2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Asymmetric Coupled CMOS Lines-An Experimental Study

Uwe Arz, Student Member, IEEE Dylan F. Williams, Senior Member, IEEE David K. Walker and Hartmut Grabinski

Page 2409.

Abstract:

This paper investigates the properties of asymmetric coupled lines built in a 0.25-µm CMOS technology over the frequency range of 50 MHz to 26.5 GHz. We show that the frequency-dependent line parameters extracted from calibrated four-port scattering-parameter measurements agree well with numerical predictions. We also demonstrate by measurement and calculation that the two fundamental modes of the coupled-line system share significant cross power. To our knowledge, this is the first complete experimental characterization of asymmetric coupled lines on silicon ever reported.

References

  1. H. Hasegawa, M. Furukawa and H. Janai, "Properties of microstrip line on Si-SiO 2 system", IEEE Trans. Microwave Theory Tech., vol. MTT-15, pp.  869-881, Nov.  1971.
  2. Y. Eo and W. R. Eisenstadt, "High-speed VLSI interconnect modeling based on S -parameter measurements", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 16, pp.  555-562,  Aug.  1993.
  3. S. Zaage and E. Grotelüschen, "Characterization of the broadband transmission behavior of interconnections on silicon substrates", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 16, pp.  686-691, Nov.  1993.
  4. T.-M. Winkel, L. S. Dutta and H. Grabinski, "An accurate determination of the characteristic impedance of lossy lines on chips based on high frequency S -parameter measurements", in IEEE Multichip Module Conf. Dig., Feb. 1996, pp.  190-195. 
  5. D. F. Williams, U. Arz and H. Grabinski, "Accurate characteristic impedance measurement on silicon", in IEEE MTT-S Int. Microwave Symp. Dig., June 9-11 1998, pp.  1917-1920. 
  6. T.-M. Winkel, L. S. Dutta, H. Grabinski and E. Grotelüschen, "Determination of the propagation constant of coupled lines on chips based on high frequency measurements", in IEEE Multichip Module Conf. Dig., Feb. 6-7 1996, pp.  99-104. 
  7. T.-M. Winkel, L. S. Dutta and H. Grabinski, "An accurate determination of the characteristic impedance matrix of symmetrical coupled lines on chips based on high frequency S -parameter measurements", in IEEE MTT-S Int. Microwave Symp. Dig., June 8-13 1997, pp.  1769-1772. 
  8. D. F. Williams, J. E. Rogers and C. L. Holloway, "Multiconductor transmission line characterization: Representations, approximations and accuracy", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  403-409, Apr.  1999 .
  9. C. Seguinot, P. Kennis, J.-F. Legier, F. Huret, E. Paleczny and L. Hayden, "Multimode TRL-A new concept in microwave measurements: Theory and experimental verification", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  403-409, May  1998.
  10. U. Arz, D. F. Williams, D. K. Walker, J. E. Rogers, M. Rudack, D. Treytnar and H. Grabinski, "Characterization of asymmetric coupled CMOS lines", in IEEE MTT-S Int. Microwave Symp. Dig., June 11-16 2000, pp.  609-612. 
  11. R. B. Marks, "A multiline method of network analyzer calibration", IEEE Trans. Microwave Theory Tech., vol. 39, pp.  1205-1215, July  1991.
  12. D. F. Williams and D. K. Walker, "In-line multiport calibration", in 51st ARFTG Conf. Dig., June 12 1998, pp.  88- 90. 
  13. E. Grotelüschen, L. S. Dutta and S. Zaage, "Quasi-analytical analysis of the broad-band properties of multiconductor transmission lines on semiconducting substrates", IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 17, pp.  376-382, Aug.  1994.
  14. D. F. Williams, L. A. Hayden and R. B. Marks, "A complete multimode equivalent-circuit theory for electrical design", J. Res. Natl. Bur. Stand., vol. 102, no. 4, pp.  405-423, July-Aug.  1997.
  15. R. B. Marks and D. F. Williams, "A general waveguide circuit theory", J. Res. Natl. Bur. Stand., vol. 97, no. 5, pp.  533-562, Sept.-Oct.  1992.
  16. P. T. Boggs, R. H. Byrd and R. D. Schnabel, "A stable and efficient algorithm for nonlinear orthogonal distance regression", SIAM J. Sci. Stat. Comput., pp.  1052-1078,  Nov.  1987.
  17. D. F. Williams and F. Olyslager, "Modal cross-power in quasi-TEM transmission lines", IEEE Microwave Guided Wave Lett., vol. 6, pp.  413-415, Nov.  1996.
  18. D. F. Williams, "Thermal noise in lossy waveguides", IEEE Trans. Microwave Theory Tech., vol. 44, pp.  1067 -1073, July  1996.