2000 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000
Table of Contents for this issue
Complete paper in PDF format
A Waveguide-Based Aperture-Coupled
Patch Amplifier Array-Full-Wave System Analysis
and Experimental Validation
Alexander B. Yakovlev, Member, IEEE Sean Ortiz, Student Member, IEEE Mete Ozkar, Student Member, IEEE Amir Mortazawi, Member, IEEE and Michael B. Steer Fellow, IEEE
Page 2692.
Abstract:
In this paper, the full-wave analysis and experimental verification
of a waveguide-based aperture-coupled patch amplifier array are presented.
The spatial power-combining amplifier array is modeled by the decomposition
of the entire system into several electromagnetically coupled modules. This
includes a method of moments integral equation formulation of the generalized
scattering matrix (GSM) for an N-port waveguide-based
patch-to-slot transition; a mode-matching analysis of the GSM for the receiving
and transmitting rectangular waveguide tapers; and a finite-element analysis
of the waveguide-to-microstrip line junctions. An overall response of the
system is obtained by cascading GSMs of electromagnetic structures and the
S-parameters of amplifier networks. Numerical and experimental
results are presented for the single unit cell and 2 ×
3 amplifier array operating at X-band. The results are shown
for the rectangular aperture-coupled patch array, although the analysis is
applicable to structures with arbitrarily shaped planar electric and magnetic
surfaces.
References
-
M. Kim, J. J. Rosenberg, R. P. Smith, R. M. Weikle, J. B. Hacker, M. P. Delisio and D. B. Rutledge, "A grid amplifier", IEEE Microwave
Guided Wave Lett., vol. 1, pp. 322-324, Nov. 1991.
-
M. Kim, E. A. Sovero, J. B. Hacker, M. P. Delisio, J.-C. Chiao, S.-J. Li, D. R. Gagnon, J. J. Rosenberg and D. B. Rutledge, "A 100-element HBT grid amplifier", IEEE Trans. Microwave Theory Tech., vol. 41, pp.
1762-1771, Oct. 1993.
-
C.-Y. Chi and G. M. Rebeiz, "A quasioptical amplifier", IEEE Microwave
Guided Wave Lett., vol. 3, pp. 164-166, June 1993.
-
T. Ivanov, A. Balasubramaniyan and A. Mortazawi, "One-and two-stage spatial amplifiers", IEEE Trans. Microwave Theory Tech., vol. 43, pp.
2138-2143, Sept. 1995.
-
M. N. Abdulla, U. A. Mughal, H.-S. Tsai, M. B. Steer and R. A. York, "A full-wave system simulation of a folded-slot spatial power combining amplifier array", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp. 559-562.
-
T. Ivanov and A. Mortazawi, "A two-stage spatial amplifier with hard horn feeds", IEEE Microwave Guided Wave Lett., vol. 6, pp.
88-90, Feb. 1996.
-
M. A. Ali, S. C. Ortiz, T. Ivanov and A. Mortazawi, "Analysis and measurement of hard-horn feeds for the excitation of quasioptical amplifiers", IEEE Trans. Microwave Theory Tech., vol. 47, pp. 479-487, Apr. 1999.
-
J. Sowers, D. Pritchard, A. White, W. Kong and O. Tang, "A 36 W, V-band, solid state source", IEEE MTT-S
Int. Microwave Symp. Dig., pp. 235-238, June 1999.
-
J. Hubert, L. Mirth, S. Ortiz and A. Mortazawi, "A 4 watt Ka-band quasioptical amplifier", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp. 551-554.
-
A. Alexanian and R. A. York, "Broadband waveguide-based spatial combiners", in IEEE MTT-S Int. Microwave Symp. Dig., June 1997, pp. 1139-1142.
-
N.-S. Cheng, A. Alexanian, M. G. Case and R. A. York, "20 watt spatial power combiner in waveguide", in IEEE MTT-S Int. Microwave Symp. Dig., June 1998, pp. 1457-1460.
-
N.-S. Cheng, A. Alexanian, M. G. Case, D. B. Rensch and R. A. York, "40-W CW broad-band spatial power combiner using dense finline arrays", IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1070-1076, July 1999.
-
N.-S. Cheng, T.-P. Dao, M. G. Case, D. B. Rensch and R. A. York, "A 60-watt X-band spatially combined solid-state amplifier", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp. 539-542.
-
N.-S. Cheng, P. Jia, D. B. Rensch and R. A. York, "A 120-W X-band spatially combined solid-state amplifier", IEEE Trans. Microwave Theory Tech., vol. 47, pp.
2557-2561, Dec. 1999.
-
S. Ortiz and A. Mortazawi, "A perpendicularly-fed patch array for quasioptical power combining", in IEEE MTT-S Int. Microwave Symp. Dig., June 1999, pp. 667-670.
-
A. B. Yakovlev, A. I. Khalil, C. W. Hicks and M. B. Steer, "Electromagnetic modeling of a waveguide-based strip-to-slot transition module for application to spatial power combining systems", in Proc. IEEE AP-S Int. Symp., July 1999, pp. 286 -289.
-
A. B. Yakovlev, A. I. Khalil, C. W. Hicks, A. Mortazawi and M. B. Steer, "The generalized scattering matrix of closely spaced strip and slot layers in waveguide", IEEE Trans. Microwave
Theory Tech., vol. 48, pp. 126-137, Jan. 2000.
-
H. Patzelt and F. Arndt, "Double-plane steps in rectangular waveguides and their application for transformers, irises and filters", IEEE Trans.
Microwave Theory Tech., vol. 30, pp. 771-776, May 1982.
-
S. Ortiz and A. Mortazawi, "A perpendicular aperture-fed patch antenna for quasioptical amplifier arrays", in IEEE AP-S Int. Symp., July 1999, pp. 2386-2389.
-
R. E. Collin, Field Theory of Guided Waves, New York: IEEE Press, 1991.