2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

Möbius Dual-Mode Resonators and Bandpass Filters

Jeffrey M. Pond

Page 2465.

Abstract:

It is shown that a topological surface known as the Möbius strip has applications to electromagnetic resonators and filters. Using identical rectangles to construct a cylindrical loop and a Möbius strip results in the path length of the edge of the Möbius strip being twice the path length of an edge of the cylindrical loop. This path-length advantage is consistent with the electromagnetic analog of a Möbius strip resonating at half the resonant frequency of the electromagnetic analog of the cylindrical loop even though they have the same mean diameter.

Dual-mode Möbius resonators have been demonstrated in planar format and as wire-loaded cavities. Two-pole bandpass filters have been constructed using these resonators. It is shown that these bandpass filters possess intrinsic transmission zeros that can be adjusted to enhance filter response. An equivalent circuit, which demonstrates excellent agreement with measured data, is presented and discussed.

References

  1. J. M. Pond, "Möbius filters and resonators", in 2000 IEEE Int. Microwave Symp. Dig., vol. 3, June 2000, pp.  1653-1656. 
  2. Webster's New Collegiate Dictionary, Springfield, MA: G.&C. Merriam , 1974.
  3. W. Lietzmann, Visual Topology, New York: Elsevier, 1965.
  4. J. S. Carter, How Surfaces Intersect in Space: An Introduction to Topology, 2nd ed.   Singapore: World Scientific, 1995.
  5. W. V. Tyminski and A. E. Hylas, "A wide-band hybrid ring for UHF", Proc. IRE, vol. 41, pp.  81-87, Jan.  1953.
  6. D. Rubin and D. Saul, "mm wave MIC's use low value dielectric substrates", Microwave J., vol. 19, no. 11, pp.  35-39, Nov.  1976.
  7. B. R. Heimer, L. Fan and K. Chang, "Uniplanar hybrid couplers using asymmetrical coplanar striplines", IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp.  2234-2240, Dec.  1997.
  8. B.-H. Margulescu, E. Moisan, P. Legaud, E. Panard and I. Zaquine, "New wideband, 0.67 g circumference 180° hybrid ring coupler", Electron. Lett., vol. 330, no.  4, pp.  299-300, Feb.  1994.
  9. H.-R. Ahn, I. Wolff and I.-S. Chang, "Termination impedances, power division and ring hybrids", IEEE Trans. Microwave Theory Tech., vol. 45, pp.  2241-2247, Dec.  1997.
  10. K. Chang, Microwave Ring Circuits and Antennas, New York: John Wiley and Sons, Inc., 1996.
  11. J. Wested and E. Andersen, "Resonance splitting in nonuniform ring resonators", Electron. Lett., vol. 8, no. 12, pp.  301-302, June  1972.
  12. U. Karacaoglu, I. D. Robertson and M. Guglielmi, "A dual-mode microstrip ring resonator filter with active devices for loss compensation", in 1993 IEEE Int. Microwave Symp. Dig., vol. 1, June 1993, pp.  189-192. 
  13. U. Karacaoglu, D. Sanchez-Hernandez, I. D. Robertson and M. Guglielmi, "Harmonic suppression in microstrip dual-mode ring-resonator bandpass filters", in 1996 IEEE Int. Microwave Symp. Dig., vol. 3, June 1996, pp.  1635-1638. 
  14. W. W. Macalpine and R. O. Schildknecht, "Coaxial resonators with helical inner conductor", Proc. IRE, vol. 47, pp.  2099-2105, Dec.  1959 .
  15. S. J. Fiedziuszko and R. S. Kwok, "Novel helical resonator filter structures", in 1998 IEEE Int. Microwave Symp. Dig., vol. 3, June 1998, pp.  1323-1326.