2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

A Study of Uncertainties in Modeling Antenna Performance and Power Absorption in the Head of a Cellular Phone User

Konstantina S. Nikita, Senior Member, IEEE Marta Cavagnaro, Paolo Bernardi, Fellow, IEEE Nikolaos K. Uzunoglu, Senior Member, IEEE Stefano Pisa, Member, IEEE Emanuele Piuzzi, John N. Sahalos, Senior Member, IEEE George I. Krikelas, John A. Vaul, Peter S. Excell, Senior Member, IEEE Graziano Cerri, Simona Chiarandini, Roberto De Leo and Paola Russo Member, IEEE

Page 2676.

Abstract:

A set of finite-difference time-domain (FDTD) numerical experiments modeling canonical representations of the human head/cellular phone interaction has been performed in order to investigate the effect of specific simulation details (e.g., antenna numerical representation and absorbing boundary conditions) on computed results. Furthermore, hybrid techniques based on the dyadic Green's function and the method of auxiliary sources, and on a hybrid method-of-moments-FDTD technique have been used to compute parameters of interest for comparison with the FDTD evaluated parameters. It was found that small, but potentially significant, differences in computed results could occur, even between groups that were nominally using a very similar method. However, these differences could be made to become very small when precise details of the simulation were harmonized, particularly in the regions close to the source point.

References

  1. "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", IEEE Standard C95.1-1991, 1992.
  2. "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Federal Commun. Commission, Washington, DC, OET Bulletin 65, Aug. 1997.
  3. "Human Exposure to Electromagnetic Fields. High Frequency (10 kHz to 300 GHz)", European Communities Prestandard ENV 50166-2, 1995.
  4. ICNIRP Guidelines "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)", Health Phys. , vol. 74, no. 4, pp.  494-522, 1998.
  5. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, Norwood, MA: Artech House, 1995.
  6. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 4, pp.  185-200, 1994.
  7. K. S. Nikita, G. S. Stamatakos, N. K. Uzunoglu and D. Economou, "A hybrid Green's function/method of auxiliary sources technique (Green/MAS) applied to the calculation of the electromagnetic field generated by a hand-held transceiver", in Proc. ICT'98, Thessaloniki, Greece, pp.  268- 272. 
  8. K. S. Nikita, G. S. Stamatakos, N. K. Uzunoglu and A. Karafotias, "Analysis of the interaction between a layered spherical human head model and a finite length dipole", IEEE Trans. Microwave Theory Tech., vol. 48, pp.  2003-2013, Nov.  2000.
  9. P. Bielli, G. Cerri, V. Mariani Primiani, P. Russo, A. Schiavoni and G. Tribellini, "A hybrid MoM-FDTD technique for the solution of EMC problems", in Proc. EMC'98, vol. 1, Rome, Italy, pp.  317-321. 
  10. G. Cerri, P. Russo, A. Schiavoni, G. Tribellini and P. Bielli, "A new MoM-FDTD hybrid technique for the analysis of scattering problems", Electron. Lett., vol. 34, no. 5, pp.  438-439, Mar.  1998.
  11. C. Gabriel, S. Gabriel and E. Corthout, "The dielectric properties of biological tissues", Med. Phys., vol. 41, pp.  2231-2293,  1996.
  12. O. P. Gandhi, "Some numerical methods for dosimetry: Extremely low frequencies to microwave frequencies", Radio Sci., vol. 30, no. 1, pp.  161-177, Jan.-Feb.  1995.
  13. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat., vol. AP-14, pp.  302-307, May  1966.
  14. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations", IEEE Trans. Electromagn. Compat., vol. EMC-23, pp.  377-382, Nov.  1981.
  15. V. Kupradze, Method of Integral Equations in the Theory of Diffraction ,: Moscow-Leningrad, 1935.
  16. R. F. Harrington, "Matrix methods for field problems", Proc. IEEE, vol. 55, pp.  136-149, Feb.  1967.
  17. G. D'Inzeo, "Proposal for numerical canonical models in mobile communications", in Proc. COST 244 Meeting, Rome, Italy,Nov. 1994, pp.  1-7.