2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Linearity Characteristics of GaAs HBTs and the Influence of Collector Design

Masaya Iwamoto, Student Member, IEEE Peter M. Asbeck, Fellow, IEEE Thomas S. Low, Craig P. Hutchinson, Jonathan Brereton Scott, Senior Member, IEEE Alex Cognata, Xiaohui Qin, Lovell H. Camnitz, Member, IEEE and Donald C. D'Avanzo Member, IEEE

Page 2377.

Abstract:

Linearity characteristics of GaAs heterojunction bipolar transistors (HBTs) are studied through measurement and analysis. Third-order intermodulation distortion behavior of HBTs is examined on devices with various epilayer designs and at various bias points, loads, and frequencies. Calculations from an analytical model reveal a strong bias and load dependence of third-order intercept point (IP3) on the nonlinearities from transconductance and the voltage dependence of base-collector capacitance. However, a simple model is not able to predict the fine details of IP3 with bias. A large-signal HBT model with an accurate description of the base-collector charge is shown to account for the measured trends. The base-collector charge function accounts for the modulation of base-collector capacitance with current, electron velocity modulation, and Kirk effect (base pushout) for GaAs-based HBTs. A detailed study of the influence of collector design on linearity is also presented.

References

  1. T. Iwai, S. Ohara, H. Yamada, Y. Yamaguchi, K. Imanishi and K. Joshin, "High efficiency and high linearity InGaP/GaAs HBT power amplifiers: Matching techniques of source and load impedance to improve phase distortion and linearity", IEEE Trans. Electron Devices, vol. 45, pp.  1196-1200, June  1998.
  2. B. L. Nelson, D. K. Umemoto, C. B. Perry, R. Dixit, B. R. Allen, M. E. Kim and A. K. Oki, "High-linearity, low DC power monolithic GaAs HBT broadband amplifiers to 11 GHz", in Proc. 1990 IEEE MMWMC Symp.,, pp.  15-18. 
  3. K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. Gutierrez-Aitken, M. Nishimoto, J. H. Elliot, T. R. Block, A. K. Oki and D. C. Streit, "A 44-GHz high IP3 InP HBT MMIC amplifier for low dc power millimeter-wave receiver applications", IEEE J. Solid-State Circuits, vol. 34, pp.  1188-95, Sept.  1999.
  4. S. A. Mass, B. L. Nelson and D. L. Tait, "Intermodulation in heterojunction bipolar transistors", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  442-448, Mar.  1992.
  5. A. Samelis and D. Pavlidis, "Mechanisms determining third-order intermodulation distortion in AlGaAs/GaAs HBTs", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  2374-2380, Dec.  1992.
  6. J. Lee, W. Kim, Y. Kim, T. Rho and B. Kim, "Intermodulation mechanism and linearization of AlGaAs/GaAs HBTs", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2065-2072, Dec.  1997.
  7. N. L. Wang, W. J. Ho and J. A. Higgins, "AlGaAs/GaAs HBT linearity characteristics", IEEE Trans. Microwave Theory Tech., vol. 42, pp.  1845-1850, Oct.  1994.
  8. K. W. Kobayashi, A. K. Oki, J. C. Cowles, L. T. Tran, P. C. Grossman, T. R. Block and D. C. Streit, "The voltage-dependent IP3 performance of a 35-GHz InAlAs/InGaAs-InP HBT amplifier", IEEE Microwave Guided Wave Lett., vol. 7, pp.  66-68, Mar.  1997.
  9. D. Teeter, M. Karakucuk, J. East and G. Haddad, "Analysis of intermodulation in GaAs/AlGaAs HBTs", in 1992 MTT-S Dig., June 1992, pp.  263-266. 
  10. M. Iwamoto, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X-H. Qin, L. H. Camnitz, P. M. Asbeck and D. C. D'Avanzo, "Influence of collector design on InGaP/GaAs HBT linearity", in IEEE MTT-S Int. Microwave Symp. Dig., June 2000.
  11. T. S. Low, T. S. Shirley, C. P. Hutchinson, G. K. Essilfie, W. C. Whiteley, R. E. Yeats and D. C. D'Avanzo, "InGaP HBT Technology for RF and Microwave Instrumentation", Solid-State Electron., vol. 43, pp.  1437-1444, Aug.  1999.
  12. T. S. Low, C. P. Hutchinson, P. C. Canfield, T. S. Shirley, R. E. Yeats, J. S. C. Chang, G. K. Essilfie, M. K. Culver, W. C. Whiteley, D. C. D'Avanzo, N. Pan, J. Elliot and C. Lutz, "Migration from an AlGaAs to an InGaP emitter HBT IC process for improved reliability", in GaAs IC Symp. Tech. Dig., 1998, pp.  153-156. 
  13. B. Hughes, A. Ferrero and A. Cognata, "Accurate on-wafer power and harmonic measurements of mm-wave amplifiers and devices", in IEEE MTT-S Int. Microwave Symp. Dig. , June 1992, pp.  1019-1022. 
  14. M. Demmler, B. Hughes and A. Cognata, "A 0.5-50 GHz on-wafer, intermodulation, load-pull and power measurement system", in IEEE MTT-S Int. Microwave Symp. Dig. , May 1995, pp.  1041-1044. 
  15. K. Lu, P. M. McIntosh, C. M. Snowden and R. D. Pollard, "Low-frequency dispersion and its influence on the intermodulation performance of AlGaAs/GaAs HBTs", in IEEE MTT-S Int. Microwave Symp. Dig., 1996, pp.  1373-76. 
  16. S. Narayanan, "Transistor distortion analysis using Volterra series representation", Bell Syst. Tech. J., vol. 46, no. 3, pp.  991-1024, May/June  1967.
  17. H. F. F. Jos, "A model for the nonlinear base-collector depletion layer charge and its influence on intermodulation distortion in bipolar transistors", Solid-State Electron., vol. 33, no. 7, pp.  907-915, 1990.
  18. L. C. N. de Vreede, H. C. de Graff, J. A. Willemen, W. van Noort, R. Jos, L. E. Larson, J. W. Slotboom and J. L. Tauritz, "Bipolar transistor epilayer design using the MAIDS mixed-level simulator", IEEE J. Solid-State Circuits, vol. 34, pp.  1331-1337, Sept.  1999.
  19. S. A. Maas, Nonlinear Microwave Circuits, Norwood, MA: Artech House, 1988, pp.  190-199. 
  20. P. C. Grossman and J. Choma, Jr., "Large-signal modeling of HBT's including self-heating and transit time effects", IEEE Trans. Microwave Theory Tech., vol. 40, pp.  449-464, Mar.  1992.
  21. L. H. Camnitz, S. Kofol, T. S. Low and S. R. Bahl, "An accurate, large signal, high frequency model for GaAs HBTs", in GaAs IC Symp. Tech. Dig., 1996, pp.  303-306. 
  22. L. H. Camnitz and N. Moll, "An analysis of the cutoff-frequency behavior of microwave heterostructure bipolar transistors,"in Compound Semiconductor Transistors, Physics and Technology, New York: IEEE Press, 1993, pp.  21-46. 
  23. H. C. Poon, "Implication of transistor frequency dependence on intermodulation distortion", IEEE Trans. Electron Devices, vol. ED-21, Jan.  1974.