2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

A Waveguide-Based Aperture-Coupled Patch Amplifier Array-Full-Wave System Analysis and Experimental Validation

Alexander B. Yakovlev, Member, IEEE Sean Ortiz, Student Member, IEEE Mete Ozkar, Student Member, IEEE Amir Mortazawi, Member, IEEE and Michael B. Steer Fellow, IEEE

Page 2692.

Abstract:

In this paper, the full-wave analysis and experimental verification of a waveguide-based aperture-coupled patch amplifier array are presented. The spatial power-combining amplifier array is modeled by the decomposition of the entire system into several electromagnetically coupled modules. This includes a method of moments integral equation formulation of the generalized scattering matrix (GSM) for an N-port waveguide-based patch-to-slot transition; a mode-matching analysis of the GSM for the receiving and transmitting rectangular waveguide tapers; and a finite-element analysis of the waveguide-to-microstrip line junctions. An overall response of the system is obtained by cascading GSMs of electromagnetic structures and the S-parameters of amplifier networks. Numerical and experimental results are presented for the single unit cell and 2 × 3 amplifier array operating at X-band. The results are shown for the rectangular aperture-coupled patch array, although the analysis is applicable to structures with arbitrarily shaped planar electric and magnetic surfaces.

References

  1. M. Kim, J. J. Rosenberg, R. P. Smith, R. M. Weikle, J. B. Hacker, M. P. Delisio and D. B. Rutledge, "A grid amplifier", IEEE Microwave Guided Wave Lett., vol. 1, pp.  322-324, Nov.  1991.
  2. M. Kim, E. A. Sovero, J. B. Hacker, M. P. Delisio, J.-C. Chiao, S.-J. Li, D. R. Gagnon, J. J. Rosenberg and D. B. Rutledge, "A 100-element HBT grid amplifier", IEEE Trans. Microwave Theory Tech., vol. 41, pp.  1762-1771, Oct.  1993.
  3. C.-Y. Chi and G. M. Rebeiz, "A quasioptical amplifier", IEEE Microwave Guided Wave Lett., vol. 3, pp.  164-166, June  1993.
  4. T. Ivanov, A. Balasubramaniyan and A. Mortazawi, "One-and two-stage spatial amplifiers", IEEE Trans. Microwave Theory Tech., vol. 43, pp.  2138-2143, Sept.  1995.
  5. M. N. Abdulla, U. A. Mughal, H.-S. Tsai, M. B. Steer and R. A. York, "A full-wave system simulation of a folded-slot spatial power combining amplifier array", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp.  559-562. 
  6. T. Ivanov and A. Mortazawi, "A two-stage spatial amplifier with hard horn feeds", IEEE Microwave Guided Wave Lett., vol. 6, pp.  88-90, Feb.  1996.
  7. M. A. Ali, S. C. Ortiz, T. Ivanov and A. Mortazawi, "Analysis and measurement of hard-horn feeds for the excitation of quasioptical amplifiers", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  479-487, Apr.  1999.
  8. J. Sowers, D. Pritchard, A. White, W. Kong and O. Tang, "A 36 W, V-band, solid state source", IEEE MTT-S Int. Microwave Symp. Dig., pp.  235-238, June  1999.
  9. J. Hubert, L. Mirth, S. Ortiz and A. Mortazawi, "A 4 watt Ka-band quasioptical amplifier", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp.  551-554. 
  10. A. Alexanian and R. A. York, "Broadband waveguide-based spatial combiners", in IEEE MTT-S Int. Microwave Symp. Dig., June 1997, pp.  1139-1142. 
  11. N.-S. Cheng, A. Alexanian, M. G. Case and R. A. York, "20 watt spatial power combiner in waveguide", in IEEE MTT-S Int. Microwave Symp. Dig., June 1998, pp.  1457-1460. 
  12. N.-S. Cheng, A. Alexanian, M. G. Case, D. B. Rensch and R. A. York, "40-W CW broad-band spatial power combiner using dense finline arrays", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1070-1076, July  1999.
  13. N.-S. Cheng, T.-P. Dao, M. G. Case, D. B. Rensch and R. A. York, "A 60-watt X-band spatially combined solid-state amplifier", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp.  539-542. 
  14. N.-S. Cheng, P. Jia, D. B. Rensch and R. A. York, "A 120-W X-band spatially combined solid-state amplifier", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  2557-2561, Dec.  1999.
  15. S. Ortiz and A. Mortazawi, "A perpendicularly-fed patch array for quasioptical power combining", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp.  667-670. 
  16. A. B. Yakovlev, A. I. Khalil, C. W. Hicks and M. B. Steer, "Electromagnetic modeling of a waveguide-based strip-to-slot transition module for application to spatial power combining systems", in Proc. IEEE AP-S Int. Symp., July 1999, pp.  286 -289. 
  17. A. B. Yakovlev, A. I. Khalil, C. W. Hicks, A. Mortazawi and M. B. Steer, "The generalized scattering matrix of closely spaced strip and slot layers in waveguide", IEEE Trans. Microwave Theory Tech., vol. 48, pp.  126-137, Jan.  2000.
  18. H. Patzelt and F. Arndt, "Double-plane steps in rectangular waveguides and their application for transformers, irises and filters", IEEE Trans. Microwave Theory Tech., vol. 30, pp.  771-776, May  1982.
  19. S. Ortiz and A. Mortazawi, "A perpendicular aperture-fed patch antenna for quasioptical amplifier arrays", in IEEE AP-S Int. Symp., July 1999, pp.  2386-2389. 
  20. R. E. Collin, Field Theory of Guided Waves, New York: IEEE Press, 1991.