for the design of wide bandwidth CPW patch/slot antennas", in IEEE AP-S Int. Symp. Dig., Orlando, FL, July 1999, pp.  2588- 2591. 
  5. J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez and Q. J. Zhang, "Neuromodeling of microwave circuits exploiting space mapping technology", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  2417-2427, Dec.  1999.
  6. J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny and R. H. Hemmers, "Space mapping technique for electromagnetic optimization", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  2536-2544, Dec.  1994.
  7. R. M. Biernacki, J. W. Bandler, J. Song and Q. J. Zhang, "Efficient quadratic approximation for statistical design", IEEE Trans. Circuit Syst., vol. 36, pp.  1449-1454,  Nov.  1989.
  8. J. W. Bandler and S. H. Chen, "Circuit optimization: The state of the art", IEEE Trans. Microwave Theory Tech., vol. 36, pp.  424-443, Feb.  1988.
  9. J. W. Bandler, R. M. Biernacki, S. H. Chen, W. J. Getsinger, P. A. Grobelny, C. Moskowitz and S. H. Talisa, "Electromagnetic design of high-temperature superconducting microwave filters", Int. J. Microwave Millimeter-Wave Computer-Aided Eng., vol. 5, pp.  331-343, 1995.
  10. M. H. Bakr, J. W. Bandler, R. M. Biernacki, S. H. Chen and K. Madsen, "A trust region aggressive space mapping algorithm for EM optimization", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  2412-2425, Dec.  1998.
  11. M. Pozar, Microwave Engineering, New York: Wiley, 1998, p.  162.