2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Scalable GaInP/GaAs HBT Large-Signal Model

Matthias Rudolph, Member, IEEE Ralf Doerner, Member, IEEE Klaus Beilenhoff, Member, IEEE and Peter Heymann Associate Member, IEEE

Page 2370.

Abstract:

A scalable large-signal model for heterojunction bipolar transistors (HBTs) is presented in this paper. It allows exact modeling of all transistor parameters from single-finger elementary cells to multifinger power devices. The scaling rules are given in detail. The model includes a new collector description, which accounts for modulation of base-collector capacitance Cjc, as well as for base and collector transit times due to temperature effects and high-current injection. The model is verified by comparison with measurements of GaInP/GaAs HBTs.

References

  1. C. T. Kirk, Jr., "A theory of transistor cutoff frequency (fT) falloff at high current densities", IRE Trans. Electron Devices, vol. ED-12, pp.  164 -174, Mar.  1962.
  2. R. J. Whittier and D. A. Tremere, "Current gain and cutoff frequency falloff at high currents", IEEE Trans. Electron Devices, vol. ED-16, pp.  39-57,  Jan.  1969.
  3. W. Liu and J. S. Harris, "Current dependence of base-collector capacitance of bipolar transistors", Solid-State Electron., vol. 35, no. 8, pp.  1051-1057, Aug.  1992.
  4. R. G. Davis and M. B. Allenson, "Unified HBT base push-out and base-collector capacitance model", Solid-State Electron., vol. 38, no. 2, pp.  481-485, Feb.  1995.
  5. L. H. Camnitz, S. Kofol, T. Low and S. R. Bahl, "An accurate, large signal, high frequency model for GaAs HBTs", in GaAs IC Symp. Dig., 1996, pp.  303-306. 
  6. M. Rudolph, R. Doerner and P. Heymann, "Direct extraction of HBT equivalent circuit elements", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  82-84, Jan.  1999.
  7. C. M. Snowden, "Large-signal microwave characterization of AlGaAs/GaAs HBT's based on a physics-based electrothermal model", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  58-71, Jan.  1997.
  8. T. Peyretaillade, M. Perez, S. Mons, R. Sommet, P. Auxemery, J. C. Lalaurie and R. Quéré, "A pulsed-measurement based electrothermal model of HBT with thermal stability prediction capabilities", in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp.  1515-1518. 
  9. R. Hajji and F. M. Ghannouchi, "Small-signal distributed model for GaAs HBT's and S -parameter prediction at millimeter-wave frequencies", IEEE Trans. Electron Devices, vol. ED-44, pp.  723 -732, May  1997.
  10. M. Rudolph, R. Doerner, E. Richter and P. Heymann, "Scaling of GaInP/GaAs HBT equivalent-circuit elements", in GAAS'99 Dig.,, pp.  113- 116. 
  11. M. Achouche, T. Spitzbart, P. Kurpas, F. Brunner, J. Würfl and G. Tränkle, "High performance InGaP/GaAs HBT's for mobile communications", Electron. Lett., vol. 36, no. 12, pp.  1073-1075, June  2000.
  12. P. C. Grossman and J. Choma, Jr., "Large signal modeling of HBT's including self-heating and transit time effects", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  449-464, Mar.  1992.
  13. C.-J. Wei, J. C. M. Hwang, W.-J. Ho and J. A. Higgins, "Large-signal modeling of self-heating, collector transit-time and RF-breakdown effects in power HBT's", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2641-2647, Dec.  1996.
  14. Q. M. Zhang, H. Hu, J. Sitch, R. K. Surridge and J. M. Xu, "A new large signal HBT model", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  2001 -2009, Nov.  1996.
  15. A. Samelis, "Modeling the bias dependence of the base-collector capacitance of power heterojunction bipolar transistors", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  642-645, May  1999.
  16. D. A. Ahmari, G. Raghavan, Q. J. Hartmann, M. L. Hattendorf, M. Feng and G. E. Stillman, "Temperature dependence of InGaP/GaAs heterojunction bipolar transistor DC and small-signal behavior", IEEE Trans. Electron Devices, vol. 46, pp.  634-640, Apr.  1999.
  17. B. A. Kramer and R. J. Weber, "Base-emitter diffusion capacitance in GaAlAs/GaAs HBTs", Electron. Lett., vol. 28, no. 12, pp.  1106-1107, June  1992.
  18. N. Bovolon, P. Baureis, J.-E. Müller, P. Zwicknagl, R. Schultheis and E. Zanoni, "A simple method for the thermal resistance measurement of AlGaAs/GaAs heterojunction bipolar transistors", IEEE Trans. Electron Devices, vol. 45, no. 8, pp.  1846 -1848, Aug.  1998.