2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Microwave Theory and Techniques
Volume 48 Number 12, December 2000

Table of Contents for this issue

Complete paper in PDF format

1.6-and 3.3-W Power-Amplifier Modules at 24 GHz Using Waveguide-Based Power-Combining Structures

Jinho Jeong, Student Member, IEEE Youngwoo Kwon, Member, IEEE Sunyoung Lee, Changyul Cheon, Member, IEEE and Emilio A. Sovero Member, IEEE

Page 2700.

Abstract:

Both 1.6-and 3.3-W power-amplifier (PA) modules were developed at 24 GHz using a waveguide-based power combiner. The combiner is based on a double antipodal finline-to-microstrip transition structure, which also serves as a two-way power combiner. The proposed 1 × 2 combining structure was analyzed and optimized by finite-element-method (FEM) simulations and experiments. An optimized 1 × 2 power combiner showed a very low back-to-back insertion loss of 0.6 dB and return losses better than 17 dB over most of Ka-band. The resonant behavior of the combiner was also identified and analyzed using an FEM simulator. The two-way power-combining approach was extended to four-way (2 × 2) power combining by vertical stacking inside the waveguide. No degradation in the combining efficiency was observed during this process, demonstrating the scalability of the proposed approach. The implemented 1 × 2 power module that combines two 1-W monolithic-microwave integrated-circuit (MMIC) PAs showed an output power of 1.6 W and a combining efficiency of 83% around 24 GHz. The 2 × 2 PA module combining the four 1-W MMICs showed an output power of 3.3 W together with an almost identical combining efficiency. This paper demonstrates the potential of the proposed power combiner for high-power amplification at millimeter-wave frequencies.

References

  1. R. A. York and Z. B. Popović, Active and Quasi-Optical Arrays for Solid-state Power Combining, New York: Wiley, 1997.
  2. J. A. Higgins, E. A. Sovero and W. J. Ho, "44-GHz monolithic plane wave amplifiers", IEEE Microwave Guided Wave Lett., vol. 5, pp.  347-348, Oct.  1995.
  3. Y. Kwon, E. A. Sovero, D. S. Deakin and J. A. Higgins, "A 44-GHz monolithic waveguide plane-wave amplifier with improved unit cell design", IEEE Trans. Microwave Theory Tech., vol. 46, pp.  1237-1241, Sept.  1998.
  4. S. Ortiz, J. Hubert, L. Mirth, E. Schlech and A. Mortazawi, "A 25 watt and 50 watt Ka -band quasi-optical amplifier", in IEEE Int. Microwave Symp. Dig., 2000, pp.  797-800. 
  5. J. J. Sowers et al., "A 36 W, V -band, solid state source", in IEEE Int. Microwave Symp. Dig., 1999, pp.  235-238. 
  6. N.-S. Cheng, A. Alexanian, M. G. Case, D. B. Rensch and R. A. York, "40-W CW broad-band spatial power combiner using dense finline arrays", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  1070-1076, July  1999.
  7. A. Alexanian and R. A. York, "Broadband spatially combined amplifier array using tapered slot transitions in waveguide", IEEE Microwave Guided Wave Lett., vol. 7, pp.  42-44, Jan.  1997.
  8. N.-S. Cheng, P. Jia, D. B. Rensch and R. A. York, "A 120-W X -band spatially combined solid-state amplifier", IEEE Trans. Microwave Theory Tech., vol. 47, pp.  2557-2561, Dec.  1999.
  9. J. H. C. Van Heuven, "A new integrated waveguide-microstrip transition", IEEE Trans. Microwave Theory Tech., vol. MTT-24, pp.  144-147, Mar.  1976.
  10. C. J. Verver and W. J. R. Hoefer, "Quarter-wave matching of waveguide-to-finline transitions", IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp.  1645-1648, Dec.  1984.
  11. Y. Jang, J. Jeong, C. Jeong, C. Cheon and Y. Kwon, "Numerical analysis and design of waveguide-microstrip transition in millimeter-wave band", Trans. Korean Inst. Elect. Eng., vol. 47, no. 11, pp.  2007-2012, Nov.  1998.
  12. J. Jeong, Y. Kwon, Y. Jang and C. Cheon, "Design and fabrication of rectangular waveguide-to-microstrip transition at Ka -band", J. Korean Inst. Commun. Sci., pp.  1770-1776, 1998.
  13. E. A. Sovero, D. S. Deakin, J. Hong and Y. Kwon, "Watt level GaAs pHEMT power amplifiers 26 GHz and 40 GHz for wireless applications", in IEEE Radio Wireless Conf., Aug. 1999, pp.  309-312.