2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

On-Chip Spiral Inductors Suspended over Deep Copper-Lined Cavities

Hongrui Jiang, Ye Wang, Jer-Liang Andrew Yeh and Norman C. Tien

Page 2415.

Abstract:

A silicon micromachining method has been developed to fabricate on-chip high-performance suspended spiral inductors. The spiral structure of an inductor was formed with polysilicon and was suspended over a 30-µm-deep cavity in the silicon substrate beneath. Copper (Cu) was electrolessly plated onto the polysilicon spiral to achieve low resistance. The Cu plating process also metallized the inner surfaces of the cavity, forming both a good radio-frequency (RF) ground and an electromagnetic shield. High quality factors (Qs) over 30 and self-resonant frequencies higher than 10 GHz have been achieved. Study of the mechanical properties of the suspended inductors indicates that they can withstand large shock and vibration. Simulation predicts a reduction of an order of magnitude in the mutual inductance of two adjacent inductors with the 30-µm-deep Cu-lined cavity from that with silicon as the substrate. This indicates very small crosstalk between the inductors due to the shielding effect of the cavities.

References

  1. K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek and S. Moinian, "High Q inductors for wireless applications in a complementary silicon bipolar process", IEEE J. Solid-State Circuits, vol. 31, pp.  4 -9, Jan.   1996.
  2. P. R. Gray and R. G. Meyer, "Future directions in silicon IC's for RF personal communications", in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 1995, pp.  83-90. 
  3. L. E. Larson, "Integrated circuit technology options for RFIC's-present status and future directions", IEEE J. Solid-State Circuits, vol. 33, pp.  387-399, Mar.  1998.
  4. J. N. Burghartz, "Progress in RF inductors on silicon-understanding substrate losses", in Proc. IEEE Int. Electron Devices Meeting (IEDM), 1998, pp.  523-526. 
  5. H. B. Erzgräber, T. Grabolla, H. H. Richter, P. Schley and A. Wolff, "A novel buried oxide isolation for monolithic RF inductors on Si", in Proc. IEEE Int. Electron Devices Meeting (IEDM), 1998, pp.  535-539. 
  6. A. C. Reyes, S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder and H. Patterson, "Coplanar waveguides and microwave inductors on silicon substrates", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2016-2020, Sept.  1995.
  7. R. A. Johnson, C. E. Chang, P. M. Asbeck, M. E. Wood, G. A. Garcia and I. Lagnado, "Comparison of microwave inductors fabricated on silicon-on-sapphire and bulk silicon", IEEE Microwave Guided Wave Lett., vol. 6, pp.  323-325, Sept.  1996.
  8. J. N. Burghartz, D. C. Edelstein, K. A. Jenkins and Y. H. Kwark, "Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  1961-1968, Oct.  1997.
  9. R. Dekker, P. Baltus, M. van Deurzen, W. v.d. Einden, H. Maas and A. Wagemans, "An ultra low-power RF bipolar technology on glass", in IEEE Proc. Int. Electron Devices Meeting (IEDM), 1997, pp.  921-923. 
  10. J. Burghartz, D. Edelstein, M. Soyuer, H. Ainspan and K. Jenkins, "RF circuit design aspects of spiral inductors on silicon", in Tech. Dig. IEEE Int. Solid-State Circuits Conf. (ISSCC), 1998, pp.  246-247. 
  11. M. Ozgur, M. E. Zaghloul and M. Gaitan, "High Q backside micromachined CMOS inductors", in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), vol. II, 1999, pp.  577-580. 
  12. J. Y.-C. Chang, A. A. Abidi and M. Gaitan, "Large suspended inductors on silicon and their use in a 2-µ CMOS RF amplifier", IEEE Electron Device Lett., vol. 14, pp.  246 -248, May  1993.
  13. C. P. Yue and S. S. Wong, "On-chip spiral inductors with patterned ground shields for si-based RF IC's", IEEE J. Solid-State Circuits, vol. 33, pp.  743-752, May  1998.
  14. H. Jiang, J.-L. A. Yeh, Y. Wang and N. C. Tien, "Electromagnetically shielded high-Q CMOS-compatible copper inductors", in Tech. Dig. IEEE Int. Solid-State Circuits Conference (ISSCC), 2000, pp.  330- 331. 
  15. J.-L. A. Yeh, H. Jiang, H. P. Neves and N. C. Tien, "Copper-encapsulated silicon micromachined structures", J. Microelectromech. Syst., vol. 9, pp.  281 -287, Sept.  2000.
  16. J.-L. A. Yeh, H. Jiang and N. C. Tien, "Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator", IEEE J. Microelectromech. Syst., vol. 8, pp.  456-465, Dec.  1999.
  17. K. E. Petersen, "Silicon as a mechanical material", Proc. IEEE, vol. 70, pp.  420-457, May  1982.
  18. M. Rodgers and J. Sniegowski, "5-level polysilicon surface micromachine technology: application to complex mechanical systems", in Tech. Dig. Solid-State Sensor and Actuator Workshop, 1998, pp.  144-149. 
  19. M. R. Houston, R. Maboudian and R. T. Howe, "Self-assembled monolayer films as durable anti-sticition coatings for polysilicon microstructures", in Tech. Dig. Solid-State Sensor and Actuator Workshop, 1996, pp.  42-47. 
  20. "MEMCAD 4 User Guide", Microcosm Technology Inc., May 1999.
  21. J. Craninckx and M. S. J. Steyaert, "A 1.8-GHz low-phase noise CMOS VCO using optimized hollow spiral inductors", IEEE J. Solid-State Circuits, vol. 32, pp.  736-744, May  1997.
  22. J. R. Long and M. A. Copeland, "The modeling, characterization and design of monolithic inductors for silicon RF IC's", IEEE J. Solid-State Circuits, vol. 32, pp.  357-369, Mar.  1997.
  23. E. H. Smith, Mechanical Engineer's Reference Book, 12th ed.  : U.K.: Butterworth-Heinemann Ltd., 1994, p.  19/20. 
  24. W. C. Tang, T.-C. H. Nguyen, M. W. Judy and R. T. Howe, "Electrostatic-comb drive of lateral polysilicon resonators", Sensors Actuators, vol. A21, pp.  328-331, Feb.  1990.
  25. D. T. Read and J. W. Dally, "Mechanical behavior of aluminum and copper thin films,"in Mechanics and Materials for Electronic Packaging, vol. 2, Thermal and Mechanical Behavior and Modeling,: M. Schen, H. Abe, and E. Suhir, Eds. American Society of Mechanical Engineers, 1994.
  26. P. Arcioni, R. Castello, L. Perregrini, E. Sacchi and F. Svelto, "An innovative modelization of loss mechanism in silicon integrated inductors", IEEE Trans. Circuits Syst. II, vol. 46, pp.  1453-1460, Dec.  1999.
  27. M. Park, S. Lee, H. K. Yu and K. S. Nam, "High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology", IEEE Microwave Guided Wave Lett., vol. 7, pp.  45-47, Feb.  1997.
  28. K. Kamogawa, K. Nishikawa, I. Toyoda, T. Tokumitsu and M. Tanaka, "A novel high-Q and wide-frequency-range inductor using Si 3-D MMIC technology", IEEE Microwave Guided Wave Lett., vol. 9, pp.  16-18, Jan.  1999.
  29. W. B. Kuhn and N. K. Yanduru, "Spiral inductor substrate loss modeling in silicon RFICs", Microwave J., pp.  66 -81, Mar.  1999.
  30. K. O, "Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies", IEEE J. Solid-State Circuits, vol. 33, pp.  1249-1252, Aug.  1998.
  31. A. M. Niknejad and R. G. Meyer, "Analysis, design and optimization of spiral inductors and transformers for Si RF IC's", IEEE J. Solid-State Circuits, vol. 33, pp.  1470-1481, Oct.  1998.
  32. H. Jiang, B. A. Minch, Y. Wang, J.-L. A. Yeh and N. C. Tien, "A universal MEMS fabrication process for high-performance on chip RF passive components and circuits", in Tech. Dig. Solid-State Sensor and Actuator Workshop, 2000, pp.  250-254.